博碩士論文 100282005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:54.167.216.239
姓名 廖冠博(Guan-Bo Liao)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Laser cooling and optical trapping of potassium with tunable interaction toward quantum gas production)
相關論文
★ GW準粒子於Mn3O4和GaN的激發態性質計算★ 混合物種與低溫冷凍原子團簇噴流的發展
★ 以雷射脈衝對磁性薄膜進行超快磁轉化及其動態時間解析★ 以脈衝雷射沈積製造FeBO3薄膜
★ 共焦拉曼與螢光顯微鏡之發展及其在材料診斷上之應用★ 以光激發黑色素來清除細胞環境中之活性氧之探討
★ 發展在電漿波導式雷射電漿波電子加速器中誘發電子注入與X 光產生之技術★ 莫斯堡光譜儀的建造以及其應用到FeCO3薄膜的診斷
★ 發展利用另一道脈衝雷射在脈衝雷射沉 積技術中成長碳薄膜的雷射同步過程進 行碳薄膜晶向之控制★ 研究以雷射進行基板之前置處理來達到控制脈衝雷射沉積的矽鍺量子點的尺寸分布的可行性
★ 以超短脈衝雷射沉積技術製作鍺/矽薄膜之研究★ 一百兆瓦雷射系統之建造與在結構化電漿波導之應用
★ 以基質輔助脈衝雷射蒸鍍法製備聚3-己基噻酚/(6,6)-苯基-C61-丁酸甲酯有機太陽能電池★ 藥物劑量與復原時間影響光動力療法疫苗之功效的系統性研究
★ 光控制實用的材料製程在PEM燃料電池及光電元件上的應用★ 以脈衝雷射沉積與脈衝雷射退火製造鍺/矽量子點與成長鍺薄膜於單晶矽上並應用於光偵測器的研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗的目標是要實現鉀-39 原子的全光學式量子氣體,
我們透過小角度交叉重疊兩道光學陷阱(optical dipole
trap,ODT)來增加捕獲的原子數目並限縮原子在軸方向的運
動。使用這個長寬比小於 20 的複合式光學陷阱,可以穩定
補捉 1 ~ 2*106個鉀原子。然後我們使用磁費許巴赫共振技
術去控制原子間的交互作用,並測量了從 20 G 至 560 G 之
間的所有譜線,我們發現許多譜線在理論工作的文獻中有發
表,但目前沒有任何的實驗發表記錄,我們藉由費許巴赫共
振技術的幫助將鉀原子團的溫度降至 10 μk 以下時發現,S
波散射長度與二體彈性碰撞截面積被有效放大,藉由費許巴
赫共振的幫助,通過強制蒸發冷卻,最佳相空間密度提高到
7 *10-3。
摘要(英)
The goal of this experiment is to realize all-optical 39K Bose-Einstein Condensates (BEC). We improved the trap loading of a near-IR laser by crossing two beams at a small angle for good loading and tighter axial con?nement. With this composite trap, we can routinely trap 1 ? 2×106 cold 39K atoms and con?ne them in a potential well with a trap aspect ratio of less than 20. We then used magnetic Feshbach resonance (FR) to control the atomic interaction in the optical trap. The S-wave scattering length is greatly tuned to improve the two-body elastic collision rate in the trap. We scanned the magnetic ?eld from 20 ? 560 G and found intra-spin and inter-spin resonances. Several peaks we found were predicted by literature but not experimental reported to our knowledge. With the help of FR, the best phase space density was increased to 7×10?3 by force evaporative cooling.
關鍵字(中) ★ 鉀-39 原子
★ 雷射冷卻
★ 光學陷阱
★ 磁費許巴赫共振
關鍵字(英)
論文目次
Contents
Abstract 2
1 Introduction 1
1.1 Overview . . . . .
1 1.2 Outline . . . . . . . . . . . . . . . . . . . . . 2
2 The Experimental Setup 3 2.1 Collision and Optical Property of Potassium . . . . . . . . . . . . . . . . . 3 2.2 Hyper?ne Splitting of Potassium . . . . . . . . . 5
2.3 Laser Cooling . . . . . . . . . . . . . . . . . .7
2.4 Magneto-Optical Trap (MOT) . . . . . . . . . . . . 8 2.5 Doppler Temperature and Sub-Doppler Cooling . . . 10 2.6 Sub-Doppler Cooling of Potassium . . . . . . . . .11 2.7 Gray-molasses Cooling . . . . . . . . . . . . . . 15 2.8 Vacuum System . . . . . . . . . . . . . . . . . . 15 2.8.1 Zeeman Slower . . . . . . . . . . . . . . . . . 16 2.9 Magnetic Coil . . . . . . . . . . . . . . . . . . 19 2.10 Laser System . . . . . . . . . . . . . . . . . . 20 2.10.1 Magnetic Trap . . . . . . . . . . . . . . . . .24 2.11 Microwave and Programing Control System . . . . .24 2.12 Detection and Analyses of Ultracold Atoms . . . .25 2.13 Fluorescent Image . . . . . . . . . . . . . . . .26 2.14 Absorption Image . . . . . . . . . . . . . . . . 26 2.15 Temperature Measurement . . . . . . . . . . . . .27 2.16 Density of a Trapped Thermal Cloud . . . . . . . 28 2.17 Trap Frequency Measurement . . . . . . . . 29
2.18 Collision Rates . . . . . . . . . . . . . . . . .31 2.19 Phase Space Density . . . . . . . . . . . . . . .31
3 Optical Dipole Trap 32 3.1 The Principle of Optical Dipole Trap . . . . . . . . . . . . . . . . . . . . . 32 3.2 The Importance of ODT . . . . . . . . . . . . . . 33 3.3 Crossed Dipole Trap Potential . . . . . . . . . . 36 3.4 Dipole Trap Loading Model . . . . . . . . . . . . 40 3.5 Thermalization and Evaporation in the ODT . . . . 41 3.6 Number of Atoms in the Center Region of the Crossed Dipole Trap . . . . . . . 44
3.7 Simulation Results and Discussion . . . . . . . . 45 3.8 Optimization of Crossed Optical Dipole Trap . . . 53 3.9 Laser Cooling in the Optical Dipole Trap . . . . .55
3.10 Optical Dipole Trap Setup . . . . . . . . . . . .59 3.10.1 One Body Life Time in ODT . . . . . . . . . . .59
4 Potassium Cold Collision Properties and Feshbach Resonance
4.1 Interaction in Dilute Gases . . . . . . . . .63
4.1.1 Finite Di?erence Method and Background Scattering Length of Singlet and Triplet Potential . . . . . . . 68 4.2 Scattering Length Adjustment by another Scattering Channel . . . . . . . . . . 71
4.3 Feshbach Resonance . . . . . . . . . . . . . . . .72 4.4 Collision Channels . . . . . . . . . . . . . . . .74 4.5 Feshbach Resonance Spectroscopy . . . . . . . . . 82 4.6 Spin Polarization by Magnetic Trap . . . . . . . 85 4.7 Molecular Formation by Feshbach Resonance . . . . 87 4.7.1 E?mov States . . . . . . . . . . . . . . . . . .88 4.8 Collision Rate Enhancement thorugh Feshbach Resonance . . . . . . . . . . . . 89
4.9 Force Evaporation Cooling and Toward Quantum Gases . . . . . . . . . . . . . . 93
5 Conclusion and Outlook 95
5.1 New Vacuum System and Gray-molasses Cooling Result . . . . . . . . . . . . . 95
5.2 Summary and Outlook . . . . . . . . . . . . . . .100
A Properties of Potassium 101
B Circuit 102 B.0.1 Circuit . . . . . . . . . . . . .102
參考文獻
[1] K. Arnold and M. Barrett. All-opitcal bec in a 1.06 μm dipole trap. Opt. Commun,74(9):284, 2011.

[2] A. Bambini and S. Geltman. Feshbach resonances in cold collisions of potassium atoms.Phys. Rev. A, 65:062704, Jun 2002.

[3] M. D. Barrett. A QUEST for BEC : An all optical alternative. Thesis, 2002.

[4] M. D. Barrett, J. A. Sauer, and M. S. Chapman. All-optical formation of an atomic bose-einstein condensate. Phys. Rev. Lett., 87(1):010404, 2001.

[5] Q. Beaufils, R. Chicireanu, T. Zanon, B. Laburthe-Tolra, E. Mar’echal, L. Vernac, J.-C. Keller, and O. Gorceix. All-optical production of chromium bose-einstein condensates. Phys. Rev. A, 77:061601, Jun 2008.

[6] Immanuel Bloch. Ultracold quantum gases in optical lattices. Nature Physics, 1:23–30, Oct 2005.

[7] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye. An optical lattice clock with accuracy and stability at the 10(-18) level. Nature, 506(7486):71+, FEB 6 2014.

[8] C Chin, AJ Kerman, V Vuletic, and S Chu. Sensitive detection of cold cesium molecules formed on Feshbach resonances. Physical Review Letters, 90(3), Jan 2003.

[9] Cheng Chin, Rudolf Grimm, Paul Julienne, and Eite Tiesinga. Feshbach resonances in ultracold gases. Rev. Mod. Phys., 82:1225–1286, Apr 2010.

[10] Cheng Chin, Rudolf Grimm, Paul Julienne, and Eite Tiesinga. Feshbach resonances in ultracold gases. Rev. Mod. Phys., 82:1225–1286, Apr 2010.

[11] J.-F. Cl’ement, J.-P. Brantut, M. Robert-de Saint-Vincent, R. A. Nyman, A. Aspect, T. Bourdel, and P. Bouyer. All-optical runaway evaporation to bose-einstein condensation. Phys. Rev. A, 79:061406, Jun 2009.

[12] Liam Cook. Feshbach resonances and the three-body problem. Ph.D. thesis, 2012.

[13] J Dalibard and C Cohentannoudji. Laser Cooling below the Doppler Limit by Polariation Gradients. Journal of the Optical Society of America B, 6(11):2023–2045, Nov 1989.

[14] Jean Dalibard. Collisional dynamics of ultra-cold atomic gases.

[15] L. De Sarlo, P. Maioli, G. Barontini, J. Catani, F. Minardi, and M. Inguscio. Collisional properties of sympathetically cooled 39K. Phys. Rev. A, 75:022715, Feb 2007.

[16] V. Efimov. Phys. Lett., 33B:563, 1970.

[17] Stephan Falke, Horst Knoeckel, Jan Friebe, Matthias Riedmann, and Eberhard Tiemann. Potassium ground-state scattering parameters and Born-Oppenheimer potentials from molecular spectroscopy. Phys. Rev. A, 78(1), JUL 2008.

[18] H. Feshbach. A unified theory of nuclear reactions. Annals of Physics, 1962.

[19] I. I. Rabi G. Breit. Measurement of nuclear spin. Phys. Rev., 38:2082, 1931.

[20] S. R. Granade, M. E. Gehm, K. M. O’Hara, and J. E. Thomas. All-optical production of a degenerate fermi gas. Phys. Rev. Lett., 88:120405, Mar 2002.

[21] Michael Gr‥obner, Philipp Weinmann, Emil Kirilov, and Hanns-Christoph N‥agerl. Degener-ate raman sideband cooling of 39K. Phys. Rev. A, 95:033412, Mar 2017.

[22] M. Groebner, P. Weinmann, F. Meinert, K. Lauber, E. Kirilov, and H. C. Naegerl. A new quantum gas apparatus for ultracold mixtures of K and Cs and KCs ground-state molecules. Journal of Modern Optics, 63(18, SI):1829–1839, 2016.

[23] C. S. Hofmann, G. Gunter, H. Schempp, N. L. M. Muller, A. Faber, H. Busche, M. Robert- de Saint-Vincent, S. Whitlock, and M. Weidemuller. An experimental approach for investigating many-body phenomena in rydberg-interacting quantum systems. Frontiers of Physics, 9(5):571–586, 2014.

[24] C.-Y. Huang, C.-C. Chen, L.-A. Sun, G.-B. Liao, K.-S. Wu, Y.-J. Lin, and M.-S. Chang. Simple recipe for rapid all-optical formation of spinor bose-einstein condensates. Journal of Physics B, 2017.

[25] S Inouye, MR Andrews, J Stenger, HJ Miesner, DM Stamper-Kurn, and W Ketterle. Observation of Feshbach resonances in a Bose-Einstein condensate. Nature, 392(6672):151– 154, Mar 1998.

[26] D Jacob, E Mimoun, L De Sarlo, M Weitz, J Dalibard, and F Gerbier. Production of sodium bose–einstein condensates in an optical dimple trap. New Journal of Physics, 13(6):065022, 2011.

[27] Zachary Vendiro Valentin Crepel Wenlan Chen Jiazhong Hu, Alban Urvoy and Vladan Vuletic. Creation of a bose-condensed gas of rubidium 87 by laser cooling. arXiv:1705.03421, 2017.

[28] S Jochim, M Bartenstein, A Altmeyer, G Hendl, S Riedl, C Chin, JH Denschlag, and

R Grimm. Bose-Einstein condensation of molecules. Science, 302(5653):2101–2103, DEC 19 2003.

[29] Wolfgang Ketterle and N. J. van Druten. Evaporative cooling of trapped atoms. Adv. At. Mol. Opt. Phy., 1996.

[30] Toshiya Kinoshita, Trevor Wenger, and David S. Weiss. All-optical bose-einstein condensa-tion using a compressible crossed dipole trap. Phys. Rev. A, 71:011602, Jan 2005.

[31] T. Kishimoto, J. Kobayashi, K. Noda, K. Aikawa, M. Ueda, and S. Inouye. Direct evaporative cooling of 41K into a bose-einstein condensate. Phys. Rev. A, 79:031602, Mar 2009.

[32] Thorsten Koehler, Krzysztof Goral, and Paul S. Julienne. Production of cold molecules via magnetically tunable Feshbach resonances. Reviews of Modern Physics, 78(4):1311–1361, Dec 2006.

[33] T Kraemer, M Mark, P Waldburger, JG Danzl, C Chin, B Engeser, AD Lange, K Pilch, A Jaakkola, HC Nagerl, and R Grimm. Evidence for Efimov quantum states in an ultracold gas of caesium atoms. Nature, 440(7082):315–318, Mar 2006.

[34] S Kuhr, W Alt, D Schrader, M Muller, V Gomer, and D Meschede. Deterministic delivery of a single atom. Science, 293(5528):278–280, Jul 2001.

[35] S. J. M. Kuppens, K. L. Corwin, K. W. Miller, T. E. Chupp, and C. E. Wieman. Loading an optical dipole trap. Phys. Rev. A, 62:013406, Jun 2000.

[36] M. Landini. A tunable bose-einstein condensate of quantum interferometry. Ph.D. thesis, 2012.

[37] M. Landini, S. Roy, L. Carcagn’?, D. Trypogeorgos, M. Fattori, M. Inguscio, and G. Modugno.Sub-doppler laser cooling of potassium atoms. Phys. Rev. A, 84:043432, Oct 2011.

[38] M. Landini, S. Roy, L. Carcagn’?, D. Trypogeorgos, M. Fattori, M. Inguscio, and G. Modugno.Sub-doppler laser cooling of potassium atoms. Phys. Rev. A, 84:043432, Oct 2011.

[39] M. Landini, S. Roy, G. Roati, A. Simoni, M. Inguscio, G. Modugno, and M. Fattori. Direct evaporative cooling of 39k atoms to bose-einstein condensation. Phys. Rev. A, 86:033421, Sep 2012.

[40] Paul D. Lett, Richard N. Watts, Christoph I. Westbrook, William D. Phillips, Phillip L. Gould, and Harold J. Metcalf. Observation of atoms laser cooled below the doppler limit. Phys. Rev. Lett., 61:169–172, Jul 1988.

[41] M. Lysebo and L. Veseth. Feshbach resonances and transition rates for cold homonuclear collisions between 39K and 41K atoms. Phys. Rev. A, 81:032702, Mar 2010.

[42] K Macadam, A Steinbach, and C Wieman. A Narrow-Band Tunable Diode-Laser Sys- tem with Grading Feedback, and a Saturated Absorption Spectrometer for Cs and Rb. American Journal of Physics, 60(12):1098–1111, Dec 1992.

[43] Carlos R. Menegatti, Bruno S. Marangoni, Nadia Bouloufa-Maafa, Olivier Dulieu, and Luis G. Marcassa. Trap loss in a rubidium crossed dipole trap by short-range photoassocia- tion. Phys. Rev. A, 87:053404, May 2013.

[44] Carlos R. Menegatti, Bruno S. Marangoni, Jonathan Tallant, and Luis G. Marcassa. Simultaneous loading of potassium and rubidium into a crossed dipole trap: Characterization and two-body losses. Phys. Rev. A, 88:023411, Aug 2013.

[45] G Modugno, G Ferrari, G Roati, RJ Brecha, A Simoni, and M Inguscio. Bose-Einstein condensation of potassium atoms by sympathetic cooling. Science, 294(5545):1320–1322, Nov 2001.

[46] K. M. O’Hara, S. R. Granade, M. E. Gehm, and J. E. Thomas. Loading dynamics of co2 laser traps. Phys. Rev. A, 63:043403, Mar 2001.

[47] William D. Phillips. Nobel lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys., 70:721–741, Jul 1998.

[48] D. S. Weiss P.J. Ungar and S. Chu. Optical molasses and multilevel atoms: theory. JOSA B, 6(11):2058–2071, NOV 1989.

[49] M. Prevedelli, F. S. Cataliotti, E. A. Cornell, J. R. Ensher, C. Fort, L. Ricci, G. M. Tino, and M. Inguscio. Trapping and cooling of potassium isotopes in a double-magneto-optical-trap apparatus. Phys. Rev. A, 59:886–888, Jan 1999.

[50] M. Weidenmuller R. Grimm and Y. B. Ovchinnikov. Optical dipole traps for neutral atoms.Advances in atomic, molecular, and optical physics, 42:95–170, 2000.

[51] E. L. Raab, M. Prentiss, Alex Cable, Steven Chu, and D. E. Pritchard. Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett., 59:2631–2634, Dec 1987.

[53] Sanjukta Roy, Manuele Landini, Andreas Trenkwalder, Giulia Semeghini, Giacomo Spagnolli, Andrea Simoni, Marco Fattori, Massimo Inguscio, and Giovanni Modugno. Test of the universality of the three-body efimov parameter at narrow feshbach resonances. Phys. Rev. Lett., 111:053202, Aug 2013.

[54] G. Salomon, L. Fouch’e, S. Lepoutre, A. Aspect, and T. Bourdel. All-optical cooling of 39K to bose-einstein condensation. Phys. Rev. A, 90:033405, Sep 2014.

[55] G. Salomon, L. Fouche, P. Wang, A. Aspect, P. Bouyer, and T. Bourdel. Gray-molasses cooling of 39K to a high phase-space density. EPL, 104(6), DEC 2013.

[56] Jonathan Simon, Waseem S. Bakr, Ruichao Ma, M. Eric Tai, Philipp M. Preiss, and Markus Greiner. Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature, 472, April 2011.

[57] J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur, and W. Ketterle.Spin domains in ground-state bose-einstein condensates. Nature, 396:345, 1998.

[58] Andrzej Szczepkowicz, Leszek Krzemie’n, Adam Wojciechowski, Krzysztof Brzozowski, Michael Kr‥uger, Michal Zawada, Marcin Witkowski, Jerzy Zachorowski, and Wojciech Gawlik. Optimal geometry for efficient loading of an optical dipole trap. Phys. Rev. A, 79:013408, Jan 2009.

[59] Yosuke Takasu, Kenichi Maki, Kaduki Komori, Tetsushi Takano, Kazuhito Honda, Mit- sutaka Kumakura, Tsutomu Yabuzaki, and Yoshiro Takahashi. Spin-singlet bose-einstein condensation of two-electron atoms. Phys. Rev. Lett., 91:040404, Jul 2003.

[60] Tobias Gerard Tiecke. Feshbach resonances in ultracold mixtures of the fermionic quantum gases 6li and 40k. Ph.D. thesis, 2009.

[61] Lara Torralbo-Campo, Graham D. Bruce, Giuseppe Smirne, and Donatella Cassettari. Light- induced atomic desorption in a compact system for ultracold atoms. Scientific Reports, 5, OCT 13 2015.

[62] J.T.M Walraven. Atomic gydrogen in magnetostatic traps. In G.-L. Oppo, Stephen M. Barnett, E. Riis, and M Wilkinson, editors, Quantum Dynamics of Simple Systems. IOP (SUSSP Proceedings, V. 44), 1996.

[63] T. Wasak, M. Krych, Z. Idziaszek, M. Trippenbach, Y. Avishai, and Y. B. Band. Simple model of a feshbach resonance in the strong-coupling regime. Phys. Rev. A, 90:052719, Nov 2014.

[64] Matthew J. Williams and Chad Fertig. Multipartite model of evaporative cooling in optical dipole traps. Phys. Rev. A, 91:023432, Feb 2015.

[65] Cheng-Hsun Wu. Strongly interacting quantum mixtures of ultracold atoms. Ph.D. thesis, 2013.

[66] Xinye Xu, Thomas H. Loftus, Josh W. Dunn, Chris H. Greene, John L. Hall, Alan Gallagher, and Jun Ye. Single-stage sub-doppler cooling of alkaline earth atoms. Phys. Rev. Lett., 90:193002, May 2003.
指導教授 張銘顯、陳賜原(Ming-Shien Chang Szu-yuan Chen) 審核日期 2017-9-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明