博碩士論文 100282601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.128.78.41
姓名 白萊格(Erdembayalag Batsaikhan)  查詢紙本館藏   畢業系所 物理學系
論文名稱 普魯士藍及銅奈米顆粒的物理性質與應用
(Physical properties and applications of Na-Co-Fe Prussian Blue analogues and Development of ferromagnetic superspins in bare Cu nanoparticles)
相關論文
★ 氫氣的調控對化學氣相沉積法成長石墨烯之影響★ 堆疊多層石墨烯之光電特性
★ 以中子繞射與磁性量測探討奈米金顆粒表面與內核之自發磁矩★ In/In2O3奈米顆粒之超導與自旋極化效應探討
★ Na-Fe-Fe普魯士藍奈米顆粒之 物性分析與電池應用★ 用納米粒子提高 K-CoCo 和 Na-FeFe 普魯士藍二次鋰離子電池的效率
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 這篇論文分成二個部分。第一個部分著重於奈米銅的磁性表現及特徵。第二個部分則著重於Na-Co-Fe類普魯士藍的物理性質與應用
在第一個部分,我們採用物理氣相沉積法來製備三種型態的奈米銅粒子,然後使用X光繞射技術來鑑定之。我們確定這些奈米粒子的平均直徑大約落在6.6nm到11.1nm之間。在磁化率量測中也指出不同尺寸的奈米銅粒子有不同的磁性特性。而塊材銅和奈米銅的電子雲分布差異也十分重要的表現在不同尺寸下的奈米銅粒子的等溫磁化率曲線中的類鐵磁性特徵中。
於第二個部分中,我們使用共沉澱法來合成Na-Co-Fe類普魯士藍。為了合成晶體結構的樣品,我們採用了加熱法以及將NaCl加入製成中來輔助合成。我們使用X光繞射技術以及X光光電子能譜法來鑑定樣品。關於這三個樣品的物理性質分析中,我們測量了這三個樣品的磁性特性以及拉曼光譜。此外,我們將這三個樣品使用在二次電池的正極中。
摘要(英) There are two parts in this thesis. The first part focuses on the studies made on the magnetic behavior of bare Cu nanoparticles. The second part focuses on the physical properties and applications of Na-Co-Fe Prussian blue analogues.
In the first part, a gas condensation method is employed to fabricate three sets of bare Cu nanoparticles. X-ray diffraction is used to characterize the samples. We determine the mean particle diameters of Cu nanoparticles are determined in range of 6.6 nm to 11.1 nm. Magnetization measurements were pointed out the changes in magnetic properties of Cu nanoparticles with various sizes. The differences in the electron density distributions between bulk and nano-sized Cu are important to understand the observations of ferromagnetic-like development in isothermal magnetization curves of Cu nanoparticles with various sizes.
In the second part of this thesis, a coprecipitation method is used to synthesize the Na-Co-Fe Prussian Blue Analogues (PBAs). In order to synthesize samples with different crystalline structures, both the heat treatment and sodium citrate assisted procedures are introduced into sample preparation procedure. Sample characterizations of three different Na-Co-Fe samples are examined by X-ray photoemission spectroscopy and X-Ray diffraction techniques. Moreover, physical properties of these Na-Co-Fe PBAs are investigated by magnetic measurements as well Raman spectroscopy. Furthermore, obtained three frameworks were introduced as the cathode for a secondary battery
關鍵字(中) ★ Cu nanoparticles
★ Prussian Blue Analogues
★ electron density distribution
★ crystalline structure
★ nanomagnetism
關鍵字(英) ★ Cu nanoparticles
★ Prussian Blue Analogues
★ electron density distribution
★ crystalline structure
★ nanomagnetism
論文目次 Table of Contents

Abstract in Chinese…...………………………….…………………………….………i
Abstract in English………………..…………….…….………………………….……ii
Dedication……………………...……………….…………………………….………iii
Acknowledgment..........................................................................................................iv
Table of Contents ……………………………………………………………………...v
List of Figures……………………………………………………………………......vii
List of Tables…………………...……………….…………………………….………ix

Chapter 1. Introduction……………………………………..……………….………1
1.1 Introduction to Cu nanoparticles…………………………………….………1
1.2 Introduction to Prussian blue analogues…………………………………….3
1.3 Purpose of experiments………………..…………………………………….5
References…………………………………..…………………………………...6
Chapter 2. Experimental…………………………………..………………,.………8
2.1 X-ray diffraction…………………………………..………………,.………8
2.2 Magnetic measurement…………………………………………….………10
2.3 Raman spectroscopy……………………………………………….………11
2.4 X-ray photoemission spectroscopy………….…..…………………………12
2.5 Battery testing system………………………………………..…….………13
References…………………………………..……………………………….…...14
Chapter 3. Development of superspin in bare Cu nanoparticles………...………15
3.1 Sample fabrication …..…………………………………………….………15
3.2 Sample characterization……….…………………………………...………17
3.3 Superspin particle magnetization…………………………………..………20
3.4 Size dependent magnetization……………………………………...………23
3.5 Electronic charge distribution……………………………………...………26
3.6 Conclusions……………………………………………………..….………33

Chapter 4. Physical properties and applications of Na-Co-Fe Prussian blue analogues…...………………………………………………………………..………35
4.1 Sample fabrication and elemental analysis…...………………….………35
4.1.1 Sample fabrication…...………………….……………………..……35
4.1.2 XPS measurement…...………………………………..…….………37
4.2 Crystalline structure…...………………………………..…….….………45
4.3 Magnetic properties…...………………….……………..……….………55
4.4 Optical and electronic properties in Na-Co-Fe PBAs……………………58
4.4.1 Raman measurement…...………………………….………..………58
4.4.2 Electronic properties of rhombohedral Na-Co-Fe PBAs………...…61
4.5 Battery measurement…...………………………………………..………63
4.5.1 Basic concepts of battery assembling…...…………………..………63
4.5.2 Cyclic test…...………………………………………...…….………65
4.6 Conclusions…...………………………………………………….………72
參考文獻 Reference
[1] M. C. Daniel et al., Chem. Rev. 104, 293 (2004).
[2] G. Vitulli., Chem. Mater. 14, 1183 (2002).
[3] H. H. Huang et al., Langmuir, 13, 172 (1997).
[4] Z. Liu et al., Adv. Mat. 15, 303 (2003).
[5] J. S. Garitaonandia et al., Nano Lett. 8, 661 (2008).
[6] M. A. Garcia et al., Nano Lett. 7, 1489 (2007)
[7] C.-Y. Li et al., Int. J. Mol. Sci. 14(9), 17618 (2013).
[8] S. K. Sharma., Springer Publishing, p.195 (2017).
[9] M. Prutton, Clarendon Press: Oxford, 108 (1994).
[10] Novotny et al., Phys. Rev. Lett. 28, 1441 (1972).
[11] R. Kubo, J. Phys. Soc. Jpn. 17, 957 (1962).
[12] W. P. Halperin., Rev. Mod. Phys. 58, 533 (1986).
[13] M. C. Chang et al., Phys.Rev. Lett. 93, 133401 (2004).
[14] M. Pereiro et al., Phys.Rev. A 72 045201 (2005).
[15] H. J. Juretschke., Phys. Rev. 92, 1140 (1953).
[16] V. Sahni et al., Phys. Rev. B 31, 7651 (1985).
[17] M. K. Harbola et al., Phys. Rev. B 37, 745 (1988).
[18] A. Fraft, Bull. Hist. Chem. 33, 61 (2008).
[19] H. J. Buser et al., Inorg. Chem. 16, 2704 (1977).
[20] O. Sato et al., Inor. Chem. 38, 20 (1999).
[21] K. W. Chapman et al., J. Am. Chem. Soc. 128, 7009 (2006).
[22] G. B. Laurance et al., Inor. Chem. 45 , 236 (2006).
[23] L. Egan et al., J.Am.Chem.Soc. 132, 4058 (2010).
[24] Y. Lu et al., Chem. Commun. 48, 6544 (2012).
[25] R. M. Garcia et al., J. Phys. Chem. Solids 67, 2289 (2006)
[26] Y. Moritomo et al., J. Phys. Soc. Jpn. 80, 074608 (2011).
[27] J.-H. Her et al., Inorg. Chem. 49, 1524 (2010).
[28] C. M. Karies et al., J. Am. Chem. Soc. 134, 2246 (2012).
[29] L. Wang et al., J. Am. Chem. Soc. 137, 2548 (2015).
[30] J. Song et al., J. Am. Chem. Soc. 137, 2658 (2015).
[31] H.-W. Lee et al., Nat. Comm. 5, 5280 doi: 10.1038/ncomms6280 (2014).
[32] H. Ye et al., J. Mater. Chem. A, 4, 1754 (2016).
[33] X. Wu et al., ACS Appl.Mater.Interfaces 8(8), 5393 (2016).
[34] R. Chen et al., ACS Appl.Mater.Interfaces 8(46), 31669 (2016).
[35] L. Xue et al., J. Am. Chem. Soc. 139(6), 2164 (2017).
指導教授 李文獻(Wen-Hsien Li) 審核日期 2018-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明