博碩士論文 100282602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:3.147.65.168
姓名 巴特(Batjargal Sainbileg)  查詢紙本館藏   畢業系所 物理學系
論文名稱 奈米材料的振動與電子組態性質之第一原理研究
(First-Principles Investigations of Vibrational and Electronic properties of selected Nanomaterials)
相關論文
★ GW準粒子於Mn3O4和GaN的激發態性質計算
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本篇論文中,我們使用第一原理的方法-電子密度泛函理論(density functional theory, DFT)來研究奈米材料-聚(3-己烷基噻吩) (Poly(3-hexylthiophene), P3HT)與金屬有機骨架化合物(Metal‒organic frameworks, MOFs)的震動與電子組態性質。本篇論文包含兩個部分:(一)以第一原理的方法研究聚(3-己烷基噻吩)的拉曼光譜與聲子。(二) 以第一原理的方法研究金屬有機骨架化合物的電子組態結構。
在第一部分中,聚(3-己烷基噻吩)為半導體聚合物且廣泛應用於光電元件,如有機光伏材料(organic photovoltaics, OPVs)與有機場效電晶體(organic field-effect transistors, OFETs)且價格不高。聚(3-己烷基噻吩)具有高的電子移動率且此電子移動率與其固態的堆疊方式相關。因此,原子層級的了解晶體結構的堆疊方式對於此材料的基礎研究與應用相當重要。然而,精確的確定規則排列的聚(3-己烷基噻吩)之排列方式仍是一項挑戰。使用第一原理的方法與拉曼光譜,我們探討了聚(3-己烷基噻吩)可能的排列方式以及其對應的拉曼光譜與聲子震動模式特徵。我們找到了兩種聚(3-己烷基噻吩)的排列方式,而基於此兩種結構所模擬出的拉曼光譜和聲子震動模式與實驗觀察到的光譜一致。藉由光譜上的對應,我們了解到當聚(3-己烷基噻吩)層的平面性下降時,拉曼光譜中的碳-碳單鍵聲子震動模式的頻率呈現紅位移而碳-碳雙鍵聲子震動模式的頻率則呈現藍位移。此外,當聚(3-己烷基噻吩)主幹上的環為夾角22度時,碳-碳雙鍵的峰分裂成兩個明顯的峰。此研究藉由第一原理計算結合拉曼光譜作為直接且有力的研究方法,為詳細了解聚合晶體的排列方式打開了道路。
在第二部分中,金屬有機骨架化合物為包含了無機、有機與溶劑成分的奈米複合結構且被認為具有相當大的潛能來應用於電子元件上。因此,確認其關鍵的電子結構性質,如能隙、能帶結構、能帶形式與狀態密度中的價帶(VBM)與傳導帶(CBM)為了解金屬有機骨架化合物電子特性的重要基礎。在此我們研究了兩個新穎的材料的電子組態性質:鍶化物與銅化物的金屬有機骨架化合物-結合了第一原理中的密度泛函的方法與實驗上的擴散反射光譜(Diffuse Reflectance Spectroscopy, DRS)。我們發現這些金屬有機骨架化合物皆為半導體性質且相較一般的絕緣金屬有機骨架化合物具有較窄的能隙。這是由於這兩個金屬有機骨架化合物具有獨特的金屬節點與高傳導性的連結方式。
摘要(英) In this dissertation, the vibrational and electronic properties of selected nanomaterials such as Poly(3-hexylthiophene) (P3HT) and Metal‒organic frameworks (MOFs) were investigated by utilizing first-principles simulation methods which are based on density functional theory (DFT) as well as density functional perturbation theory (DFPT). The dissertation consists of two topics that are first-principles investigations of (1) Raman spectra and phonon modes of the P3HT and (2) the electronic structures of MOF.
For topic (1), P3HT is a semiconducting polymer with a wide range of applications in flexible optoelectronic devices, such as organic photovoltaics (OPVs) and organic field-effect transistors (OFETs) with low processing costs. It possesses a high charge mobility that is highly sensitive to its packing configuration in the solid-state phase. Atomistic knowledge of the packing of crystalline structures is therefore of great importance for its fundamental study and practical applications. However, the accurate determination of packing geometry of ordered P3HT still remains challenging. By using first-principles calculation methods together with Raman spectroscopy, we search the possible packing structures of crystalline P3HT characterizing their Raman spectra and phonon modes. We find two packing structures of crystalline P3HT. Raman spectra and phonon modes are simulated based on these structures, and the resulting spectra are consistent with the experimentally observed ones. The spectral correspondences reveal that the frequency of Raman peak with C-C phonon mode shows a red-shift while the peak with C=C phonon mode exhibits a blue-shift as decreasing the layer planarity of P3HT. Furthermore, the C=C peak decomposes in two prominent peaks when backbone rings in the P3HT layer possess a dihedral angle of 22° with respect to each other. This study paves the way that the first-principles calculation combined with Raman spectroscopy can be used as a direct powerful method to specify packing structures of crystalline polymers.
For topic (2), MOFs are emerging as a promising class of nanoporous composite structures which consist of inorganic, organic and solvent components, expecting to have great potential for the advanced applications in electronics. In this regard, the determination of key electronic structures—energy bandgap, band structure, band type, density of states as well as features of VBM (HOMO) and CBM (LUMO) at band edges—is of prime importance to understand the fundamental electrical nature of MOFs. We investigated the electronic structures of novel two materials—Strontium and Copper based MOFs—as exemplary studies for electronic properties of Metal−Organic Frameworks by both theoretical first-principles DFT calculations and experimental Diffuse Reflectance Spectroscopy (DRS). We found these MOFs have the semiconducting behavior with relatively narrow bandgap compared with the conventional insulating MOFs due to their unique metal nodes and highly conductive linkers.
關鍵字(中) ★ P3HT
★ MOFs
★ DFT
★ DFPT
★ Nanomaterials
★ Raman
關鍵字(英) ★ First-Principles Investigations
★ P3HT
★ MOFs
★ DFT
★ DFPT
★ Nanomaterials
論文目次 Contents
Abstract in Chinese…………………..…….….…………………………….………i
Abstract in English………………..………….…………………………….………iii
Acknowledgement…...................................................................................................v
Contents…..................................................................................................................vi
List of Figures…...………….………….…….…………………………….………vii
List of Tables…...…………………………….…………………………….……….ix

PART
1 First-principles investigation of Raman spectra and phonon modes of crystalline Poly(3-hexylthiophene) (P3HT)
1.1 Introduction…………………………………….…………………………..1
1.2 Methodology…………………………………….…………………………10
1.3 Results and Discussion…………………………………….………………11
1.4 Conclusions………………………………….………………………….....33
1.5 Bibliography…………………………………….…………………………34

2 First-principles investigation of electronic properties of Metal-Organic Frameworks (MOFs)
2.1 Introduction…………………………………….………………………….43
2.2 Methodology………………………………….…………………………....48
2.3 Results and Discussion………………………………….…………………51
2.3.1 Electronic structures of Strontium based MOF…………...………51
2.3.2 Electronic structures of Copper based MOF………………………56
2.4 Conclusions………………………………….……………………………..65
2.5 Bibliography………………………………….……………………………67

Appendix
A. Copyright Permissions………………………………….……………………..…75
B. Publications and talks………………………………….…………………………77
參考文獻 (1) Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; et al. Two-Dimensional Charge Transport in Self-Organized, High-Mobility Conjugated Polymers. Nature 1999, 401, 685-688.
(2) Yang, H.; Shin, T. J.; Yang, L.; Cho, K.; Ryu, C. Y.; Bao, Z. Effect of Mesoscale Crystalline Structure on the Field-Effect Mobility of Regioregular Poly(3-Hexyl thiophene) in Thin-Film Transistors. Adv. Funct. Mater. 2005, 15, 671-676.
(3) Zhang, R.; Li, B.; Iovu, M. C.; Jeffries-El, M.; Sauvé, G.; Cooper, J.; Jia, S.; Tristram-Nagle, S.; Smilgies, D. M.; Lambeth, D. N.; et al. Nanostructure Dependence of Field-Effect Mobility in Regioregular Poly(3-Hexylthiophene) Thin Film Field Effect Transistors. J. Am. Chem. Soc. 2006, 128, 3480-3481.
(4) Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. A.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Giles, M.; Mcculloch, I.; Ha, C.-S.; et al. A Strong Regioregularity Effect in Self-Organizing Conjugated Polymer Films and High-Efficiency Polythiophene:Fullerene Solar Cells. Nat. Mater. 2006, 5, 197-203.
(5) Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 2007, 107, 1324-1338.
(6) Holliday, S.; Ashraf, R. S.; Wadsworth, A.; Baran, D.; Yousaf, S. A.; Nielsen, C. B.; Tan, C.-H.; Dimitrov, S. D.; Shang, Z.; Gasparini, N.; et al. High-Efficiency and Air-Stable P3HT-Based Polymer Solar Cells with a New Non-Fullerene Acceptor. Nat. Commun. 2016, 7, 11585.
(7) Dang, M. T.; Hirsch, L.; Wantz, G. P3HT:PCBM, Best Seller in Polymer Photovoltaic Research. Adv. Mater. 2011, 23, 3597-3602
(8) Krebs, F. C.; Espinosa, N.; Hösel, M.; Søndergaard, R. R.; Jørgensen, M. 25th Anniversary Article: Rise to Power - OPV-Based Solar Parks. Adv. Mater. 2013, 26, 29-39.
(9) Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. High-Efficiency Solution Processable Polymer Photovoltaic Cells by Self-Organization of Polymer Blends. Nat. Mater. 2005, 4, 864-868.
(10) Noriega, R.; Rivnay, J.; Vandewal, K.; Koch, F. P. V.; Stingelin, N.; Smith, P.; Toney, M. F.; Salleo, A. A General Relationship between Disorder, Aggregation and Charge Transport in Conjugated Polymers. Nat. Mater. 2013, 12, 1038-1044.
(11) Yang, X.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M. M.; Kroon, J. M.; Michels, M. A. J.; Janssen, R. A. J. Nanoscale Morphology of High-Performance Polymer Solar Cells. Nano Lett. 2005, 5, 579-583.
(12) Huang, J.-S.; Goh, T.; Li, X.; Sfeir, M. Y.; Bielinski, E. A.; Tomasulo, S.; Lee, M. L.; Hazari, N.; Taylor, A. D. Polymer Bulk Heterojunction Solar Cells Employing Forster Resonance Energy Transfer. Nat. Photonics 2013, 7, 479-485.
(13) Chou, K. W.; Yan, B.; Li, R.; Li, E. Q.; Zhao, K.; Anjum, D. H.; Alvarez, S.; Gassaway, R.; Biocca, A.; Thoroddsen, S. T.; et al. Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation. Adv. Mater. 2013, 25, 1923-1929.
(14) Li, H.; Tang, H.; Li, L.; Xu, W.; Zhao, X.; Yang, X. Solvent -Soaking Treatment Induced Morphology Evolution in P3HT/PCBM Composite Films. J. Mater. Chem. 2011, 21, 6563-6568.
(15) Salleo, A.; Kline, R. J.; DeLongchamp, D. M.; Chabinyc, M. L. Microstructural Characterization and Charge Transport in Thin Films of Conjugated Polymers. Adv. Mater. 2010, 22, 3812−3838.
(16) Chen, W.; Nikiforov, M. P.; Darling, S. B. Morphology Characterization in Organic and Hybrid Solar Cells. Energy Environ. Sci. 2012, 5, 8045−8074.
(17) Liu, F.; Gu, Y.; Shen, X.; Ferdous, S.; Wang, H.-W.; Russell, T. P. Characterization of the Morphology of Solution-Processed Bulk Heterojunction Organic Photovoltaics. Prog. Polym. Sci. 2013, 38, 1990−2052.
(18) Urquhart, S. G.; Martinson, M.; Eger, S.; Murcia, V.; Ade, H.; Collins, B. A. Connecting Molecular Conformation to Aggregation in P3HT Using Near-Edge X-ray Absorption Fine Structure Spectroscopy. J. Phys. Chem. C 2017, 121, 21720−21728.
(19) Wirix, M. J. M.; Bomans, P. H. H.; Hendrix, M. M. R. M.; Friedrich, H.; Sommerdijk, N. A. J. M.; De With, G. Visualizing Order in Dispersions and Solid State Morphology with Cryo-TEM and Electron Tomography: P3HT:PCBM Organic Solar Cells. J. Mater. Chem. A 2015, 3, 5031−5040.
(20) Bohle, A.; Dudenko, D.; Koenen, N.; Sebastiani, D.; Allard, S.; Scherf, U.; Spiess, H.W.; Hansen, M.R. A Generalized Packing Model for Bulk Crystalline Regioregular Poly (3‐alkylthiophenes) with Extended Side Chains. Macromol. Chem. Phys. 2017, 1700266.
(21) Panzer, F.; Bassler, H.; Lohwasser, R.; Thelakkat, M.; Köhler, A. The Impact of Polydispersity and Molecular Weight on the Order−Disorder Transition in Poly(3-hexylthiophene). J. Phys. Chem. Lett. 2014, 5, 2742−2747.
(22) Motamen, S.; Raithel, D.; Hildner, R.; Rahimi, K.; Jarrosson, T.; Serein-Spirau, F.; Simon, L.; Reiter, G. Revealing Order and Disorder in Films and Single Crystals of a Thiophene-Based Oligomer by Optical Spectroscopy. ACS Photonics 2016, 3, 2315−2323.
(23) Bragg, A. E.; Yu, W.; Zhou, J.; Magnanelli, T. Ultrafast Raman Spectroscopy as a Probe of Local Structure and Dynamics in Photoexcited Conjugated Materials. J. Phys. Chem. Lett. 2016, 7, 3990−4000.
(24) Hildner, R.; Köhler, A.; Müller-Buschbaum, P.; Panzer, F.; Thelakkat, M. π-Conjugated Donor Polymers: Structure Formation and Morphology in Solution, Bulk and Photovoltaic Blends. Adv. Energy Mater. 2017, 7, 1700314.
(25) Yin, W.; Dadmun, M. A New Model for the Morphology of P3HT/PCBM Organic Photovoltaics from Small-Angle Neutron Scattering: Rivers and Streams. ACS Nano 2011, 5, 4756−4768.
(26) Wood, S.; Hollis, J. R.; Kim, J.-S. Raman Spectroscopy as an Advanced Structural Nanoprobe for Conjugated Molecular Semiconductors. J. Phys. D: Appl. Phys. 2017, 50, 073001.
(27) Tsoi, W. C.; James, D. T.; Kim, J. S.; Nicholson, P. G.; Murphy, C. E.; Bradley, D. D. C.; Nelson, J.; Kim, J.-S. The Nature of In-Plane Skeleton Raman Modes of P3HT and Their Correlation to the Degree of Molecular Order in P3HT:PCBM Blend Thin Films. J. Am. Chem. Soc. 2011, 133, 9834-9843.
(28) Falke, S.; Eravuchira, P.; Materny, A.; Lienau, C. Raman Spectroscopic Identification of Fullerene Inclusions in Polymer/Fullerene Blends. J. Raman Spectrosc. 2011, 42, 1897-1900.
(29) Gao, Y.; Grey, J. K. Resonance Chemical Imaging of Polythiophene/Fullerene Photovoltaic Thin Films: Mapping Morphology-Dependent Aggregated and Unaggregated C=C Species. J. Am. Chem. Soc. 2009, 131, 9654-9662.
(30) Louarn, G.; Trznadel, M.; Buisson, J. P.; Laska, J.; Pron, A.; Lapkowski, M.; Lefrant, S. Raman Spectroscopic Studies of Regioregular Poly(3-alkylthiophenes). J. Phys. Chem. 1996, 100, 12532-12539.
(31) Milani, A.; Brambilla, L.; Zoppo, M. D.; Zerbi, G. Raman Dispersion and Intermolecular Interactions in Unsubstituted Thiophene Oligomers. J. Phys. Chem. B 2007, 111, 1271-1276.
(32) Khlaifia, D.; Ewels, C. P.; Massuyeau, F.; Chemek, M.; Faulques, E.; Duvail, J.-L.; Alimi, K. Unraveling the Real Structures of Solution-Based and Surface-Bound Poly(3-hexylthiophene) (P3HT) Oligomers: A Combined Theoretical and Experimental Study. RSC Adv. 2016, 6, 56174-56182.
(33) Weber, W. H.; Merlin, R. Raman Scattering in Materials Science; Springer Science & Business Media, 2013.
(34) Lan, Y.-B.; Sher, P.-H.; Lee, C.-K.; Pao, C.-W.; Tsao, C.-S.; Huang, Y.-C.; Huang, P.-T.; Wu, C.-I.; Wang, J.-K. Revealing Ordered Polymer Packing during Freeze-Drying Fabrication of a Bulk Heterojunction Poly(3-hexylthiophene-2,5-diyl):[6,6]-Phenyl-C61-butyric Acid Methyl Ester Layer: In Situ Optical Spectroscopy, Molecular Dynamics Simulation, and X‑ray Diffraction. J. Phys. Chem. C, 2017, 121, 14826–14834.
(35) Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys.: Condens. Matter 2009, 21, 395502.
(36) Cohen, M. L.; Schlüter, M.; Chelikowsky, J. R.; Louie, S. G. Self-Consistent Pseudopotential Method for Localized Configurations: Molecules. Phys. Rev. B 1975, 12, 5575-5579.
(37) Troullier, N.; Martins, J. L. Efficient Pseudopotentials for Plane-Wave Calculations. Phys. Rev. B 1991, 43, 1993-2006.
(38) Lee, K.; Murray, É. D.; Kong, L.; Lundqvist, B. I.; Langreth, D. C. Higher-Accuracy van Der Waals Density Functional. Phys. Rev. B 2010, 82, 081101.
(39) Grimme, S. Semiempirical GGA-type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787-1799.
(40) Barone, V.; Casarin, M.; Forrer, D.; Pavone, M.; Sambi, M.; Vittadini, A. Role and Effective Treatment of Dispersive Forces in Materials: Polyethylene and Graphite Crystals as Test Cases. J. Comput. Chem. 2009, 30, 934-939.
(41) Baroni, S.; Resta, R. Ab Initio Calculation of the Low-Frequency Raman Cross Section in Silicon. Phys. Rev. B 1986, 33, 5969-5971.
(42) Gonze, X.; Allan, D. C.; Teter, M. P. Dielectric Tensor, Effective Charges, and Phonons in α-Quartz by Variational Density-Functional Perturbation Theory. Phys. Rev. Lett. 1992, 68, 3603-3606.
(43) Giannozzi, P.; Gironcoli, S. D.; Pavone, P.; Baroni, S. Ab Initio Calculation of Phonon Dispersions in Semiconductors. Phys. Rev. B 1991, 43, 7231-7242.
(44) Tashiro, K.; Kobayashi, M.; Kawai, T.; Yoshino, K. Crystal Structural Change in Poly(3-Alkyl Thiophene)s Induced by Iodine Doping as Studied by an Organized Combination of X-Ray Diffraction, Infrared/Raman Spectroscopy and Computer Simulation Techniques. Polymer 1997, 38, 2867-2879.
(45) Tashiro, K.; Ono, K.; Minagawa, Y.; Kobayashi, M.; Kawai, T.; Yoshino, K. Structure and Thermochromic Solid-State Phase Transition of Poly(3-alkylthiophene). J. Polym. Sci., Part B: Polym. Phys. 1991, 29, 1223-1233.
(46) Brambilla, L.; Capel Ferrón, C.; Tommasini, M.; Hong, K.; López Navarrete, J.T.; Hernández, V.; Zerbi, G. Infrared and Multi‐wavelength Raman Spectroscopy of Regio‐regular P3HT and Its Deutero Derivatives. J. Raman Spectrosc. 2017, 1–12.
(47) Razzell-Hollis, J.; Fleischli, F.; Jahnke, A. A.; Stingelin, N.; Seferos, D. S.; Kim, J.-S. Effects of Side-Chain Length and Shape on Polytellurophene Molecular Order and Blend Morphology. J. Phys. Chem. C 2017, 121, 2088−2098.
(48) Koch, F. P. V.; Heeney, M.; Smith, P. Thermal and Structural Characteristics of Oligo(3-hexylthiophene)s (3HT)n, n = 4−36. J. Am. Chem. Soc. 2013, 135, 13699−13709.
(49) Shen, X.; Hu, W.; Russell, T. P. Measuring the Degree of Crystallinity in Semicrystalline Regioregular Poly(3-Hexylthiophene). Macromolecules 2016, 49, 4501.
(50) Wirix, M. J. M.; Bomans, P. H. H.; Friedrich, H.; Sommerdijk, N. A. J. M.; de With, G. Three-Dimensional Structure of P3HT Assemblies in Organic Solvents Revealed by Cryo-TEM. Nano Lett. 2014, 14, 2033–2038.
(51) Harrelson, T. F.; Cheng, Y. Q.; Li, J.; Jacobs, I. E.; Ramirez-Cuesta, A. J.; Faller, R.; Moule, A. J. Identifying Atomic Scale Structure in Undoped/Doped Semicrystalline P3HT Using Inelastic Neutron Scattering. Macromolecules 2017, 50, 2424−2435.
(52) Dennington, R.; Keith, T.; Millam, J. GaussView, Version 5; Semichem Inc.: Shawnee Mission, KS, 2009.
(53) Kokalj, A. Computer Graphics and Graphical User Interfaces as Tools in Simulations of Matter at the Atomic Scale. Comput.Mater. Sci. 2003, 28, 155-168.
(54) Tashiro, K.; Ono, K.; Minagawa, Y.; Kobayashi, M.; Kawai, T.; Yoshino, K. Structure and Thermochromic Solid-State Phase Transition of Poly(3-alkylthiophene). J. Polym. Sci., Part B: Polym. Phys. 1991, 29, 1223-1233.
(55) Prosa, T. J.; Winokur, M. J.; Moulton, J.; Smith, P.; Heeger, A. J. X-Ray Structural Studies of Poly(3-alkylthiophenes): An Example of an Inverse Comb. Macromolecules 1992, 25, 4364-4372.
(56) Tashiro, K.; Kobayashi, M.; Kawai, T.; Yoshino, K. Crystal Structural Change in Poly(3-Alkyl Thiophene)s Induced by Iodine Doping as Studied by an Organized Combination of X-Ray Diffraction, Infrared/Raman Spectroscopy and Computer Simulation Techniques. Polymer 1997, 38, 2867-2879.
(57) Brinkmann, M.; Rannou, P. Effect of Molecular Weight on the Structure and Morphology of Oriented Thin Films of Regioregular Poly(3-hexylthiophene) Grown by Directional Epitaxial Solidification. Adv. Funct. Mater. 2007, 17, 101-108.
(58) Kayunkid, N.; Uttiya, S.; Brinkmann, M. Structural Model of Regioregular Poly(3-Hexylthiophene) Obtained by Electron Diffraction Analysis. Macromolecules 2010, 43, 4961-4967.
(59) Dudenko, D.; Kiersnowski, A.; Shu, J.; Pisula, W.; Sebastiani, D.; Spiess, H. W.; Hansen, M. R. A Strategy for Revealing the Packing in Semicrystalline π-Conjugated Polymers: Crystal Structure of Bulk Poly-3-hexyl-thiophene (P3HT). Angew. Chem., Int. Ed. 2012, 51, 11068–11072.
(60) Northrup, J. E. Atomic and Electronic Structure of Polymer Organic Semiconductors: P3HT, PQT, and PBTTT. Phys. Rev. B 2007, 76, 245202.
(61) Maillard, A.; Rochefort, A. Rochefort, A. Structural and Electronic Properties of Poly(3-Hexylthiophene) π-Stacked Crystals. Phys. Rev. B 2009, 79, 115207.
(62) Dag, S.; Wang, L.-W. Packing Structure of Poly(3-hexylthiophene) Crystal: Ab Initio and Molecular Dynamics Studies. J. Phys. Chem. B 2010, 114, 5997-6000.
(63) Xie, W.; Sun, Y. Y.; Zhang, S. B.; Northrup, J. E. Structure and Sources of Disorder in Poly(3-Hexylthiophene) Crystals Investigated by Density Functional Calculations with van Der Waals Interactions. Phys. Rev. B 2011, 83, 184117.
(64) Colle, R.; Grosso, G.; Ronzani, A.; Zicovich-Wilson, C. M. Structure and X-Ray Spectrum of Crystalline Poly(3-Hexylthiophene) from DFT-van Der Waals Calculations. Phys. Status Solidi B 2011, 248, 1360–1360-1368.
(65) Tsumuraya, T.; Song, J.-H.; Freeman, A. J. Linear Optical Properties and Electronic Structures of Poly(3-Hexylthiophene) and Poly(3-Hexylselenophene) Crystals from First Principles. Phys. Rev. B 2012, 86, 075114.
(66) Batjargal, S.; Lan, Y.-B.; Wang, J.-K.; Hayashi, M. Deciphering Anomalous Raman Features of Regioregular Poly(3-hexylthiophene) in Ordered Aggregation Form. J. Phys. Chem. C, 2018, 122, 4224–4231
指導教授 林倫年(Michitoshi Hayashi) 審核日期 2018-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明