博碩士論文 100283002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.135.198.130
姓名 劉學明(Hsueh-Ming Liu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 固態高分子電解質之製備及特性分析暨 STOBA 添加劑之安全性研究探討
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究第一部分使用三聚氯氰為核心元素與聚醚胺以各種比例反應,再與 (3-異氰基丙基)三乙氧基矽烷進行化學交聯,最後添加不同濃度的鋰鹽,形成梳狀分枝型複合式有機-無機固態高分子電解質。此系列固態電解質在 30 oC 時,氧鋰比為 32,具有最佳的離子導電度 1.1 × 10-4 S cm-1;電化學穩定性可承受 5.0 V 的氧化裂解電壓;透過 FTIR 與 ssNMR 測量確認固態高分子電解質結構;觀察靜態 7Li MAS NMR鋰譜線寬研究鋰離子的運動性;應用於電致變色元件上,具光學密度差值 0.56、高著色效率 675 cm2 C-1 及良好的循環壽命。本研究所發明的複合式有機-無機固態高分子電解質在鋰電池與電致變色元件應用上,都具有相當的潛力與前途性。
本研究第二部分為自身終止高分歧寡聚物 (STOBA) 塗覆於正極材料 Li(Ni0.4Co0.2Mn0.4)O2 上,透過氮氣吸脫附儀、X-光光電子能譜、電阻測量、掃描式電子顯微鏡、固態 7Li MAS NMR 與 13C CPMAS NMR等方法,研究不同溫度與電荷條件下 STOBA 層的物理與結構變化,以理解 STOBA 層在鋰電池安全機制中的作用。電池在熱失控溫度下 STOBA 層的型態變化從多孔隙到無孔隙;高溫時,電阻的變化顯示 STOBA 層有助於防止內部短路與熱失控;在不同溫度 100 % 荷電狀態下,運用超高轉速 (50 kHz) 的 7Li MAS NMR 光譜觀察鋰離子在 STOBA 層與正極表面微妙的局部環境變化,藉由這些結果理解 STOBA 層在鋰電池安全機制中的作用。
摘要(英) The first part of this study is related to the synthesis of organic-inorganic hybrid electrolytes. Cyanuric chloride is employed as the core element to react with polyetheramine in various ratios, and then chemical crosslinking with (3-isocyanatopropyl)triethoxysilane and finally addition of different concentration of lithium salt to form a new organic-inorganic hybrid electrolyte with a core branched structure. The solid hybrid electrolyte possesses a maximum ionic conductivity value of 1.1 × 10?4 S cm?1 at 30 oC and electrochemical stability window of around 5.0 V for the sample with the [O]/[Li] ratio of 32. The structure of the hybrid is confirmed by FTIR and solid-state NMR measurements. The lithium-ion mobility in the hybrid electrolyte is investigated by monitoring the lithium linewidths from static 7Li solid-state NMR. An optical density change value of 0.56 and an exceptionally high coloration efficiency value of 675 cm2 C?1 with good cycle life are obtained when the present hybrid electrolyte is employed to fabricate the prototype electrochromic device. These electrochromic performances are the best as compared to the previously reported electrochromic devices made of hybrid electrolytes. The present organic-inorganic hybrid electrolyte holds great potentials to be used in different electrochemical devices.
In the second part of this study, self-terminated oligomers with hyper-branched architecture (STOBA) are developed and coated and melted on a Li(Ni0.4Co0.2Mn0.4)O2 cathode to form a dense polymer film at high temperatures. The physical and structural changes of the polymer layer at different temperatures and state of charge conditions are investigated by nitrogen adsorption-desorption, XPS, resistance measurements, SEM, solid-state 7Li MAS and 13C CPMAS NMR spectroscopy in order to improve the understanding of role of STOBA layer in enhancement of the safety mechanism of lithium-ion batteries. The morphological change of the STOBA layer from the porous to nonporous state at the temperature of thermal runaway of a battery is demonstrated. The change in the resistance values at high temperatures reveals that the STOBA coating is helpful for prevention of internal short-circuit and thermal runaway. Most importantly, the 7Li MAS NMR results acquired at a very high spinning speed (50 kHz) allow the monitoring of the subtle changes in the local environments of the Li+ ions and their interaction and mobility in the STOBA-cathode interface as functions of temperature and charge states. The combined characterization results improve the understanding of role of the STOBA layer in the enhancement of safety features of lithium-ion batteries.
關鍵字(中) ★ 固態高分子電解質
★ 自身終止高分歧寡聚物
★ 鋰電池
關鍵字(英) ★ solid hybrid electrolyte
★ self-terminated oligomers with hyper-branched architecture
★ lithium-ion batteries
論文目次 頁次
中文摘要………..……………………………………………...………………..i
英文摘要……….……………………………………………………...………..ii
目錄……………..………………………………………………………………iii
圖目錄…………..………………………………………………………….…..vii
表目錄…………..……………………………………………………......……xiv
一、 緒論................…………………………………………..…….…..………..1
1-1 前言…..……………………………….………………..…….…………..1
1-2 鋰離子電池簡介………...…………………………………...…………..3
1-3 電解質……….……………………………………………….……..……5
1-3-1 高分子電解質……………………………………………................5
1-3-2 固態高分子電解質………………………..………….……………..9
1-4 負極材料…………..…………………………………..….……………15
1-5 正極材料………………………………………………….…..………..16
1-5-1 熱穩定型添加劑………..…………………………….………..….17
1-5-2 正極保護添加劑……..…………..………………….…………….18
1-5-3 STOBA添加劑…………….………..…………….………………20
二、研究內容與方法……………………….…………..……………………..23
2-1 研究動機……………..……………….………………..……………….23
2-1-1 固態高分子電解質……….……………………...………………..23
2-1-2 STOBA添加劑之安全性研究…………...……………...………..25
2-2 實驗藥品……………….…………………………………………….....26
2-3 儀器設備……………..…………………………...…………………….29
2-4 樣品製備………………….……………………………...……………..30
2-4-1 固態高分子電解質製備……………………...………………...…30
2-4-2 電致變色元件製作……………………...………………...………32
2-4-3 合成具有 STOBA 的正極材料與負極材料...………...……..…..33
2-5 儀器分析原理…………….……………………………...……………..34
2-5-1 熱重量分析儀………………………………...………………...…34
2-5-2 X-光繞射儀……………………………...………………...……….35
2-5-3 差式掃描熱卡計…………………………………………………..38
2-5-4 傅立葉紅外線吸收光譜儀………………………………………..40
2-5-5 交流阻抗分析儀…………………………………………………..42
2-5-6 掃描式電子顯微鏡………………………………………………..44
2-5-7 固態核磁共振……………………………………………………..45
2-5-7-1 魔角旋轉……………………………………………………...49
2-5-7-2 交叉極化……………………………………………………...50
2-5-7-3 WISE…………………………………………………………..52
2-5-7-4 去耦合作用…………………………………………………...54
2-5-7-5 7Li MAS NMR...........................................................................55
2-5-7-6 7Li Linewidth Theory…………………………………………..56
2-5-8 線性掃描電位測試………………………………………………..58
2-5-9 動態機械分析儀…………………………………………………..60
2-5-10 電致變色…………………………………………………………61
2-5-11 紫外光-可見光光譜儀…………………………………………...62
2-5-12 X-光光電子能譜………………………………………………….63
2-5-13 氮氣吸脫附儀……………………………………………………64
三、結果與討論………………………………………………...……………..66
3-1 固態高分子電解質 CEI(N)-X………………...………………...……..66
3-1-1 重複單元高分子主體…….………………...……………………..67
3-1-2 熱重量分析…..……………………………………...…………….69
3-1-3 X-光繞射圖譜分析……………...………………………...………71
3-1-4 差式掃描熱卡計分析…………………...…...……………………73
3-1-5 紅外線吸收光譜之鑑定分析…………..............…………………76
3-1-6 掃描式電子顯微鏡之表面分析……...………………...…………82
3-1-7 交流阻抗儀之離子導電度測試…….………………………...…..84
3-1-8 固態核磁共振光譜儀分析…….………...………………………..88
3-1-8-1 13C CPMAS NMR…………………………...………………..89
3-1-8-2 29Si CPMAS NMR…………………………………...……….91
3-1-8-3 1H/13C 2D WISE NMR……..………………………………....94
3-1-8-4 7Li 譜寬分析……...…………………………...……………..97
3-1-8-5 7Li化學環境分析…………………………...………………103
3-1-9 線性掃描伏安法…………….…………………...………………107
3-1-10 動態機械分析…………………………………………………..109
3-1-11 電致變色應用…………………………………………………...111
3-2 STOBA添加劑之安全性研究……………………………...…….…..115
3-2-1 孔徑分佈分析…………….………………………………………116
3-2-2 熱重量分析…………………………...…………………………..117
3-2-3 X-光光電子分析……………………………...………………….118
3-2-4 電阻測試……………………………………………...………….121
3-2-5 掃描式電子顯微鏡之表面分析……………….…………...……123
3-2-6 7Li MAS NMR……………………………….…………………...128
3-2-7 13C CPMAS NMR…………………………………………………131
四、結論………..……………………………...……………………………..133
4-1 固態高分子電解質CEI(N)-X………...………………………………133
4-2 STOBA添加劑之安全性研究………………...….…………………..134
五、參考文獻…………..………………………………...…………………..135
參考文獻 1. Whittingham, M. S., History, Evolution, and Future Status of Energy Storage. Proceedings of the IEEE 2012, 100, 1518-1534.
2. Dunn, B.; Kamath, H.; Tarascon, J.-M., Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334 (6058), 928-935.
3. Yang, P.; Tarascon, J.-M., Towards systems materials engineering. Nature Materials 2012, 11 (7), 560-563.
4. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-367.
5. Whittingham, M. S., Lithium Batteries and Cathode Materials. Chemical Reviews 2004, 104 (10), 4271-4302.
6. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4 (9), 3243-3262.
7. Brissot, C.; Rosso, M.; Chazalviel, J. N.; Lascaud, S., Dendritic growth mechanisms in lithium/polymer cells. Journal of Power Sources 1999, 81–82, 925-929.
8. Park, J.-K., Principles and Applications of Lithium Secondary Batteries. WILEY-VCH: Weinheim Germany, 2012.
9. Yamaki, J.-i.; Tobishima, S.-i.; Hayashi, K.; Keiichi, S.; Nemoto, Y.; Arakawa, M., A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. Journal of Power Sources 1998, 74 (2), 219-227.
10. WHITTINGHAM, M. S., Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192 (4244), 1126-1127.
11. Nagaura T., T. K., Prog. Batteries Sol. Cells 1990, 9.
12. Walter A. van Schalkwijk, B. S., Advances in Lithium-Ion Batteries. KLUWER ACADEMIC: New York, 2002.
13. Masaki Yoshio, R. J. B., Akiya Kozawa, Lithium-Ion Batteries. Springer Science and Technologies: 2009.
14. Armand, M. B., Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ionics 1983, 11 (1), 91.
15. Armand, M., Polymers with Ionic Conductivity. Advanced Materials 1990, 2 (6-7), 278-286.
16. Fenton, D. E.; Parker, J. M.; Wright, P. V., Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973, 14 (11), 589.
17. Wright, P. V., Electrical conductivity in ionic complexes of poly(ethylene oxide). British Polymer Journal 1975, 7 (5), 319-327.
18. Armand, M. B. C., J. M.; Duclot, M. , "Poly-ether as solid electrolytes" , in Fast Ion Transport in Solids. Elsevier, Nprth-Holland, Amsterdam, Netherlands 1979, 131.
19. Armand, M. B. C., J. M.; Duclot, M. , Second International Meeting on Solid Electrolytes. Extended Abstract, St. Andrews, Scotland, Sep. 1978, 20.
20. Wright, P. V., Polymer electrolytes—the early days. Electrochimica Acta 1998, 43 (10–11), 1137-1143.
21. Ratner, M. A.; Shriver, D. F., Ion transport in solvent-free polymers. Chemical Reviews 1988, 88 (1), 109-124.
22. Shriver, D. F., Conformation and Ion-Transport Models for the Structure and Ionic Conductivity in Complexes of Polyethers with Alkali Metal Salts. Journal of The Electrochemiacl Society 1982, 129, 1694.
23. Berthier, C.; Gorecki, W.; Minier, M.; Armand, M. B.; Chabagno, J. M.; Rigaud, P., Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ionics 1983, 11 (1), 91-95.
24. Hwang, S. S.; Cho, C. G.; Kim, H., Room temperature cross-linkable gel polymer electrolytes for lithium ion batteries by in situ cationic polymerization of divinyl ether. Electrochemistry Communications 2010, 12 (7), 916-919.
25. Raghavan, P.; Manuel, J.; Zhao, X.; Kim, D.-S.; Ahn, J.-H.; Nah, C., Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries. Journal of Power Sources 2011, 196 (16), 6742-6749.
26. Jung, H.-R.; Lee, W.-J., Electrochemical characteristics of electrospun poly(methyl methacrylate)/polyvinyl chloride as gel polymer electrolytes for lithium ion battery. Electrochimica Acta 2011, 58, 674-680.
27. Wang, Y.; Ma, X.; Zhang, Q.; Tian, N., Synthesis and properties of gel polymer electrolyte membranes based on novel comb-like methyl methacrylate copolymers. Journal of Membrane Science 2010, 349 (1–2), 279-286.
28. Kumar, D.; Hashmi, S. A., Ion transport and ion–filler-polymer interaction in poly(methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles. Journal of Power Sources 2010, 195 (15), 5101-5108.
29. Li, H.; Chen, Y.-M.; Ma, X.-T.; Shi, J.-L.; Zhu, B.-K.; Zhu, L.-P., Gel polymer electrolytes based on active PVDF separator for lithium ion battery. I: Preparation and property of PVDF/poly(dimethylsiloxane) blending membrane. Journal of Membrane Science 2011, 379 (1–2), 397-402.
30. Yang, C.-M.; Kim, H.-S.; Na, B.-K.; Kum, K.-S.; Cho, B. W., Gel-type polymer electrolytes with different types of ceramic fillers and lithium salts for lithium-ion polymer batteries. Journal of Power Sources 2006, 156 (2), 574-580.
31. Song, J. Y.; Wang, Y. Y.; Wan, C. C., Conductivity Study of Porous Plasticized Polymer Electrolytes Based on Poly(vinylidene fluoride) A Comparison with Polypropylene Separators. Journal of The Electrochemical Society 2000, 147 (9), 3219-3225.
32. Meyer, W. H., Polymer Electrolytes for Lithium-Ion Batteries. Advanced Materials 1998, 10 (6), 439-448.
33. Fauteux, D.; Massucco, A.; McLin, M.; Van Buren, M.; Shi, J., Lithium polymer electrolyte rechargeable battery. Electrochimica Acta 1995, 40 (13), 2185-2190.
34. Murata, K.; Izuchi, S.; Yoshihisa, Y., An overview of the research and development of solid polymer electrolyte batteries. Electrochimica Acta 2000, 45 (8–9), 1501-1508.
35. Orsini, F.; Du Pasquier, A.; Beaudoin, B.; Tarascon, J. M.; Trentin, M.; Langenhuizen, N.; De Beer, E.; Notten, P., In situ Scanning Electron Microscopy (SEM) observation of interfaces within plastic lithium batteries. Journal of Power Sources 1998, 76 (1), 19-29.
36. Blonsky, P. M.; Shriver, D. F.; Austin, P.; Allcock, H. R., Polyphosphazene solid electrolytes. Journal of the American Chemical Society 1984, 106 (22), 6854-6855.
37. Groce, F.; Gerace, F.; Dautzemberg, G.; Passerini, S.; Appetecchi, G. B.; Scrosati, B., Synthesis and characterization of highly conducting gel electrolytes. Electrochimica Acta 1994, 39 (14), 2187-2194.
38. Walker, J. C. W.; Salomon, M., Improvement of Ionic Conductivity in Plasticized PEO-Based Solid Polymer Electrolytes. Journal of The Electrochemical Society 1993, 140 (12), 3409-3412.
39. Wang, C.; Li, D.; Too, C. O.; Wallace, G. G., Electrochemical Properties of Graphene Paper Electrodes Used in Lithium Batteries. Chemistry of Materials 2009, 21 (13), 2604-2606.
40. Hu, L.; Wu, H.; La Mantia, F.; Yang, Y.; Cui, Y., Thin, Flexible Secondary Li-Ion Paper Batteries. Nano 2010, 4 (10), 5843-5848.
41. Andrieu, X.; Fauvarque, J. F.; Goux, A.; Hamaide, T.; M′Hamdi, R.; Vicedo, T., Solid polymer electrolytes based on statistical poly (ethylene oxide-propylene oxide) copolymers. Electrochimica Acta 1995, 40 (13), 2295-2299.
42. Wang, H.-L.; Kao, H.-M.; Digar, M.; Wen, T.-C., FTIR and Solid State 13C NMR Studies on the Interaction of Lithium Cations with Polyether Poly(urethane urea). Macromolecules 2001, 34, 529.
43. Celik, S. U.; Bozkurt, A., Polymer electrolytes based on the doped comb-branched copolymers for Li-ion batteries. Solid State Ionics 2010, 181 (21–22), 987-993.
44. Sun, X.-G.; Kerr, J. B., Synthesis and Characterization of Network Single Ion Conductors Based on Comb-Branched Polyepoxide Ethers and Lithium Bis(allylmalonato)borate. Macromolecules 2006, 39 (1), 362-372.
45. Yang, H.-Y.; Wu, G.; Chen, H.; Yuan, F.; Wang, M.; Fu, R.-J., Preparation and ionic conductivity of solid polymer electrolyte based on polyacrylonitrile-polyethylene oxide. Journal of Applied Polymer Science 2006, 101 (1), 461-464.
46. Ayd?n, H.; ?enel, M.; Erdemi, H.; Baykal, A.; Tulu, M.; Ata, A.; Bozkurt, A., Inorganic–organic polymer electrolytes based on poly(vinyl alcohol) and borane/poly(ethylene glycol) monomethyl ether for Li-ion batteries. Journal of Power Sources 2011, 196 (3), 1425.
47. Higa, M.; Fujino, Y.; Koumoto, T.; Kitani, R.; Egashira, S., All solid-state polymer electrolytes prepared from a hyper-branched graft polymer using atom transfer radical polymerization. Electrochimica Acta 2005, 50 (19), 3832-3837.
48. Zhang, Z.; Sherlock, D.; West, R.; West, R.; Amine, K.; Lyons, L. J., Cross-Linked Network Polymer Electrolytes Based on a Polysiloxane Backbone with Oligo(oxyethylene) Side Chains:? Synthesis and Conductivity. Macromolecules 2003, 36 (24), 9176-9180.
49. Kaskhedikar, N.; Burjanadze, M.; Karatas, Y.; Wiemhofer, H.-D., Polymer electrolytes based on cross-linked cyclotriphosphazenes. Solid State Ionics 2006, 177 (35), 3129.
50. Kuo, P.-L.; Wu, C.-A.; Lu, C.-Y.; Tsao, C.-H.; Hsu, C.-H.; Hou, S.-S., High Performance of Transferring Lithium Ion for Polyacrylonitrile-Interpenetrating Crosslinked Polyoxyethylene Network as Gel Polymer Electrolyte. ACS Applied Materials & Interfaces 2014, 6 (5), 3156-3162.
51. Weston, J. E.; Steele, B. C. H., Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ionics 1982, 7 (1), 75-79.
52. Croce, F.; Curini, R.; Martinelli, A.; Persi, L.; Ronci, F.; Scrosati, B.; Caminiti, R., Physical and Chemical Properties of Nanocomposite Polymer Electrolytes. The Journal of Physical Chemistry B 1999, 103 (48), 10632-10638.
53. Prasanth, R.; Shubha, N.; Hng, H. H.; Srinivasan, M., Effect of nano-clay on ionic conductivity and electrochemical properties of poly(vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries. European Polymer Journal 2013, 49 (2), 307-318.
54. Shibata, M.; Kobayashi, T.; Yosomiya, R.; Seki, M., Polymer electrolytes based on blends of poly(ether urethane) and polysiloxanes. European Polymer Journal 2000, 36 (3), 485-490.
55. Wu, G. M.; Lin, S. J.; Yang, C. C., Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes. Journal of Membrane Science 2006, 275 (1–2), 127-133.
56. Zanini, M.; Basu, S.; Fischer, J. E., Alternate synthesis and reflectivity spectrum of stage 1 lithium—graphite intercalation compound. Carbon 1978, 16 (3), 211-212.
57. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B., LixCoO2 (0 58. Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novak, P., Insertion Electrode Materials for Rechargeable Lithium Batteries. Advanced Materials 1998, 10 (10), 725-763.
59. Huang, Y.; Chen, J.; Ni, J.; Zhou, H.; Zhang, X., A modified ZrO2-coating process to improve electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2. Journal of Power Sources 2009, 188 (2), 538-545.
60. Fergus, J. W., Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources 2010, 195 (4), 939-954.
61. Veluchamy, A.; Doh, C.-H.; Kim, D.-H.; Lee, J.-H.; Shin, H.-M.; Jin, B.-S.; Kim, H.-S.; Moon, S.-I., Thermal analysis of LixCoO2 cathode material of lithium ion battery. Journal of Power Sources 2009, 189 (1), 855-858.
62. Belharouak, I.; Lu, W.; Liu, J.; Vissers, D.; Amine, K., Thermal behavior of delithiated Li(Ni0.8Co0.15Al0.05)O2 and Li1.1(Ni1/3Co1/3Mn1/3)0.9O2 powders. Journal of Power Sources 2007, 174 (2), 905-909.
63. von Sacken, U.; Nodwell, E.; Sundher, A.; Dahn, J. R., Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries. Journal of Power Sources 1995, 54 (2), 240-245.
64. Tobishima, S.-i.; Yamaki, J.-i., A consideration of lithium cell safety. Journal of Power Sources 1999, 81–82, 882-886.
65. U.S. Patent 6, 431, 2001.
66. U.S. Patent 6, 628, 2000.
67. Amine, K.; Liu, J.; Kang, S.; Belharouak, I.; Hyung, Y.; Vissers, D.; Henriksen, G., Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications. Journal of Power Sources 2004, 129 (1), 14-19.
68. U.S. Patent 3, 414, 1964.
69. Xiang, Z. D.; Jones, F. R., Thermal degradation of an end-capped bismaleimide resin matrix (PMR-15) composite reinforced with pan-based carbon fibres. Composites Science and Technology 1993, 47 (3), 209-215.
70. Mison, P.; Sillion, B., Thermosetting Oligomers Containing Maleimides and Nadimides End-Groups. In Progress in Polyimide Chemistry I, Kricheldorf, H. R., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 1999; pp 137-179.
71. Kauffman, G. B., Adolf von Baeyer and the naming of barbituric acid. Journal of Chemical Education 1980, 57 (3), 222.
72. Bredereck, V. H.; Fohlisch, B.; Franz, R.; Grahe, G.; Petranyi, P.; Posselt, K.; Sigel, H.; Tag, E.; Wirths, W., Uber CH-aktive polymerisationsinitiatoren. XIII. Mitt. Polymerisationen und polymerisationsinitiatoren. Die Makromolekulare Chemie 1966, 92 (1), 70-90.
73. Pan, J.-P.; Shiau, G.-Y.; Lin, S.-S.; Chen, K.-M., Effect of barbituric acid on the self-polymerization reaction of bismaleimides. Journal of Applied Polymer Science 1992, 45 (1), 103-109.
74. Su, H.-L.; Hsu, J.-M.; Pan, J.-P.; Wang, T.-H.; Yu, F.-E.; Chern, C.-S., Kinetic and structural studies of the polymerization of N,N′-bismaleimide-4,4′-diphenylmethane with barbituric acid. Polymer Engineering & Science 2011, 51 (6), 1188-1197.
75. 陳鴻儀、蘇靜怡、吳弘俊, 熱分析技術應用於添加STOBA 鋰電池之安全性研究. 工業材料雜誌 2011, 299期.
76. Saikia, D.; Pan, Y.-C.; Wu, C.-G.; Fang, J.; Tsai, L.-D.; Kao, H.-M., Synthesis and characterization of a highly conductive organic-inorganic hybrid polymer electrolyte based on amine terminated triblock polyethers and its application in electrochromic devices. Journal of Materials Chemistry C 2014, 2 (2), 331-343.
77. Cheng, X.; Zhao, J.; Fu, Y.; Cui, C.; Zhang, X., Electrosynthesis and Characterization of a Multielectrochromic Copolymer of Tris[4-(2-thienyl)phenyl]amine with 3,4-Ethylenedioxythiophene. Journal of The Electrochemical Society 2013, 160 (1), G6-G13.
78. Sydam, R.; Deepa, M.; Srivastava, A. K., Electrochromic device response controlled by an in situ polymerized ionic liquid based gel electrolyte. RSC Advances 2012, 2 (24), 9011-9021.
79. U.S. Patent 8, 838 B2, 2012, (11/976,557).
80. Lin, C.-C.; Wu, H.-C.; Pan, J.-P.; Su, C.-Y.; Wang, T.-H.; Sheu, H.-S.; Wu, N.-L., Investigation on suppressed thermal runaway of Li-ion battery by hyper-branched polymer coated on cathode. Electrochimica Acta 2013, 101, 11-17.
81. Claus Daniel, J. O. B., Handbook of Battery Materials. Second Edition ed.; Wiley-VCH Weinheim, Germany, 2011.
82. Pinkwart, K.; Tubke, J., Thermodynamics and Mechanistics. In Handbook of Battery Materials, Wiley-VCH Verlag GmbH & Co. KGaA: 2011; pp 1-26.
83. Wondraczek, R. H., Cationic polymerisation, advances in polymer science — 34/35, A. Gandini and H. Cheradame, Springer-Verlag, Berlin, 1980, 289 pp. Price: $79.80. Journal of Polymer Science: Polymer Letters Edition 1981, 19 (11), 575-575.
84. Stejskal, E. O.; Tanner, J. E., Spin Diffusion Measurements: Spin Echoes in the Presence of a Time?Dependent Field Gradient. The Journal of Chemical Physics 1965, 42 (1), 288-292.
85. Schmidt-Rohr, K.; Clauss, J.; Spiess, H. W., Correlation of structure, mobility, and morphological information in heterogeneous polymer materials by two-dimensional wideline-separation NMR spectroscopy. Macromolecules 1992, 25 (12), 3273-3277.
86. Pearson, R. G., Hard and Soft Acids and Bases. Journal of the American Chemical Society 1963, 85 (22), 3533-3539.
87. Bennett, A. E.; Rienstra, C. M.; Auger, M.; Lakshmi, K. V.; Griffin, R. G., Heteronuclear decoupling in rotating solids. The Journal of Chemical Physics 1995, 103 (16), 6951-6958.
88. Chung, S. H.; Jeffrey, K. R.; Stevens, J. R., A 7Li nuclear magnetic resonance study of LiCF3SO3 complexed in poly(propylene?glycol). The Journal of Chemical Physics 1991, 94 (3), 1803-1811.
89. Panero, S.; Scrosati, B.; Greenbaum, S. G., Ionic conductivity and 7Li NMR Study of Poly(ethylene glycol) complexed with lithium salts. Electrochimica Acta 1992, 37 (9), 1533-1539.
90. Abragam, A., The Principles of Nuclear Magnetism. Oxford: New York, 1961.
91. Jannasch, P., Phase behavior and ion conductivity of electrolytes based on aggregating combshaped polyethers. Electrochimica Acta 2001, 46 (10–11), 1641-1649.
92. Deb, S. K., A Novel Electrophotographic System. Applied Optics 1969, 8 (S1), 192-195.
93. Skinner, L. M.; Sambles, J. R., The Kelvin equation—a review. Journal of Aerosol Science 1972, 3 (3), 199-210.
94. Barrett, E. P.; Joyner, L. G.; Halenda, P. P., The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society 1951, 73 (1), 373-380.
95. Digar, M.; Hung, S. L.; Wang, H. L.; Wen, T. C.; Gopalan, A., Study of ionic conductivity and microstructure of a cross-linked polyurethane acrylate electrolyte. Polymer 2002, 43 (3), 681-691.
96. Jannasch, P., Ion conducting electrolytes based on aggregating comblike poly(propylene oxide). Polymer 2001, 42 (21), 8629-8635.
97. Coleman, M. M.; Lee, K. H.; Skrovanek, D. J.; Painter, P. C., Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane. Macromolecules 1986, 19 (8), 2149-2157.
98. Teo, L.-S.; Chen, C.-Y.; Kuo, J.-F., Fourier Transform Infrared Spectroscopy Study on Effects of Temperature on Hydrogen Bonding in Amine-Containing Polyurethanes and Poly(urethane?urea)s. Macromolecules 1997, 30 (6), 1793-1799.
99. Patnaik, P., Dean’s Analytical Chemistry Handbook, Second Edition. McGRAW-HILL: New York, 2004.
100. Donald L. Pavia, G. M. L., George S. Kriz, Introduction to spectroscopy : a guide for students of organic chemistry, third ed. Harcourt College: USA, 2001.
101. Kao, H.-M.; Hung, T.-T.; Fey, G. T. K., Multinuclear Solid-State NMR Characterization, Ion Dissociation, and Dynamic Properties of Lithium-Doped Organic?Inorganic Hybrid Electrolytes Based on Ureasils. Macromolecules 2007, 40 (24), 8673-8683.
102. Liang, W.-J.; Kuo, C.-L.; Lin, C.-L.; Kuo, P.-L., Solid polymer electrolytes. IV. Preparation and characterization of novel crosslinked epoxy-siloxane polymer complexes as polymer electrolytes. Journal of Polymer Science Part A: Polymer Chemistry 2002, 40 (9), 1226-1235.
103. Kioul, A.; Mascia, L., Compatibility of polyimide-silicate ceramers induced by alkoxysilane silane coupling agents. Journal of Non-Crystalline Solids 1994, 175 (2), 169-186.
104. Chu, P. P.; Jen, H.-P.; Lo, F.-R.; Lang, C. L., Exceedingly High Lithium Conductivity in Novolac Type Phenolic Resin/PEO Blends. Macromolecules 1999, 32 (14), 4738-4740.
105. Salomon, M.; Xu, M.; Eyring, E. M.; Petrucci, S., Molecular Structure and Dynamics of LiClO4-Polyethylene Oxide-400 (Dimethyl Ether and Diglycol Systems) at 25 .degree.C. The Journal of Physical Chemistry 1994, 98 (33), 8234-8244.
106. Chen, H.-W.; Chiu, C.-Y.; Wu, H.-D.; Shen, I. W.; Chang, F.-C., Solid-state electrolyte nanocomposites based on poly(ethylene oxide), poly(oxypropylene) diamine, mineral clay and lithium perchlorate. Polymer 2002, 43 (18), 5011-5016.
107. De Paoli, M.-A.; Zanelli, A.; Mastragostino, M.; Rocco, A. M., An electrochromic device combining polypyrrole and WO3 II: solid-state device with polymeric electrolyte. Journal of Electroanalytical Chemistry 1997, 435 (1), 217-224.
108. Chintapalli, S.; Frech, R., Effect of plasticizers on high molecular weight PEO-LiCF3SO3 complexes. Solid State Ionics 1996, 86, 341-346.
109. Evans, J.; Vincent, C. A.; Bruce, P. G., Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 1987, 28 (13), 2324-2328.
110. Brown, S. D.; Greenbaum, S. G.; McLin, M. G.; Wintersgill, M. C.; Fontanella, J. J., Complex impedance, DSC and lithium-7 NMR studies of poly (propylene oxide) complexed with LiN (SO2CF3)2 and with LiAsF6. Solid State Ionics 1994, 67 (3), 257-262.
111. Jiang, Y.-X.; Chen, Z.-F.; Zhuang, Q.-C.; Xu, J.-M.; Dong, Q.-F.; Huang, L.; Sun, S.-G., A novel composite microporous polymer electrolyte prepared with molecule sieves for Li-ion batteries. Journal of Power Sources 2006, 160 (2), 1320-1328.
112. Subramania, A.; Sundaram, N. T. K.; Priya, A. R.; Gangadharan, R.; Vasudevan, T., Preparation of a microporous gel polymer electrolyte with a novel preferential polymer dissolution process for Li-ion batteries. Journal of Applied Polymer Science 2005, 98 (5), 1891-1896.
113. Li, W.; Yang, M.; Yuan, M.; Tang, Z.; Zhang, J. Q., Dual-phase polymer electrolytes based on blending poly(MMA-g-NBR) and PMMA. Journal of Applied Polymer Science 2007, 106 (5), 3084-3090.
114. Jacob, M. M. E.; Arof, A. K., Mechanical studies on poly(vinylidene fluoride) based polymer electrolytes. Polymer Engineering & Science 2000, 40 (4), 972-978.
115. Barbosa, P. C.; Fernandes, M.; Vilela, S. M. F.; Goncalves, A.; Oliveira, M. C.; Fortunato, E.; Silva, M. M.; Smith, M. J.; Rego, R.; Bermudez, V. d. Z., Di-Ureasil Hybrids Doped with LiBF4: Attractive Candidates as Electrolytes for "Smart Windows". International Journal of Electrochemical Science 2011, 6 (1), 3355-3374.
116. Barbosa, P. C.; Rodrigues, L. C.; Silva, M. M.; Smith, M. J.; Parola, A. J.; Pina, F.; Pinheiro, C., Solid-state electrochromic devices using pTMC/PEO blends as polymer electrolytes. Electrochimica Acta 2010, 55 (4), 1495-1502.
117. Verdier, S.; El Ouatani, L.; Dedryvere, R.; Bonhomme, F.; Biensan, P.; Gonbeau, D., XPS Study on Al2O3- and AlPO4-Coated LiCoO2 Cathode Material for High-Capacity Li Ion Batteries. Journal of The Electrochemical Society 2007, 154 (12), A1088-A1099.
118. Bie, X.; Liu, L.; Ehrenberg, H.; Wei, Y.; Nikolowski, K.; Wang, C.; Ueda, Y.; Chen, H.; Chen, G.; Du, F., Revisiting the layered LiNi0.4Mn0.4Co0.2O2: a magnetic approach. RSC Advances 2012, 2 (26), 9986-9992.
119. Abraham, D. P.; Roth, E. P.; Kostecki, R.; McCarthy, K.; MacLaren, S.; Doughty, D. H., Diagnostic examination of thermally abused high-power lithium-ion cells. Journal of Power Sources 2006, 161 (1), 648-657.
指導教授 高憲明 審核日期 2018-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明