博碩士論文 100283601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.218.207.253
姓名 察福納(Purna Chandra Rath)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Metal Oxide-Ordered Mesoporous Carbon Composites for Energy Storage Device and Catalytic Applications (Sodium Ion Battery and Photocatalyst))
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) CHINESE ABSTRACT
在過去五年中鈉離子電池(SIB)受到了極大的關注,因為他被視為是鋰離子電池(LIB)的未來替代品,主要的原因是由於鈉在地殼中藏量豐富且價格較為低廉。然而,Na +相對於Li +有較大的離子半徑,導致在充放電循環時體積膨脹較為顯著以及較低的能量密度,使得在開發鈉離子電池的陽極材料上仍然有相當大的挑戰。此博士論文的工作目的在於透過設計具有高功率性能的奈米材料來解決以上這些問題。在此工作中,我們開發出一系列具有不同形態的氧化銅(CuO)奈米材料,包含奈米棒、奈米橢圓體和奈米片…等。透過X射線繞射、TEM和Ex-situ XRD等技術,建立了晶體結構與電化學性能的關係。
此外,為了克服傳統問題,開發具有良好結構特性(如形態,結晶度和孔隙率)的新型碳質材料作為高性能SIB的理想碳基質是非常重要的。孔洞結構會影響其電化學行為,如容量,循環效率和速率能力。有序介孔碳材(OMC)中孔洞的排列可能對鈉離子遷移性質有顯著的影響。通過奈米鑄造法合成了CMK-3和CMK-8等有序介孔碳材,並對其進行了系統性的分析,藉此了解CMK-3和CMK-8的結構對SIBs電化學性能的影響。奈米等級的過渡金屬氧化物與OMC的複合物使用可能是解決SIB陽極材料問題最有效方法。另一方面,CMK-3和CMK-8被認為是CuO奈米顆粒的優良骨架和高導電性基體。為了達到高功率SIB的要求,運用水熱合成法製備CuO @ CMK-3和CuO @ CMK-8奈米複合材料。 CuO @ CMK-3和CuO @ CMK-8陽極材料透過各種技術,來評估其結構和電化學性質。從實驗的數據能夠深入的瞭解CuO @ CMK-3和CuO @ CMK-8系統中電化學分解/去除過程中的轉化反應機理。此外,不同孔洞結構的電極、Na的嵌入/嵌出原理、電極上SEI層的反應機理,電解質中電荷轉移的闡釋,電極界面和通過SEI層的鈉離子傳輸進行了詳細的探討。以上所製備的CuO @ CMK-8奈米複合材料顯示出高可逆的鈉儲存能力和優異的SIB的可循環性是相當具有前景的陽極材料。
本博士論文的第二個部分是透過簡單實用的合成方法開發出有效的光催化劑,如:還原4-硝基苯酚和光催化產氫。在這部分,我們製備出不同型態的金屬銅/銅金屬氧化物和有序介孔碳材複合物,如Cu @ CMK-8, CuO@CMK-8和Cu2O @ CMK-8…等,並將其利用在光催化劑上,並比較光催化劑在還原硝基苯酚的催化活性。為了研究非貴重金屬異質結構催化劑對4-硝基苯酚還原以及光催化產氫的影響,我們利用簡易的水熱技術合成出TiO2 @ CMK-8的複合材料,再透過濕式浸漬法合成Ni-TiO2@ CMK-8。從實驗數據可知,Ni-TiO2@ CMK-8複合材料中Ni和CMK-8之間的協同相互作用,有效的改善了光催化產氫以及4-硝基苯酚的還原之效能。在進行了系統化的分析後,發現對光催化產氫以及4-硝基苯酚的還原來說,非貴金屬有序介孔碳材催化劑是相當具有潛力的。
摘要(英)
ENGLISH ABSTRACT
Regarded as future alternatives for Lithium ion batteries (LIBs), Sodium ion batteries (SIBs) have received tremendous attention during the last five years, mainly due to the worldwide abundance of Na and the significant cost-effective advantages. However, the development of suitable anode materials for Na-ion batteries remains a considerable challenge in view of the larger ionic radius of Na+ with respect to Li+ which leads to a higher volume expansion upon cycling and lower gravimetric and volumetric energy densities. This doctoral work aims to address these problems by designing nanomaterials with high power performance. Herein, a series of nanostructured materials specifically copper oxide (CuO) with different morphology: nanorod, nano ellipsoid and nano flakes structure were developed. By using X-ray diffraction, TEM and Ex-situ XRD observation techniques, the relationship between the electrode crystal structure and electrochemical performance was established.
In addition, to overcome the traditional problems, development of new carbonaceous materials with favourable structural properties, such as morphology, crystallinity, and porosity, as ideal carbon matrices for the high performance of SIBs is highly desirable. The pore arrangements affect their electrochemical behavior such as capacity, cycle efficiency, and rate capability. Different mesopore arrangements of ordered mesoporous carbons (OMCs) might have significant influences on the Na+ ion transport properties. OMCs like CMK-3 and CMK-8 were synthesized by nano casting method and a systematic analysis was carried out in order to understand the effect of key structural parameters of CMK-3 and CMK-8, on their electrochemical performances in SIBs in their pure forms without incorporation of metal oxides. The combined use of nanostructured transition metal oxides with OMCs could be an effective approach to solve the issues of anode materials for SIBs. Especially, CMK-3 and CMK-8 can be regarded as an excellent backbone and highly conductive matrices for CuO nanoparticles. To achieve the requirements for high power SIB, a hydrothermal synthesis method was applied to prepare CuO@CMK-3 and CuO@CMK-8 nanocomposites. Both the CuO@CMK-3 and CuO@CMK-8 anode materials were characterized by a variety of techniques to evaluate their structural and electrochemical properties. Direct experimental evidence provides a deep insight to the conversion reaction mechanism during the electrochemical sodiation/de-sodiation process for the CuO@CMK-3 and CuO@CMK-8 systems. Furthermore, fundamental scientific elucidation of the difference in transport and kinetic behaviors between different pore architecture based CuO@CMK electrodes, Na insertion/extraction mechanism, the reaction mechanism at solid electrolyte interphase (SEI) layer on the electrodes, charge transfer in the electrolyte-electrode interface and Na+ ion transport through the SEI layer was studied in detail. As a promising anode material, the as-prepared CuO@CMK-8 nanocomposite exhibited a high reversible sodium storage capacity and excellent cyclalibilty for SIB.
The second objective of this doctoral thesis is to develop efficient photocatalysts via simple and practical synthesis methods for catalytic application such as reduction of 4- nitrophenol and photocatalytic hydrogen generation. In this regard, different Copper based metal/metal oxide and ordered mesoporous carbon composite such as Cu@CMK-8 CuO@CMK-8 and Cu2O@CMK-8 photocatalysts were fabricated and characterized. Furthermore, the comparative performance of such photocatalysts for reduction of nitrophenol reaction were evaluated. In order to study the performance of a non-noble metal co-catalyst-semiconductor heterostructure for reduction of 4-nitrophenol as well as photocatalytic hydrogen generation, TiO2 with CMK-8 composite denoted as TiO2@CMK-8 was developed by a facile hydrothermal technique. Then, Ni-TiO2@CMK-8 was synthesized by a wet impregnation method followed by calcination at a reducing atmosphere. It was observed that the synergistic interactions between the Ni co-catalyst and the CMK-8 within the Ni-TiO2@CMK-8 composite substantially improves the solar photocatalytic hydrogen generation as well as the reduction of nitrophenol. A systematic analysis was carried out to investigate the effect of non-noble metal co-catalyst and ordered mesoporous carbon to maximize the photocatalytic hydrogen generation under solar light irradiation and catalytic reduction of nitrophenol.
關鍵字(中) ★ 有序介孔碳材 關鍵字(英)
論文目次
TABLE OF CONTENT
POWER OF ATTORNEY……………………………………………………………….III
ADVISOR’S RECOMMENDATION LETTER………………………………………..V
VERIFICATION LETTER FROM THE ORAL EXAMINATION COMMITTEE..VII
CHINESE ABSTRACT…………………………………………………………………..IX
ENGLISH ABSTRACT……………………………………………….……………….. ..XI
ACKNOWLEDGEMENT……………………………………………………………….XIV
DEDICATION…………………………………………………………………………..XVII
TABLE OF CONTENTS………………………………………………………………XVIII
LIST OF FIGURES…………………………………………………………………….XXIII
LIST OF TABLES……………………………………………………………………XXVIII
CHAPTER- 1…………………………………………………………………………….1
1. INTRODUCTION
1.1. Background ………………………………………………………………………...1
1.2. Sodium Ion Batteries………………………………………………………………...3
1.2.1. Basic Principle of Sodium Ion Battery……………………………………….5
1.2.2. Cathode Materials for Sodium Ion Batteries………………………………...5
1.3. Anode Materials for Sodium Ion Batteries…………………………………………6
1.3.1. Carbonaceous Materials……………………………………………………....6
1.3.2. Metal oxide Anode Materials…………………………………………………8
1.3.3. Intermetallic Anode Materials………………………………………………..10
1.4. Challenges for Electrode Materials for Sodium Ion Batteries……………………11
1.5. Catalytic Applications……………………………………………………………….12
1.5.1. Reduction of 4-nitrophenol…………………………………………………….12
1.5.2. Photocatalytic Hydrogen Generation…………………………………………15
1.5.2.1 Fundamentals of Photocatalytic Water Splitting……………………….......15
1.6. References……………………………………………………………………………..22

CHAPTER-2……………………………………………………………………………..35
Facile Fabrication of CuO Nano-Structures as Anodes for Sodium-Ion Batteries: A Study on The Morphology-Dependent Performance
2.1. Introduction………………………………………………………………………….36
2.2 Experimental…………………………………………………………………………38
2.2.1. Synthesis of CuO……………………………………………………………...38
2.2.2 Cell Assembly…………………………………………………………………..39
2.2.3 Material and Electrochemical Characterizations…………………………….39
2.3. Results and Discussion………………………………………………………………41
2.3.1. Structural Characterizations………………………………………………….41
2.3.2 Electrochemical Characterizations……………………………………………47
2.4. Conclusions…………………………………………………………………………...58
2.5. References……………………………………………………………………………58
CHAPTER-3……………………………………………………………………………...63
Synthesis and Characterization of Different Ordered Mesoporous Carbon (CMK-3 and CMK-8) and its Application in Sodium Ion Battery.
3.1. Introduction………………………………………………………………………….63
3.2. Experimental………………………………………………………………………...65
3.2.1. Synthesis of SBA-15…………………………………………………………..65
3.2.2. Synthesis of KIT-6……………………………………………………………66
3.2.3. Synthesis of CMK-3…………………………………………………………..66
3.2.4. Synthesis of CMK 8…………………………………………………………..66
3.2.5. Preparation of Anodes and Fabrication of Batteries……………………….67
3.2.6. Characterization Methods……………………………………………………67
3.3. Result and Discussions………………………………………………………………68
3.3.1. Structural Characterizations…………………………………………………….69
3.3.2 Electrochemical Behaviour………………………………………………………...73
3.4. Conclusions…………………………………………………………………………...76
3.5. References…………………………………………………………………………….76
CHAPTER-4……………………………………………………………………………..79
Highly Enhanced Electrochemical Performance of Ultrafine CuO Nanoparticles Confined in Ordered Mesoporous Carbons as Anode Materials for Sodium-Ion Batteries.
4.1. Introduction…………………………………………………………………………80
4.2. Experimental ………………………………………………………………………..84
4.2.1. Material Synthesis…………………………………………………………….84
4.2.2. Preparation of Anodes and Fabrication of Batteries……………………….85
4.2.3. Characterization Methods……………………………………………………86
4.3. Results and Discussion………………………………………………………………87
4.3.1. Structural Characterizations………………………………………………….87
4.4. Electrochemical Behavior…………………………………………………………..97
4.4.1. Post Characterization………………………………………………………...108
4.5. Conclusions…………………………………………………………………………..111
4.6. References……………………………………………………………………………112
Chapter-5............................................................................................................................117
Exceptional Catalytic Performance of Utrafine Cu2O Nanoparticles Confined in Cubic Mesoporous Carbon for 4-Nitrophenol Reduction.
5.1. Introduction………………………………………………………………………….118
5.2. Experimental Section………………………………………………………………..120
5.2.1. Preparation of Catalysts………………………………………………………120
5.2.1.1. Synthesis of Cu2O@CMK-8..........................................................................120
5.2.1.2. Synthesis of CuO@CMK-8 and Cu@CMK-8.............................................121
5.2.2. Materials Characterization……………………………………………………121
5.2.3. Catalytic Reduction of 4-NP…………………………………………………..122
5.2.4. Reusability of the Catalyst…………………………………………………….122
5.3. Results and Discussion………………………………………………………………122
5.3.1. Characterization of the Materials……………………………………………122
5.3.2. Catalytic Reduction of 4-Nitrophenol………………………………………...130
5. 3. 3. Plausible Mechanism………………………………………………………...135
5. 3. 4. Reusability of Cu2O@CMK-8 Catalyst……………………………………..137
5. 4. Conclusions………………………………………………………………………….139
5. 5. References…………………………………………………………………………..140
CHAPTER-6……………………………………………………………………………...144
Facile Fabrication of Titania-Ordered Cubic Mesoporous Carbon Composite: Effect of Ni doping on Photocatalytic Hydrogen Generation and Reduction of 4-Nitrophenol.
6.1. Introduction………………………………………………………………………….145
6.2 Experimental…………………………………………………………………………148
6.2.1 Synthesis of TiO2@CMK-8...............................................................................148
6.2.2 Synthesis of Ni-TiO2 and Ni-TiO2@CMK-8....................................................149
6.2.3. Material Characterizations…………………………………………………..149
6.2.4 Photocatalytic Water Splitting………………………………………………..150
6.2.5. Catalytic reduction of 4-NP…………………………………………………..150
6.2.5.1 Reusability of the Catalyst…………………………………………………...151
6.3. Results and Discussion………………………………………………………………..151
6.3.1. Structural Characterizations of the Materials...……………………………..151
6.3.2. Photocatalytic Hydrogen Generation………………………………………..158
6.3.3. Catalytic Reduction of 4-Nitrophenol………………………………………..160
6.4. Conclusions……………………………………………………………………………165
6.5. References……………………………………………………………………………..165
PUBLICATIONS AND PRESENTATIONS…………………………………………….170
參考文獻

Chapter-1
6. References:
(1) Meinshausen, M.; Meinshausen, N.; Hare, W.; Raper, S. C. B.; Frieler, K.; Knutti, R.;
Frame, D. J.; Allen, M. R. Nature 2009, 458, 1158-1162.
(2) Van Vliet, O.; Brouwer, A. S.; Kuramochi, T.; van den Broek, M.; Faaij, A. J. Power
Sources 2011, 196, 2298-2310.
23
(3) Winter, M.; Brodd, R. J. Chem. Rev., 2004, 104, 4245-4270.
(4) Wang, Y.; Cao, G. Adv. Mater., 2008, 20, 2251-2269.
(5) Palomares, V.; Cabanas, M. C.; Martınez, E. C.; Han, M. H.; Rojo, T. Energy Environ.
Sci. 2013, 6, 2312-2337.
(6) Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Gonzalez, J. C.; Rojo, T. Energy
Environ. Sci. 2012, 5, 5884-5901.
(7) Goriparti, S.; Miele, E.; Angelis, F.D.; Fabrizio, E.D.; Zaccaria, R.P.; Capiglia, C. J.
Power Sources 2014, 257, 421-443.
(8) Pan, H.; Hu, Y. S.; Chen, L. Energy Environ. Sci. 2013, 6, 2338-2360.
(9) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359-367.
(10) Scrosati, B.; Hassoun, J.; Sun, Y. K. Energy Environ. Sci. 2011, 4, 3287-3295.
(11) Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587-603.
(12) Li, W.; Chou, S. L.; Wang, J. H.; Kim, J. H.; Liu, H. K.; Dou, S. X. Adv. Mater. 2014,
26, 4037-4042.
(13) Zu, C.X.; Li, H. Energy Environ. Sci. 2011, 4, 2614-2624.
(14) Nagaura, T.; Tozawa, K. Prog. Batteries Sol. Cells 1990, 9, 209-213.
(15) Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Adv. Funct. Mater. 2013, 23, 947-958.
(16) Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114, 11636-11682.
(17) Wang, L. P.; Yu, L.; Wang, X.; Srinivasan, M.; Xu, Z. J. J. Mater. Chem. A 2015, 3,
9353-9378.
(18) Kang, H.; Liu, Y.; Cao, K.; Zhao, Y.; Jiao, L.; Wang, Y.; Yuan, H. J. Mater. Chem. A
2015, 3, 17899-17913.
(19) Kim, S.W.; Seo, D. H.; Ma, X.; Ceder, G.; Kang, K. Adv. Energy Mater. 2012, 2, 710-
721.
(20) Ma, X.; Chen, H.; Ceder, G. J. Electrochem. Soc. 2011, 158, A1307-A1312.
24
(21) Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. Angew. Chem. Int. Ed., 2015, 54, 3431-
3448.
(22) Fang, C.; Huang, Y.; Zhang, W.; Han, J.; Deng, Z.; Cao, Y.; Yang, H. Adv. Energy
Mater. 2015, 1501727.
(23) Han, M. H.; Gonzalo, E.; Singh, G.; Rojo, T. Energy Environ. Sci. 2015, 8, 81-102.
(24) Kubota, K.; Yabuuchi, N.; Yoshida, H.; Dahbi, M.; Komaba, S. MRS Bull. 2014, 39,
416-422.
(25) Ge, P.; Fouletier, M. Solid State Ionics 1988, 28, 1172-1175.
(26) Stevens, D.; Dahn, J. J. Electrochem. Soc. 2001, 148, A803-A811.
(27) Sangster, J. Journal of Phase Equilibria and Diffusion 2007, 28, 571-579.
(28) Doeff, M. M.; Ma, Y.; Visco, S. J.; De Jonghe, L. C. J. Electrochem. Soc. 1993, 140,
L169-L170.
(29) Alcantara, R.; Jiménez-Mateos, J. M.; Lavela, P.; Tirado, J. L. Electrochem. Comm.
2001, 3, 639-642.
(30) Alcantara, R.; Lavela, P.; Ortiz, G. F.; Tirado, J. L. Electrochemical and Solid-State
Letters 2005, 8, A222-A225.
(31) Stevens, D.; Dahn, J. J. Electrochem. Soc. 2000, 147, 1271-1273.
(32) Qu, Q.; Yun, J.; Wan, Z.; Zheng, H.; Gao, T.; Shen, M.; Shao, J.; Zheng, H. RSC Adv.,
2014, 4, 64692-64697.
(33) Rath, P. C.; Patra, J.; Saikia, D.; Mishra, M.; Chang, J. K.; Kao, H. -M. J. Mater. Chem.
A 2016, 4, 14222-14233.
(34) Dahn, J.; Zheng, T.; Yinghu, L.; Xue, J. Science 1995, 270, 590-593.
(35) Tang, K.; Fu, L.; White, R. J.; Yu, L.; Titirici, M. M.; Antonietti, M.; Maier, J. Adv.
Energy Mater. 2012, 2, 873-877.
25
(36) Cao, Y.; Xiao, L.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf, L.
V.; Yang, Z.; Liu, J. Nano Lett. 2012, 12, 3783-3787.
(37) Li, Y.; Xu, S.; Wu, X.; Yu, J.; Wang, Y.; Hu, Y. S.; Li, H.; Chen, L.; Huang, X. J.
Mater. Chem. A 2015, 3, 71-77.
(38) Ding, J.; Wang, H.; Li, Z.; Kohandehghan, A.; Cui, K.; Xu, Z.; Zahiri, B.; Tan,
X.; Lotfabad, E. M.; Olsen, B. C.; Mitlin, D ACS Nano 2013, 7, 11004-11015.
(39) Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata,
A.; Gotoh, K.; Fujiwara, K. Adv. Funct. Mater. 2011, 21, 3859-3867.
(40) Ponrouch, A.; Goni, A. R.; Palacin, M. R. Electrochem. Commun. 2013, 27, 85-88.
(41) Chen, T. Q.; Liu, Y.; Pan, L. K.; Lu, T.; Yao, Y. F.; Sun, Z.; Chua, D. H. C.; Chen, Q.
J. Mater. Chem. A 2014, 2, 4117-4121.
(42) Dubois, M.; Naji, A.; Billaud, D. Electrochim. Acta 2001, 46, 4301-4307.
(43) Dubois, M.; Billaud, D. Electrochim. Acta 2002, 47, 4459-4466.
(44) Alcantara, R.; Lavela, P.; Ortiz, G. F.; Tirado, J. L. Electrochem. Solid State lett. 2005,
8, A222-A225.
(45) Wenzel, S.; Hara, T.; Janek, J.; Adelhelm, P. Energ Environ. Sci. 2011, 4, 3342-3345.
(46) Cao, Y. L.; Xiao, L. F.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z. M.;
Saraf, L. V.; Yang, Z. G.; Liu, J. Nano Lett. 2012, 12, 3783-3787.
(47) Luo, X. F.; Yang, C. H.; Chang, J. K. J. Mater. Chem. A 2015, 3, 17282-17289.
(48) Wang, Y. X.; Chou, S. L.; Liu, H. K.; Dou, S. X. Carbon, 2013, 57, 202-208.
(49) Yan, A. Y.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. Adv. Energy Mater. 2014, 4, 1301584.
(50) Xu, J. T.; Wang, M.; Wickramaratne, N. P.; Jaroniec, M.; Dou, S. X.; Dai, L. M. Adv.
Mater. 2015, 27, 2042-2048.
(51) Ling, C.; Mizuno, F. Phys. Chem. Chem. Phys. 2014, 16, 10419-10424.
26
(52) Ye, J.; Zang, J.; Tian, Z.; Zheng, M.; Dong, Q. J. Mater. Chem. A, 2016, 4, 13223-
13227.
(53) Wang, H. G.; Wu, Z.; Meng, F. l.; Ma, D. l.; Huang, X. l.; Wang, L. M.; Zhang, X. B.
Chem Sus Chem 2013, 6, 56–60.
(54) Jiang, Y.; Hu, M.; Zhang, D.; Yuan, T.; Sun, W.; Xu, B.; Yan, M. Nano Energy 2014,
5, 60-66.
(55) Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon, J.-M.; Palacín, M. R. Chem. Mater.
2011, 23, 4109-4111.
(56) Park, S. I.; Gocheva, I.; Okada, S.; Yamaki, J. I. J. Electrochem. Soc. 2011, 158, A1067-
A1070.
(57) Alcantara, R.; Jaraba, M.; Lavela, P.; Tirado, J. L. Chem. Mater. 2002, 14, 2847-2848.
(58) Hariharan, S.; Saravanan, K.; Ramar, V.; Balaya, P. Phys. Chem. Chem. Phys. 2013,
15, 2945-2953.
(59) Hariharan, S.; Saravanan, K.; Balaya, P. Electrochem. Commun. 2013, 31, 5-9.
(60) Valvo, M.; Lindgren, F.; Lafont, U.; Björefors, F.; Edström, K. J. Power Sources 2014,
245, 967-978.
(61) Zhang, W. X.; Li, M.; Wang, Q.; Chen, G. D.; Kong, M.; Yang, Z. H.; Mann, Adv. Funct.
Mater. 2011, 21, 3516-3523.
(62) Zheng, S. F.; Hu, J. S.; Zhong, L. S.; Song, W. G.; Wan, L. J.; Guo, Y. G. Chem. Mater.
2008, 20, 3617-3622.
(63) Huang, H. W.; Liu, Y.; Wang, J. H.; Gao, M. X.; Peng, X. S.; Ye, Z. Z. Nanoscale 2013,
5, 1785-1788.
(64) Wang, L. L.; Cheng, W.; Gong, H. X.; Wang, C. H.; Wang, D. K.; Tang, K. B.; Qian,
Y. T. J. Mater. Chem. 2012, 22, 11297-11302.
(65) Zhang, J. T.; Liu, J. F.; Peng, Q.; Wang, X.; Li, Y. D. Chem. Mater. 2006, 18, 867-871.
27
(66) Liu, Y.; Qiao, Y.; Zhang, W. X.; Hu, P.; Chen, C. J.; Li, Z.; Yuan, L. X.; Hu, X. L.;
Huang, Y. H. J. Alloys Compd. 2014, 586, 208-215.
(67) Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W. C.; Cheng, F. Y.; Chen, J. Nano Res. 2014,
7, 199-208.
(68) Yuan, S. Huang, X. L.; Ma, D. L.; Wang, H. G.; Meng, F. Z.; Zhang, X. B. Adv. Mater.
2014, 26, 2273-2279.
(69) Sun, Q.; Ren, Q.; Li, H.; Fu, Z. W. Electrochem. Commun. 2011, 13, 1462–1464
(70) Kim, H.; Seo, D. H.; Kim, S. W.; Kim, J.; Kang, K. Carbon 2011, 49, 326-332.
(71) Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Adv. Energy Mater. 2012, 2,
710-721.
(72) Wang, W.; Hu, L.; Ge, J.; Hu, Z.; Sun, H.; Sun, H.; Zhang, H.; Zhu, H.; Jiao, S. Chem.
Mater. 2014, 26, 3721-3730.
(73) Klavetter, K. C.; Garcia, S.; Dahal, N.; Snider, J. L.; De Souza, J. P.; Cell, T. H.; Cassara,
M. A.; Heller, A.; Humphrey, S. M.; Mullins, C. B. J. Mater. Chem. A 2014, 2, 14209-
14221.
(74) Ming, J.; Ming, H.; Kwak, W. J.; Shin, C. J Zheng.; Sun, Y. K. Chem. Commun. 2014,
50, 13307-13310.
(75) Jian, Z.; Zhao, B.; Liu, P.; Li, F.; Zheng, M.; Chen, M.; Shi, Y.; Zhou, H. Chem.
Commun. 2014, 50, 1215-1217.
(76) Sun, Q.; Ren, Q.Q.; Li, H.; Fu, Z.-W. Electrochem. Commun. 2011, 13, 1462-1464.
(77) Tran, T. T.; Obrovac, M. N. J. Electrochem. Soc. 2011, 158, A1411-A1416.
(78) Ellis, L. D.; Wilkes, B. N.; Hatchard, T. D.; Obrovac, M. N. J. Electrochem. Soc. 2014,
161, A416- A421.
(79) Qian, J.; Wu, X.; Cao, Y.; Ai, X.; Yang, H Angew. Chem., Int. Ed. 2013, 52, 4633-4636.
28
(80) Kim, Y.; Park, Y.; Choi, A.; Choi, N.-S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K.
T. Adv. Mater. 2013, 25, 3045-3049.
(81) Ellis, L. D.; Hatchard, T. D.; Obrovac, M. N. J. Electrochem. Soc. 2012, 159, A1801-
A1805.
(82) Datta, M. K.; Epur, R.; Saha, P.; Kadakia, K.; Park, S. K.; Kumta, P. N. J. Power
Sources 2013, 225, 316-322.
(83) Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. J.
Am. Chem. Soc. 2012, 134, 20805-20811.
(84) Zhu, Y. J.; Han, X. G.; Xu, Y. H.; Liu, Y. H.; Zheng, S. Y.; Xu, K.; Hu, L. B.; Wang,
C. S. ACS Nano 2013, 7, 6378-6386.
(85) Jahel, A.; Ghimbeu, C. M.; Darwiche, A.; Vidal, L.; Garreau, S. H.; Guterl, C. V.;
Monconduit, L. J. Mater. Chem. A 2015, 3, 11960-11969.
(86) Su, D.; Xie, X.; Wang, G. Chem. Eur. J. 2014, 20, 3192-3197.
(87) Shimizu, M.; Usui, H.; Sakaguchi, H. J. Power Sources 2014, 248, 378-382.
(88) Wang, Y. X.; Lim, Y. G.; Park, M. S.; Chou, S. L.; Kim, J. H.; Liu, H.K.; Dou, S. X.;
Kim, Y. J. J. Mater. Chem. A 2014, 2, 529-534.
(89) Wang, Y.; Su, D.; Wang. C.; Wang, G. Electrochem. Commun. 2013, 29, 8-11.
(90) Su, D.; Ahn, H. J.; Wang, G. Chem. Commun. 2013, 49, 3131-3133.
(91) Gu, M.; Kushima, A.; Shao, Y.; Zhang, J.-G.; Liu, J.; Browning, N. D.; Li, J.; Wang, C.
Nano Lett. 2013, 13, 5203-5211.
(92) Chen, J.; Cheng, F. Y. Acc. Chem. Res. 2009, 42, 713-723.
(93) Ju. J. H.; Ryu, K. S. J. Electrochem. Soc. 2011, 158, A814-A817.
(94) Liang, Y.; Chen, L.; Cai, L.; Liu, H.; Fu, R.; Zhang, M.; Wu, D. Chem. Comm., 2016,
52, 803-806.
29
(95) Zhao, P.; Feng, X.; Huang, D.; Yang, G.; Astruc, D Coord. Chemistry Rev. 2015, 287,
114-136.
(96) Aditya, T.; Pal, A.; Pal, T. Chem. Commun., 2015, 51, 9410-9431.
(97) Wu, T.; Zhang, L.; Gao, J.; Liu, Y.; Gao, C.; Yan, J. J. Mater. Chem. A 2013, 1, 7384-
7390.
(98) Dong, Z.; Le, X.; Li, X.; Zhang, W.; Dong, C.; Ma, J. Appl. Catal. B. Environmental,
2014, 158-159, 129-135.
(99) Sun, J.; Ma, D.; Zhang, H.; Liu, X.; Han, X.; Bao, X.; Weinberg, G.; Fander, N. P.; Su,
D. J. Am. Chem. Soc. 2006, 128, 15756-15764.
(100) Xu, J.; Jiang, Q.; Chen, T.; Wu, F.; Li, Y. X. Catal. Sci. Technol. 2015, 5, 1504-1513.
(101) Panigrahi, S.; Basu, S.; Praharaj, S.; Pande, S.; S. Jana, S.; Pal, A.; Ghosh, S. K.; Pal, T.
J. Phys. Chem. C, 2007, 111, 4596-4605.
(102) Rode, C. V.; Vaidya, M. J.; Chaudhari, R. V. Org. Process Res. Dev. 1999, 3, 465-470.
(103) Comisso, N.; Cattarin, S.; Fiameni, S.; Gerbasi, R.; Mattarozzi, L.; Musiani, M.;
Vazquez-Gomez, L.; Verlato, E. Electrochem. Commun. 2012, 25, 91-93.
(104) Narayanan, K. B.; Sakthivel, N. J. Hazard. Mater. 2011, 189, 519-525.
(105) Lai, T. L.; Yong, K. F.; Yu, J. W.; Chen, J. H.; Shu, Y. Y.; Wang, C. B. J. Hazard.
Mater. 2011, 185, 366-372.
(106) Makovec, D.; Sajko, M.; A. Selisnik, A.; Drofenik, M. Mater. Chem. Phys., 2011, 129,
83-89.
(107) Pradhan, N.; Pal, A.; Pal, T. Colloids Surf. A 2002, 196, 247-257.
(108) Esumi, K.; Miyamoto, K.; Yoshimura, T. J. Colloid Interface Sci. 2002, 254, 402-405.
(109) Woo, Y. T.; Lai, D. Y. Patty’s Toxicology, Wiley, New York, 2001, 1-96.
(110) Ghosh, S. K., Mandal, M., Kundu, S., Nath, S., Pal, T. Appl. Catal., A, 2004, 268, 61-
66.
30
(111) Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. J. Phys. Chem. C 2010, 114, 8814-
8820.
(112) Zhang, H., Li, X., Chen, G. J. Mater. Chem., 2009, 19, 8223-8231.
(113) Khalavka, Y., Becker, J., Soennichsen, C. J. Am. Chem. Soc. 2009, 131, 1871-1875.
(114) Dutta, S.; Sarkar, S.; Ray, C.; Roy,A.; Sahoo, R.; Pal, T. ACS Appl. Mater. Interfaces
2014, 6, 9134-9143.
(115) Ge, M.; Cai, J.; Iocozzia, J.; Cao, C.; Huang, J.; Zhang, X.; Shen, J.; Wang, S.; Zhang,
S.; Zhang, K.; Lai, Y.; Lin, Z. Int. J. Hydrogen Energy 2017, xxx, 1-32.
(116) Sang, Y. H.; Zhao, Z. H; Tian, J.; Hao, P.; Jiang, H. D.; Liu, H.; Small 2014, 10, 3775-
3382.
(117) Tian, J.; Leng, Y. H.; Zhao, Z. H.; Xia, Y.; Sang Y. H.; Hao, P. Nano Energy 2015, 11,
419-427.
(118) Xie, G. C.; Zhang, K.; Guo, B. D.; Liu, Q.; Fang, L.; Gong, J. R. Adv. Mater 2013, 25,
3820-3839.
(119) Fujishima, A.; Honda, K. Nature, 1972, 283, 37-38.
(120) Bard, A. J. J. Photochem. 1979, 10, 59-75.
(121) Mills, A.; Lee, S. A. J. Photochem. Photobiol. A Chem. 2002,152, 233-247.
(122) Chen, X.; Mao, S. S. Chem. Rev. 2007, 107, 2891-2959.
(123) Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. Chem. Rev. 1995, 95,
69-96.
(124) Maeda, K.; Domen, K. J. Phys. Chem. Lett. 2010, 1, 2655-2661.
(125) Zhu, G. N.; Wang, Y. G.; Xia, Y. Y. Energy Environ. Sci. 2012, 5,6652-6667.
(126) Wang, M.; Hana, K.; Zhanga, S.; Sun, L. Coord. Chem. Rev. 2015, 287, 1-14.
(127) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253-278.
31
(128) Ni, M.; Leung. M. K.; Leung, D.Y.C: Sumathy, K. Renew. Sustainable Energy Rev.
2007, 11, 401-425.
(129) Mou, Z.; Wu, Y.; Sun, J.; Yang, P.; Du, Y.; Lu, C. ACS Appl. Mater. Interfaces 2014,
6, 13798-13806.
(130) Silva, C. G.; Sampaioa, M. J.; Marquesa, R.N.; Ferreiraa, L.A.; Tavares, P. B.; Silva,
A.T.; Faria, J. L. Appl. Catal. B Environ. 2015, 178, 82-90.
(131) Zhang, X.; Peng, T.; Song, S. J. Mater. Chem. A 2016, 42365-2402.
(132) Xu, Y.; Xu, R. Appl. Surf. Sci. 2015, 351, 779-793
(133) Wang, J. J.; Li, Z. L.; Li, X. B.; Fan, X. B.; Meng, Q. Y.; Yu, S.; Li, C. B.; Li, J. X.;
Tung, C.H.; Wu, L.Z.; Chem Sus Chem, 2014, 7, 1468-1475;
(134) Wang, C.; Cao, S.; Fu, W. F. Chem. Commun. 2013, 49, 11251-11253.
(135) Yu, J.; Hai, Y.; Jaroniec, M. J. Colloids Interface. Sci. 2011, 357, 223-228.
(136) Zhang, M.; Sun, R.; Li, Y.; Shi, Q.; Xie, L.; Chen, J.; Xu, X.; Shi, H.; Zhao, W. J. Phys.
Chem. C 2016, 120, 10746-10756.
(137) Sadanandam, G.; Lalitha, K.; Kumari. V. D.; Autho, M.V.S.; Subrahmanyam, M. Int.
J. Hydrogen Energy, 2013, 38, 9655-9664.
(138) Rodenberg, A.; Orazietti, M.; Probst, B.; Bachmann, C.; Alberto, R.; Baldridge, K. K.;
Hamm, P. Inorg. Chem. 2015, 54, 646-657.
(139) Ge, L.; Han, C.; Xiao, X.; Guo, L. Int. J. Hydrogen Energy 2013, 38, 6960-6969.
(140) Frame, F. A.; Osterloh, F. E. J. Phys. Chem. C 2010, 114, 10628-10633.
(141) Zhou, W.; Yin, Z.; Du, Y.; Huang, X.; Zeng, Z.; Fan, Z.; Liu, H.; Wang, J.; Zhang, H.
Small 2013, 9, 140-147.
(142) Wang, J.; Cui, W.; Liu, Q.; Xing, Z.; Asiri, A.M.; Sun, X. Adv. Mater. 2016, 28, 215-
230.
32
(143) Chowdhury, P.; Malekshoar, G.; B. Ray, M. B.; Zhu, J.; Ray, A. K. Ind. Eng. Chem.
Res. 2013, 52, 5023-5029.
(144) Li, Y.; Xie, Y.; Peng, S.; Lu, G.; Li, S. Chemosphere 2006, 63, 1312-1318.
(145) Li, Y.; Lu, G.; Li, S. Appl. Catal. A 2001, 214 (2), 179-185.
(146) Schneider, J.; Bahnemann, D. W. J. Phys. Chem. Lett. 2013, 4, 3479-3483.
(147) Guzman, F.; Chuang, S. S. C.; Yang, C. Ind. Eng. Chem. Res. 2013, 52 (1), 61-65.
(148) Mou, Z.; Wu, Y.; Sun, J.; Yang, P.; Du, Y.; Lu, C. ACS Appl. Mater. Interfaces 2014,
6, 13798-13806.
(149) Chen, D.; Zou, L.; Li, S.; Zheng, F. Sci. Rep. 2016, 6, 20335 (1-8).
(150) Daranyi, M.; Csesznok, T.; Kukovecz, A.; Kónya, Z.; Kiricsi, I.; Ajayan, P. M.; Vajtai,
R. Nanotechnology, 2011, 22, 195701 (1-9)
(151) Hou, H.; Gao, F.; Wang, L.; Shang, M.; Yang, Z.; Zheng, J.; Yang, W. J. Mater. Chem.
A, 2016, 4, 6276-6281.
(152) Tang, J.; Cowan, A. J.; Durrant, J. R.; Klug, D. R. J. Phys. Chem. C 2011, 115, 3143-
3150.
(153) Piskunov, S.; Lisovski, O.; Begens, J.; Bocharov, D.; Zhukovskii, Y. F.; Wessel, M.;
Spohr, E. J. Phys. Chem. C 2015, 119, 18686-18696.
(154) Luo, H.; Takata, T.; Lee, Y.; Zhao, J.; Domen, Yushan, K. Chem. Mater. 2004, 16, 846-
849.
(155) Majeed, I.; Nadeem, M. A. A.; Al-Oufi, M.; Nadeem, M. A. A.; Waterhouse, G. I. N.;
Badshah, A.; Metson, J. B.; Idriss, H. Appl. Catal. B Environ. 2016, 182, 266-276.
(156) Sreethawong, T.; Yoshikawa, S. Catal. Commun. 2005, 6, 661-668.
(157) Tian, Y.; Tatsuma, T. J. Am. Chem. Soc. 2005, 127, 7632-7637
(158) Wu, B.; Liu, D.; Mubeen, S.; Chuong, T.T.; Moskovits, M.; Stucky, G.D. J. Am. Chem.
Soc. 2016,138, 1114-1117.
33
(159) Zheng, X.; Kuang, Q.; Yan, K.; Qiu, Y.; Qiu, J.; Yang, S. ACS Appl. Mater. Interfaces
2013, 5,11249-11257.
(160) Jitputti, J.; Suzuki, Y.; Yoshikawa, S. Catal. Commun. 2008, 9, 1265-1271.
(161) Regonini, D.; Teloeken, A.C.; Alves, A.K.; Berutti, F.A.; Gajda-Schrantz, K.;
Bergmann, C.P.; Graule, T.; Clemens, F. ACS Appl. Mater. Interfaces 2013, 5, 11747-
11755.
(162) Bao, J. Nat. Nanotechnol. 2015, 10,19-20.
(163) Li, J.; Hoffmann, M.W.G.; Shen, H.; Fabrega, C.; Prades, J.D.; Andreu, T.; HernandezRamirez,
F.; Mathur, S. J. Mater. Chem. 2012, 22, 20472-20476.
(164) Li, J.; Cushing, S.K.; Zheng, P.; Senty, T.; Meng, F.; Bristow, A.D.; Manivannan, A.;
Wu, N. J. Am. Chem. Soc. 2014, 136, 8438-8449.
(165) Wang, X.; Yao, X. Carbon 2014,77, 667-674.
(166) Pihosh, Y.; Turkevych, I.; Mawatari, K.; Uemura, J.; Kazoe, Y.; Kosar, S.; Makita, K.;
Sugaya, T.; Matsui, T.; Fujita, D. Sci. Rep. 2015, 5, 11141 (1-10).
(167) Mondal, I.; U. Phys. Chem. Chem. Phys., 2016,18, 4780-4788 .
(168) Nakajima, H.; Lee, D.; Lee, M. T.; Grigoropoulos, C. P.; Int. J. Hydrogen energy 2016,
41, 16927-16931.
(169) Li, L.; Yu, L.; Lin, Z.; Yang, G. ACS Appl. Mater. Interfaces 2016, 8, 8536-8545.
(170) Wang, H.; Dong, S.; Chang, Y.; Faria, J. L. J. Hazard. Mater. 2012, 235-236, 230-236.
(171) Hung, W.H.; Lai, S.N.; Su, C.Y.; Yin, M.; Li, D.; Xue, X.; Tseng, C. M. Appl. Phys.
Lett. 2015, 107, 73904 (1-5).
(172) Patra, J.; Rath, P. C.; Yang, C. H.; Saikia, D.; Kao, H.-M. Chang, J. K.; Nanoscale 2017,
9, 8674-8683.
(173) Saikia, D.; Wang, T. H.; Chou, C. J.; Fang, J.; Tsai, L. D.; Kao, H.-M. RSC Adv. 2015,
5, 42922-42930.
34
(174) Ryoo, R.; Joo, S. H.; Jun, S. J. Phys. Chem. B, 1999, 103, 7743-7746.
(175) Hu, J.; Noked, M.; Gillette, E.; Gui, Z.; Lee, S. B. Carbon 2015, 93, 903 -914.
(176) Chen, H. L.; Li, C.J.; Peng, C. J.; Leu, H. J.; W. H. ACS Appl. Mater. Interfaces, 2017, 9,
327-334.
(177) Li, Z.; Gao, B.; Chen, G.Z.; Mokaya, R.; Sotiropoulos, S.; Li Puma, G. Appl. Catal. B
Environ. 2011, 110, 50-57.
(178) Silva, C. G.; Faria, J. L. Appl. Catal. B Environ. 2010, 101, 81-89.
(179) Xu, Y. J.; Zhuang, Y.; Fu, X. J. Phys. Chem. C 2010, 114, 2669-2676.

Chapter-2
References: -
(1) Tarascon, J. M. Nat. Chem. 2010, 2, 510.
(2) Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928-935.
(3) Goodenough, J. B.; Park, K. S. J. Am. Chem. Soc. 2013, 135, 1167-1176.
(4) Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114, 11636-11682.
(5) Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Adv. Energy
Mater. 2016, 1600943, 1-38.
59
(6) Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. Angew. Chem. Int. Ed., 2015, 54, 3431-
3448.
(7) Sun, N.; Liu, H.; Xu, B. J. Mater. Chem. A, 2015, 3, 20560-20566.
(8) Rath, P. C.; Patra, J.; Saikia, D.; Mishra, M.; Chang, J. K.; Kao, H. M. J. Mater. Chem.
A 2016, 4, 14222-14233.
(9) Patra, J.; Chen, H. C.; Yang, C. H.; Hsieh, C. T.; Su, C. Y.; Chang, J. K. Nano Energy
2016, 18, 124-134.
(10) Qu, B.; Ma, C.; Ji, G.; Xu, C.; Xu, J.; Meng, Y. S.; Wang, T.; Lee, J. Y. Adv. Mater.
2014, 26, 3854-3859.
(11) Shin, H. S.; Jung, K. N.; Jo, Y. N.; Park, M. S.; Kim H.; Lee, J. W. Sci. Rep., 2016, 6,
26195, (1-10).
(12) Zhang, Q.; Zhang, K.; Xu, D.; Yang, G.; Huang, H.; Nie, F.; Liu, C.; Yang, S. Progress
in Mater. Sci. 2014, 60, 208-337.
(13) Wang, C.; Li, Q.; Wang, F.; Xia, G.; Liu, R.; Li, D.; Li, N.; Spendelow, J. S.; Wu, G.
ACS Appl. Mater. Interfaces 2014, 6, 1243-1250.
(14) Liu, Y.; Qiao, Y.; Zhang, W. X.; Hu, P.; Chen, C. J.; Li, Z.; Yuan, L. X.; Hu, X. L.; J.
Alloys Compd. 2014, 586, 208-215.
(15) Li, W. Y.; Xu, L.N.; Chen, J. Adv. Funct. Mater 2005, 15, 851-857.
(16) Wu, C.; Yin, P.; Zhu, X.; Yang, C. O.; Xie, Y. J. Phys. Chem. B 2006, 110, 17806-
17812.
(17) Cheng, F.; Zhao, J.; Song, W.; Li, C.; Ma, H.; Chen, J.; Shen, P. Inorg. Chem. 2006, 45,
2038-2044.
(18) Wang, C.; Higgins, D.; Wang, F.; Li, D.; Liu, R.; Fengxia, G.; Li, N.; Li, Q.; Xu, H.;
Wu, G. Nano Energy 2014, 9, 334-344.
(19) Ma, J.; Zhang, X.; Chen, K.; Li, G.; Han, X. J. Mater. Chem. A, 2013, 1, 5545-5549.
60
(20) Park, M. S.; Kang, Y. M.; Wang, G. X.; Dou, S. X.; Liu.; H. K. Adv. Funct. Mater. 2008,
18, 455-461
(21) Kim, M. S.; Bhattacharjya, D.; Fang, B.; Yang, D. S.; Bae, T. S.; Yu, J. S. Langmuir,
2013, 29, 6754-6761
(22) Volanti, D. P.; Felix, A. A; Orlandi, M. O.; Whitfield, G.; Yang, D. J.; Longo, E.; Tuller,
H. L.; Varella, J. A. Adv. Funct. Mater. 2013, 23, 1759-1766
(23) Zhang, J.; Feng, H.; Qin, Q.; Zhang, G.; Cui, Y.; Chai, Z.; Zheng, W. J. Mater. Chem.
A 2016, 4, 6357-6367.
(24) Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W. C.; Chen, F. Y; Chen, J. Nano Res. 2014, 7
199-208
(25) Yuan, S. Huang, X. L.; Ma, D. L.; Wang, H. G.; Meng, F. Z.; Zhang, X. B. Adv. Mater.
2014, 26, 2273-2279
(26) Zhang, X.; Qin, W.; Li, D.; Yan, D.; Hu, B.; Sun, Z.; Pan, L. Chem. Commun. 2015,
51, 16413-16416.
(27) Chen, C.; Dong, Y.; Li, S.; Jiang, Z.; Wang, Y.; Jiao, L.; Yuan, H. J. Power Source
2016, 320, 20-27.
(28) Li, H.; Liao, J.; Zeng, T. Cat. Comm. 2014, 46, 169-173.
(29) Prathap, M. U.; Kaur, B.; Srivastava, R. J. Colloid and Inter. Sci. 2012, 370, 144-154.
(30) Zhang, W.; Wen, X.; Yang. S. Inorg. Chem. 2003, 42, 5005-5014.
(31) Xiao, H. M.; Fu, S. Y.; Zhu, L.P.; Li, Y. Q.; Yang, G. Eur. J. Inorg. Chem. 2007, 14,
1966-1971.
(32) Dey, K. K.; Kumar, A.; Shanker R.; Dhawan, A.; Wan, M.; Yadav, R. R.; Srivastava,
A. K. RSC Advances, 2012, 2, 1387-1403.
(33) Zhang, Z.; Sun, H.; Shao, X.; Li, D.; Yu, H.; Han, M. Adv. Mater. 2005, 17, 42-47.
(34) Li, Y.; Tan, B.; Wu, Y. Chem. Mater. 2008, 20, 567-576.
61
(35) Zarate, R. A.; Hevia, F.; Fuentes, S.; Fuenzalida, V. M.; Zuniga, A. J. Solid State Chem.
2007, 180, 1464-1469
(36) Park, C.; Kim, J.; Kwon, H.; Song, H. Adv. Mater. 2009, 21, 803-807
(37) Longoni, G.; Fiore, M.; Kim, J. H.; Jung, Y. H.; Kim, D. K.; Mari, C. M.; Ruffo, R. J.
Power Sources 2016, 332, 42-50.
(38) Klein, F.; Jache, B.; Bhide, A.; Adelhelm, P. Phys. Chem. Chem. Phys. 2013, 15, 15876-
15887.
(39) Duan, X.; Huang, H.; Xiao, S.; Deng, J.; Zhou, G.; Li, Q.; Wang, T. J. Mater. Chem. A,
2016, 4, 8402-8411.
(40) Palomares, V.; Cabanas, M.C.; Martınez, E.C.; Han, M.H.; Rojo, T. Energy Environ.
Sci. 2013, 6, 2312-2337.
(41) Lin, Y. M.; Abel, P. R.; Heller, A.; Mullins, C. B. J. Phys. Chem. Lett. 2011, 2, 2885-
2891.
(42) Bai, Z.; Zhang, X.; Zhang, Y.; Guo, C.; Tang, B. J. Mater. Chem. A, 2014, 2, 16755-
16760.
(43) Lu, Z.; Chang, Z.; Liu, J.; Sun, X. Nano Res. 2011, 4, 658-665.
(44) Pohjalainen, E.; Rauhala, T.; Valkeapaa, M.; Kallioinen, J.; Kallio, T. J. Phys. Chem.
C 2015, 119, 2277-2283.
(45) Ramireddy, T.; Sharma, N.; Xing, T.; Chen, Y.; Leforestier, J.; Glushenkov , A. M.
ACS Appl. Mater. Interfaces 2016, 8, 30152-30164.
(46) Patra, J.; Rath, P. C.; Yang, C.H.; Saikia, D.; Kao, H.-M. Chang, J. K.; Nanoscale 2017,
9, 8674-8683.
(47) Hou, H.; Jing, M.; Huang, Z.; Yang, Y.; Zhang, Y.; Chen, J.; Wu, Z.; Ji, X. ACS Appl.
Mater. Interfaces 2015, 7, 19362-19369.
(48) Deng, D.; Lee, J. Y. ACS Appl. Mater. Interfaces 2014, 6, 1173-1179.
62
(49) Gao, X. P.; Bao, J. L.; Pan, G. L.; Zhu, H. Y.; Huang, P. X.; Wu, F.; Song, D. Y. J. Phys.
Chem. B 2004, 108, 5547-5551.
(50) Liu, C.; Li, C.; Ahmed, K.; Mutlu, Z.; Ozkan, C. S.; Ozkan, M. Sci. Rep. 2016, 6, 29183,
(1-8).
(51) Liu, J.; Li, Y.; Huang, X.; Ding, R.; Hu, Y.; Jianga, J.; Liao, L. J. Mater. Chem., 2009,
19, 1859-1864.

Chapter-3
References:
(1) Tarascon, J. M. Nat. Chem. 2010, 2, 510.
(2) Goodenough, J. B.; Park, K. S. J. Am. Chem. Soc. 2013, 135, 1167-1176.
(3) Scrosati, B.; Hassoun, J.; Sun, Y. K. Energy Environ. Sci. 2011, 4, 3287.
(4) Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928-935.
(5) Kang, B.; Ceder, G. Nature 2009, 458, 190-193.
(6) Ellis, B. L.; Makahnouk, W. R. M.; Makimura, Y.; Toghill, K.; Nazar, L. F. Nat. Mater.
2007, 6, 749-753.
(7) Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Adv. Funct. Mater. 2013, 23, 947-958.
(8) Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Gonzalez, J.C.; Rojo, T.
Energy Environ. Sci. 2012, 5, 5884-5901.
(9) Wang, L.P.; Yu, L.; Wang, X.; Srinivasan, M.; Xu, Z. J. J. Mater. Chem. A 2015, 3,
9353-9378.
77
(10) Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Lee, K. T. Energy Environ. Sci.
2013, 6, 2067-2081.
(11) Doeff, M. M.; Ma, Y.; Visco, S. J.; Jonghe, L. C. D. J. Electrochem. Soc., 1993, 140,
L169-L170.
(12) Kubota, K.; Komaba, S. J. Electrochem. Soc. 2015, 162, A2538-A2550.
(13) Tang, K.; Fu, L.; White, R. J.; Yu, L.; Titirici, M. M.; Antonietti, M.; Maier, J. Adv.
Energy Mater. 2012, 2, 873-877.
(14) Cao, Y.; Xiao, L.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf,
L. V.; Yang, Z.; Liu, J.; Nano Lett. 2012, 12, 3783–3787.
(15) Liu, Y.; Fan, F. F.; Wang, J. W.; Liu, Y.; Chen, H. L.; Jungjohann, K. L.; Xu, Y. H.;
Zhu, Y. J.; Bigio, D.; Zhu, T.; Wang, C. S. Nano Lett. 2014, 14, 3445-3452.
(16) Yan, Y.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. Adv. Energy Mater. 2014, 4, 1301584.
(17) Wang, Y. X.; Chou, S. L.; Liu, H. K.; Dou, S. X. Carbon 2013, 57, 202-208.
(18) Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata,
A.; Gotoh, K.; Fujiwara, K. Adv. Funct. Mater. 2011, 21, 3859-3867.
(19) Wang, H. G.; Wu, Z.; Meng, F. L.; Ma, D. L.; Huang, X. L.; Wang, L. M.; Zhang, X.
B. Chem Sus Chem 2013, 6, 56-60.
(20) Guan, Z.; Liu, H.; Xu, B.; Hao, X.; Wang, Z.; Chen, L. J. Mater. Chem. A 2015, 3,
7849-7854.
(21) Ding, J.; Wang, H.; Li, Z.; Kohandehghan, A.; Cui, K.; Xu, Z.; Zahiri, B.; Tan, X.;
Lotfabad, E.M.; Olsen, B.C.; Mitlin, D. ACS nano 2013, 7, 11004-11015.
(22) Jiang, H.; Ma, J.; Li, C. Z. Adv. Mater. 2012, 24, 4197-4202.
(23) Lim, E.; Kim, H.; Jo, C.; Chun, J.; Ku, K.; Kim, S.; Lee, H. I.; Nam, I. S.; Yoon, S.;
Kang, K.; Lee, J. ACS Nano 2014, 8, 8968-8978.
(24) Lin, Y.; Wang, X. Y.; Qian, G.; Watkins, J. J. Chem. Mater. 2014, 26, 2128-2137.
78
(25) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky,
G.D. J. Am. Chem. Soc. 1998, 120, 6024-6035.
(26) Kleitz, F.; Solovyov, L. A.; Anil kumar, G.M.; Choi, S. H.; Ryoo, R. Chem. Commun.
2004, 1536-1537.
(27) Lotfabad, E. M.; Ding, J.; Cui, K.; Kohandehghan, A.; Kalisvaart, W. P.; Hazelton, M.;
Mitlin, D. ACS Nano 2014, 8, 7115-7129.
(28) Zhou, X.; Guo, Y.G. Chem Electro Chem 2014, 1, 83-86.

Chapter-4
References:
(1) Tarascon, J. M.; Armand, M. Nature, 2001, 414, 359-367.
(2) Goodenough, J. B.; Kim, Y. Chem Mater 2010, 22, 587-603
(3) Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Energy Environ. Sci.,
2011, 4, 3243-3262.
(4) Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Adv. Funct. Mater. 2013, 23, 947-
958.
(5) Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. Angew. Chem. Int. Ed., 2015, 54,
3431-3448.
113
(6) Luo, X. F.; Yang, C. H.; Peng, Y. Y.; Pu, N. W.; Ger, M. D.; Hsieh, C. T.; Chang,
J. K. J. Mater. Chem. A 2015, 3, 10320-10326.
(7) Li, W.; Chou, S. L.; Wang, J. H.; Kim, J. H.; Liu, H. K.; Dou, S. X. Adv. Mater.
2014, 26, 4037-4042.
(8) Chevrier, V. L.; Ceder, G. J. Electrochem. Soc. 2011, 158, A1011-A1014.
(9) Stevens, D.; Dahn, J. J. Electrochem. Soc. 2000, 147, 1271-1273.
(10) Alcantara, R.; Jiménez-Mateos, J. M.; Lavela, P.; Tirado, J. L. Electrochem. Soc.
2002, 149, A201-A205.
(11) Alcantara, R.; Jiménez-Mateos, J. M.; Lavela, P.; Tirado, J. L. Electrochem. Comm.
2001, 3, 639-642
(12) Alcantara, R.; Lavela, P.; Ortiz, G. F.; Tirado, J. L. Electrochem Solid St 2005, 8,
A222-A225.
(13) Tang, K.; Fu, L.; White, R. J.; Yu, L.; Titirici, M. M.; Antonietti, M.; Maier, J. Adv.
Energy Mater. 2012, 2, 873-877
(14) Zhang, L.; Wu, H. B.; Lou, X. W. Adv. Energy Mater. 2014, 4 1300958-1300968.
(15) Li, Z.; Ding, J.; Mitlin, D. Acc. Chem. Res. 2015, 48, 1657-1665.
(16) Yang, J.; Zhou, T.; Zhu, R.; Chen, X.; Guo, Z.; Fan, J.; Liu, H. K.; Zhang, W. X.
Adv. Mater. Interfaces, 2016, 3, 1500464.
(17) Weng, Y. T.; Huang, T. Y.; Lim, C. H.; Shao, P. S.; Hy, S.; Kuo, C.Y.; Cheng, J.
H.; Hwang, B. J.; Lee, J. F.; Wu, N. L. Nanoscale 2015, 7, 20075-20081.
(18) Sun, W.; Rui, X.; Zhu, J.; Yu, L.; Zhang, Y.; Xu, Z.; Madhavi, S.; Yan, Q. J. Power
Sources 2015, 274, 755-761.
(19) Wang, C.; Higgins, D.; Wang, F.; Li, D.; Liu, R.; Fengxia, G.; Li, N.; Li, Q.; Xu,
H.; Wu, G. Nano Energy 2014, 9, 334-344
114
(20) Klein, F.; Jache, B.; Bhide, A.; Adelhelm, P. Phys. Chem. Chem. Phys. 2013, 15,
15876-15887.
(21) Hasa, I.; Verrelli, R.; Hassoun, J. Electrochim. Acta 2015, 173, 613-618.
(22) Wang, L.; Gong, H.; Wang, C.; Wang, D.; Tang, K.; Qian, Y. Nanoscale 2012, 4,
6850-6855.
(23) Wang, J.; Liu, Y.; Wang, S.; Guo, X.; Liu, Y. J. Mater. Chem. A 2014, 2, 1224-
1229.
(24) Liu, Y.; Qiao, Y.; Zhang, W. X.; Hu, P.; Chen, C. J.; Li, Z.; Yuan, L. X.; Hu, X.L.;
Huang, Y. H. J. Alloys Compd. 2014, 586, 208-215.
(25) Chen, C.; Dong, Y.; Li, S.; Jiang, Z.; Wang, Y.; Jiao, L.; Yuan, H. J. Power Source
2016, 320, 20-27.
(26) Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W. C.; Chen, F. Y; Chen, J. Nano Res. 2014,
7, 199-208.
(27) Zhang, X.; Qin, W.; Li, D.; Yan, D.; Hu, B.; Sun, Z.; Pan, L. Chem. Commun. 2015,
51, 16413-16416.
(28) Yuan, S. Huang, X. L.; Ma, D. L.; Wang, H. G.; Meng, F. Z.; Zhang, X. B. Adv.
Mater. 2014, 26, 2273-2279.
(29) Wang, Z.; Zhou, L.; Lou, X. W. Adv. Mater. 2012, 24, 1903-1911.
(30) Wang, J.; Liu, J.; Chao, D.; Yan, J.; Lin, J.; Shen, Z. X. Adv. Mater. 2014, 26, 7162-
7169.
(31) Lee, J.; Chen, Y. M.; Zhu, Y.; Vogt, B. D. ACS Appl. Mater. Interfaces 2014, 6,
21011-21018.
(32) Rahman, M. M.; Sultana, I.; Chen, Z.; Srikanth, M.; Li, L. H.; Dai, X. J.; Chen, Y.
Nanoscale 2015, 7, 13088-13095.
115
(33) Xiong, X.; Luo, W.; Hu, X.; Chen, C.; Qie, L.; Hou, D.; Huang, Y. Sci. Rep. 2015,
5, 9254.
(34) Zhang, S.; Li, W.; Tan, B.; Chou, S.; Li, Z.; Dou, S. J. Mater. Chem. A 2015, 3,
4793-4798.
(35) Saikia, D.; Wang, T. H.; Chou, C. J.; Fang, J.; Tsai, L. D.; Kao, H. M. RSC Adv.
2015, 5, 42922-42930.
(36) Qiao, H.; Li, J.; Fu, J.; Kumar, D.; Wei, Q.; Cai, Y.; Huang, F. ACS Appl. Mater.
Interfaces 2011, 3, 3704-3708.
(37) Qu, Q.; Yun, J.; Wan, Z.; Zheng, H.; Gao, T.; Shen, M.; Shao, J.; Zheng, H. RSC
Adv. 2014, 4, 64692-64697
(38) Pang, G.; Nie, P.; Yuan, C.; Shen, L.; Zhang, X.; Lia, H.; Zhang, C. J. Mater. Chem.
A 2014, 2, 20659-20666.
(39) Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B.
F.; Stucky, G. D. Science 1998, 279, 548-552.
(40) Kleitz, F.; Choi, S.H.; Ryoo, R. Chem. Commun. 2003, 17, 2136-2137.
(41) Derrien, G.; Hassoun, J.; Panero, S.; Scrosati, B. Adv. Mater. 2007, 19, 2336-2340.
(42) Lu, Y.; Zhang, N.; Zhao, Q.; Liang, J. J. Chen, Nanoscale 2015, 7, 2770-2776.
(43) Jahel, A.; Ghimbeu, C. M.; Darwiche, A.; Vidal, L.; Garreau, S. H.; Guterl, C. V.;
Monconduit, L. J. Mater. Chem. A 2015, 3, 11960-11969.
(44) Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna T.; Terasaki,
O. J. Am. Chem. Soc. 2000, 122, 10712-20713.
(45) Kaneko, K. J. Membr. Sci. 1994, 96, 59-89.
(46) Lai, N. C.; Lin, C. J.; Huang, W. C.; Yang, C. M. Microporous Mesoporous Mater.
2014, 190, 67-73.
116
(47) Liu, Y.; Wang, W.; Gu, L.; Wang, Y.; Ying, Y.; Mao, Y.; Sun, L.; Peng, X. ACS
Appl. Mater. Interfaces 2013, 5, 9850-9855.
(48) Wang, C.; Li, Q.; Wang, F.; Xia, G.; Liu, R.; Li, D.; Li, N.; Spendelow, J. S.; Wu,
G. ACS Appl. Mater. Interfaces 2014, 6, 1243-1250.
(49) Kim, C.; Noh, M.; Choi, M.; Cho, J.; Park, B. J. Mater. Chem. A 2005, 17, 3297-
3301.
(50) Park, M. H.; Kim, K.; Kim, J.; Cho, J. Adv. Mater. 2010, 22, 415-418.
(51) Liang, Y.; Chen, L.; Cai, L.; Liu, H.; Fu, R.; Zhang, M.; Wu, D. Chem. Comm.
2016, 52, 803-806.
(52) Hu, J.; Noked, M.; Gillette, E.; Gui, Z.; Lee, S. B. Carbon 2015, 93, 903-914.
(53) Wang, S.; Zhang. J.; Chen, C. J. Power Sources 2010, 195, 5379-5381.
(54) Liu, Y. L.; Xu, Y.; Han, X.; Pellegrinelli, C.; Zhu, Y.; Zhu, H.; Wan, J. Chung, A.
C.; Vaaland, O.; Wang, C. S.; Hu, L. B. Nano Lett. 2012, 12, 5664-5668.

Chapter-5
References:
(1) Gawande, M. B.; Goswami, A.; Felpin, F. X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.;
Zboril, R.; Varma, R. S. Chem. Rev. 2016, 116, 3722-3811.
(2) Hughes, M. D.; Xu, Y. J.; Jenkins, P.; Mcmorn, P.; Landon, P.; Enache, D. I.; Carley,
A. F.; Attard, G. A.; Hutchings, G. J.; King, F.; Stitt, E. H.; Johnston, P.; Griffin, K.;
Kiely, C. J. Nature 2005, 437, 1132-1135.
(3) Li, Y.; Fan, X.; Qi, J.; Ji, J.; Wang, S.; Zhang, G. Zhang, F. Mater. Res. Bull. 2010, 45,
1413-1418.
(4) Garcia, M. F.; Arias, A. M.; Hanson, J.; Rodriguez, J. Chem. Rev. 2004, 104, 4063-
4104.
(5) Maye, M. M.; Lou, Y.; Zhong, C. J. Langmuir 2000, 16, 7520-7523.
(6) Wang, S. P.; Zhang, J. N.; Yuan, P. F.; Sun, Q.; Jia, Y.; Yan, W. F.; Chen, Z.M.; Xu, Q.
J. Mater. Sci. 2015, 50, 1323-1332.
(7) Lv, J. J.; Wang, A. J.; Ma, X. H.; Xiang, R. Y.; Chen, J. R.; Feng, J. J. J. Mater. Chem.
A 2015, 3, 290-296.
(8) Zhang, P.; Li, R.; Huang, Y.M.; Chen, Q.W. ACS Appl. Mater. Interfaces 2014, 6, 2671-
2678.
(9) Munnik, P.; Jongh, P. E.; Jong, K. P. Chem. Rev. 2015, 115, 6687-6718.
(10) Yan, X.; Wang, X.; Tang, Y.; Ma, G.; Zou, S.; Li, R.; Peng, X.; Dai, S.; Fan, J. Chem.
Mater. 2013, 25, 1556-1563.
(11) Zhang, P.; Shao, C. L.; Zhang, Z. Y.; Zhang, M. Y.; Mu, J. B.; Guo, Z. C.; Liu, Y. C.
Nanoscale 2011, 3, 3357-3363.
(12) Horecha, M.; Kaul, E.; Horechyy, A.; Stamm, M. J. Mater. Chem. A 2014, 2, 7431-
7438.
141
(13) Wu, T.; Zhang, L.; Gao, J.; Liu, Y.; Gao, C.; Yan, J. J. Mater. Chem. A 2013, 1, 7384-
7390.
(14) Dong, Z.; Le, X.; Li, X.; Zhang, W.; Dong, C.; Ma, J. Appl. Catal. B. Environmental,
2014, 158-159, 129-135.
(15) Sun, J.; Ma, D.; Zhang, H.; Liu, X.; Han, X.; Bao, X.; Weinberg, G.; Fander, N. P.; Su,
D. J. Am. Chem. Soc. 2006, 128, 15756-15764.
(16) Gao, W.; Li, S.; Pal, M.;Liu, Y.; Wan, X.; Li, W.; Wang, S.; Wang, C.; Zheng, G.; Zhao,
D. RSC Adv. 2016, 6, 61064-61072.
(17) Ji, T.; Chen, L.; Schmitz, M.; Bao, F. S.; Zhu, J. Green Chem. 2015, 17, 2515-2523.
(18) Gu, W.; Deng, X.; Jia, X.; Li, J.; Wang, E. J. Mater. Chem. A 2015, 3, 8793-8799.
(19) John, J.; Gravel, E.; Hagege, A.; Li, H.; Gacoin, T.; Doris, E. Angew. Chem. Int. Ed.
2011, 123, 7675-7678.
(20) Qian, H. S.; Antonietti, M.; Yu, S. H. Adv. Funct. Mater. 2007, 17, 637-643.
(21) Xu, J.; Jiang, Q.; Chen, T.; Wu, F.; Li, Y. X. Catal. Sci. Technol. 2015, 5, 1504-1513.
(22) Urushizaki, M.; Kitazawa, H.; Takano, S.; Takahata, R.; Yamazoe, S.; Tsukuda, T. J.
Phys. Chem. C 2015, 119, 27483-27488.
(23) Zhu, Q. L.; Tsumori, N.; Xu, Q. J. Am. Chem. Soc. 2015, 137, 11743-11748.
(24) Wu, C.; An, X.; Gao, S.; Su, L. RSC Adv. 2015, 5, 71259-71267.
(25) Hang, L.; Zhao, Y.; Zhang, H.; Liu, G.; Cai, W.; Li, Y.; Qu, L. Acta Mater. 2016, 105,
59-67.
(26) Sarkar, C.; Dolui, S. K. RSC Adv. 2015, 5, 60763-60769.
(27) Niu, H.; Liu, S.; Cai, Y.; Wu, F.; Zhao, X. Microporous Mesoporous Mater. 2016, 219,
48-53.
(28) Zhou, Z.; Lu, C.; Wu, X.; Zhang, X. RSC Adv. 2013, 3, 26066-26073.
(29) Maiyalagan, T.; Alaje, T. O.; Scot, K. J. Phys. Chem. C 2012, 116, 2630-2638.
142
(30) Hung, W. H.; Lai, S. N.; Lo, A. Y. ACS Appl. Mater. Interfaces 2015, 7, 8412-8418.
(31) Saikia, D.; Wang, T. H.; Chou, C. J.; Fang, J.; Tsai, L. D.; Kao, H.-M. RSC Adv. 2015,
5, 42922-42930.
(32) Rath, P. C.; Patra, J.; Saikia, D.; Mishra, M.; Chang, J. K.; Kao, H.-M. J. Mater. Chem.
A 2016, 4, 14222-14233.
(33) Zhang, Z.; Che, H.; Wang, Y.; Gao, J.; Zhao, L.; She, X.; Sun, J.; Gunawan, P.; Zhong,
Z.; Su, F. Ind. Eng. Chem. Res. 2012, 51, 1264-1274.
(34) Yan, X. Y.; Tong, X. L.; Zhang, Y.F.; Han, X. D.; Wang, Y. Y.; Jin, G. Q.; Qin, Y.;
Guo, X. Y. Chem. Commun. 2012, 48, 1892-1894.
(35) Mondal, P.; Sinha, A.; Salam, N.; Roy, A. S.; Jana, N. R.; Islam, S. M. RSC Adv. 2013,
3, 5615-5623.
(36) Hayakawa, K.; Yoshimura, T.; Esumi, K. Langmuir 2003, 19, 5517-5521.
(37) Sasmal, A. K.; Dutta, S.; Pal, T. Dalton Trans. 2016, 45, 3139-3150.
(38) Deka, P.; Deka, R. C.; Bharali, P. New J. Chem. 2014, 38, 1789-1793.
(39) Guo, M.; Zhao, Y.; Zhang, F.; Xu, L.; Yang, H.; Song, X.; Bu, Y. RSC Adv. 2016, 6.
50587-50594.
(40) Yao, W.; Li, F. L.; Li, H. X.; Lang, J. P. J. Mater. Chem. A 2015, 3, 4578-4585.
(41) Tan, W.L.; Abu Bakar, N. H. H.; Abu Bakar, M. Catal. Lett. 2015, 145, 1626-1633.
(42) Nasrollahzadeh, M.; Sajadib, S. M.; Vartooni, A. R.; Bagherzadehc, M.; Safari, R. J.
Mol. Catalysis A: Chemical 2015, 400, 22-30.
(43) Ma, Y.; Ni, Y.; Guo, F.; Xiang, N. Cryst. Growth Des. 2015, 15, 2243-2252.
(44) Kaur, R.; Giordano, C.; Gradzielski, M.; Mehta, S. K. Chem. Asian J. 2014, 9, 189-198.
(45) Cheng, X.; Fu, A.; Li, H.; Wang, Y.; Guo, P.; Liu, J.; Zhang, J.; Zhao, X. S. ACS
Sustainable Chem. Eng. 2015, 3, 2414-2422.
(46) Jana, N. R.; Pal, T. Langmuir 1999, 15, 3458-3463.
143
(47) Zhang, P. H.; Sui, Y. M.; Xiao, G. J.; Wang, Y. N.; Wang, C. Z.; Liu, B. B.; Zou, G. T.;
Zou, B. J. Mater. Chem. A 2013, 1, 1632-1638.
(48) Ghosh, S.; Das, R.; Chowdhury, I. H.; Bhanja, P.; Naskar, M. K. RSC Adv. 2015, 5
101519-101524

Chapter-6
References:
(1) Sang, Y. H.; Zhao, Z.; Tian, J.; Hao, P.; Jiang, H. D.; Liu, H. Small 2014, 10, 3775-
3782.
(2) Tian, J.; Leng, Y. H.; Zhao, Z. H.; Xia, Y.; Sang, Y. H.; Hao, P. Nano Energy 2015, 11,
419-27.
166
(3) Xie, G. C.; Zhang, K.; Guo, B. D.; Liu, Q.; Fang, L.; Gong, J. R. Adv. Mater 2013, 25,
3820-3839.
(4) Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Chem. Rev. 2010,110, 6503-6570.
(5) Han, Z. J.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Science 2012, 338, 1321-
1324.
(6) Fujishima, A.; Honda, K. Nature, 1972, 283, 37-38.
(7) Ma, Y.; Wang, X.; Jia, Y.; Chen, X.; Han, H.; Li, C. Chem. Rev., 2014, 114, 9987-10043.
(8) Chen, X.; Mao, S. S. Chem. Rev. 2007, 107, 2891-2959.
(9) Lee, K.; Mazare, A.; Schmuki, P. Chem. Rev. 2014, 114, 9385 -9454.
(10) Zhou, W.; Li, W.; Wang, J.Q.; Qu, Y.; Y. Yang, Y.; Xie, Y.; Zhang, K.F.; Wang, L.;
Fu, H. G.; Zhao, D. Y. J. Am. Chem. Soc. 2014, 136, 9280-9283.
(11) Zhang, Z.; Li, A.; Cao, S. W.; Bosman, M.; Li, S.; Xue, C. Nanoscale 2014, 6, 5217-
5222.
(12) Pany, S.; Parida, K. M.; Phys. Chem. Chem. Phys. 2015, 17, 8070-8077.
(13) Zhang, M.; Sun, R.; Li, Y.; Shi, Q.; Xie, L.; Chen, J.; Xu, X.; Shi, H.; Zhao, W. J. Phys.
Chem. C 2016, 120, 10746-10756.
(14) Hou, H.; Gao, F.; Wang, L.; Shang, M.; Yang, Z.; Zheng, J.; Yang, W. J. Mater. Chem.
A, 2016, 4, 6276-6281.
(15) Zheng, X.; Kuang, Q.; Yan, K.; Qiu, Y.; Qiu, J.; Yang, S. ACS Appl. Mater. Interfaces
2013, 5, 11249-11257.
(16) Ren, Y.; Liu, Z.; Pourpoint, F.; Armstrong, A. R.; Grey, C. P.; Bruce, P. G. Angew.
Chem. Int. Ed. 2012, 51, 2164-2167.
(17) Brezesinski, T.; Wang, J.; Polleux, J.; Dunn, B.; Tolbert, S. H. J. Am. Chem. Soc. 2009,
131, 1802-1809.
167
(18) Szeifert, J. M.; Rohlfing, D. F.; Georgiadou, D.; Kalousek, V.; Rathousky, J.; Kuang,
D.; Wenger, S.; Zakeeruddin, S. M.; Gratzel, M.; Bein, T. Chem. Mater. 2009, 21, 1260-
1265.
(19) Szeifert, J. M.; Feckl, J. M.; Fattakhova-Rohlfing, D.; Liu, Y. J.; Kalousek, V.;
Rathousky, J.; Bein, T. J. Am. Chem. Soc. 2010, 132, 12605-12611.
(20) Hung, W. H.; Lai, S. N.; Lo, A. Y. ACS Appl. Mater. Interfaces 2015, 7, 8412-8418.
(21) Gerardin, C.; Reboul, J.; Bonne, M.; Lebeau B. Chem. Soc. Rev. 2013, 42, 4217-4255.
(22) Ma, T. Y.; Liu, L.; Yuan, Z. Y. Chem. Soc. Rev. 2013, 42, 3977-4003.
(23) Mou, Z.; Wu, Y.; Sun, J.; Yang, P.; Du, Y.; Lu, C. ACS Appl. Mater. Interfaces 2014,
6, 13798-13806.
(24) Silva, C. G.; Sampaioa, M. J.; Marquesa, R.N.; Ferreiraa, L.A.; Tavares, P. B.; Silva,
A.T.; Faria, J. L. Appl. Catal. B: Environ. 2015, 178, 82-90.
(25) Chen, D.; Zou, L.; Li, S.; Zheng, F. Sci. Rep. 2016, 6, 20335 (1-8).
(26) Hung, W.H.; Lai, S.N.; Su, C.Y.; Yin, M.; Li, D.; Xue, X.; Tseng, C. M. Appl. Phys.
Lett. 2015, 107, 073904 (1-5).
(27) Quan, L.N.; Yoon Hee Jang, Y. H.; Stoerzinger, K. A.; May, K. J.; Jang, Y.J.;
Kochuveedu, S.T.; Horn, Y.S.; Kim, D. H. Phys. Chem. Chem. Phys. 2014, 16, 9023-
9030.
(28) Patra, J.; Rath, P. C.; Yang, C.H.; Saikia, D.; Kao, H.-M. Chang, J. K.; Nanoscale 2017,
9, 8674-8683.
(29) Saikia, D.; Wang, T. H.; Chou, C. J.; Fang, J.; Tsai, L. D.; Kao, H. -M. RSC Adv. 2015,
5, 42922-42930.
(30) Rath, P. C.; Patra, J.; Saikia, D.; Mishra, M.; Chang, J. K.; Kao, H. -M. J. Mater.
Chem. A 2016, 4, 14222-14233.
168
(31) Shen, L.; Uchaker, E.; Yuan, C.; Nie, P.; Zhang, M.; Zhang, X.; Cao, G. ACS Appl.
Mater. Interfaces 2012, 4, 2985-2992.
(32) Li, Z.; Yao, C.; Wang, Y.C.; Mikael, S.; Gunasekaran, S.; Ma, Z.; Cai, Z.; Wang, X. J.
Mater. Chem A, 2016, 4, 11672-11679.
(33) Ge, M.; Cai, J.; Iocozzia, J.; Cao, C.; Huang, J.; Zhang, X.; Shen, J.; Wang, S.; Zhang,
S.; Zhang, K.; Lai, Y.; Lin, Z. Int. J. Hyd. Energy 2017, xx, 1-32.
(34) Sayed, F. N.; Sasikala, R.; Jayakumar, O. D.; Rao, R.; Betty, C. A.; Chokkalingam, A.;
Kadam, R. M.; Jagannath, Bharadwaj, S. R.; Vinu, A.; Tyagi, A. K. RSC Adv. 2014, 4,
13469-13476.
(35) Cao, X.; Tian, G.; Chen, Y.; Zhou, J.; Zhou, W.; Tian, C.; Fu, H. J. Mater. Chem. A,
2014, 2,4366-4376.
(36) Yan, B.; Zhou, J.; Liang, X.; Song, K.; Su, X. Appl. Surf. Sci. 2017, 392, 889-896.
(37) Budi, C. S.; Chi, H.; Wu, H. C.; Chen, C. S.; Saikia, D.; Kao, H.-M. Chem Sus Chem
2016, 9, 2326-2331.
(38) Yang, Y.; Ren, Y.; Sun, C.; Hao, S. Green Chem., 2014, 16, 2273-2280
(39) Dou, L.; Zhang, H. J. Mater. Chem. A, 2016, 4, 18990-19002.
(40) Zhao, P.; Feng, X.; Huang, D.; Yang, G.; Astruc, D. Coord. Chem. Rev. 2015, 287, 114-
136.
(41) Aditya, T.; Pal, A.; Pal, T. Chem. Commun., 2015, 51, 9410-9431.
(42) Lai, T. L.; Yong, K. F.; Yu, J. W.; Chen, J. H.; Shu, Y. Y.; Wang, C. B. J. Hazard.
Mater., 2011, 185, 366.
(43) Ray, C.; Pal, T. J. Mater. Chem. A, 2017, 5, 9465-9487.
(44) Meir, N.; Plante, I, J.; Flomin, K.; Chockler, E.; Moshofsky, B.; Mahmud Diab, M.;
Volokh, M.; Mokar, T. J. Mater. Chem. A, 2013, 1, 1763-1769.
169
(45) Wu, G.; Liang, X.; Zhang, L.; Tang, Z.; Al-Mamun, M.; Zhao, H.; Su, X. ACS Appl.
Mater. Interfaces 2017, 9, 18207-18214.
(46) Zhang, Z.; Shao, C.; Zou, P.; Zhang, P.; Zhang, M.; Mu, J.; Guo, Z.; Li, X.; Wang, C.;
Liu, Y. Chem. Commun. 2011, 47, 3906-3908.
(47) Gordillo, A. H.; Gonzalez, V. R. Chem. Eng. Journal 2015, 261, 53-59.
(48) Wang, P.; Han, L.; Zhu, C.; Zhai, Y.; Dong, S. Nano Res. 2011, 4, 1153–1162.
(49) Ji, T.; Li, L.; Wang, M.; Yang, Z.; Lu, X. RSC Adv. 2014, 4, 29591-29594.
(50) Seh, Z. W.; Liu, S.; Zhang, S. Y.; Shah, K. W.; Han, M, Y. Chem. Commun. 2011, 47,
6689-6691.
(51) Gao, W.; Li, W.; Xue, Z.; Pal, M.; Liu, Y.; Wang, C.; Wang, J.; Wang, S.; Wan, X.; Liu,
Y.; Zhao, D. New J. Chem., 2016, 40, 4200-4205.
(52) Jiang, Z.; Lv, X.; Jiang, D.; Xie, J.; Mao, D. J. Mater. Chem. A, 2013, 1, 14963-14972.
(53) Wang, N.; Shen, K.; Huang, L.; Yu, X.; Qian, W.; Chu, W. ACS Catal. 2013, 3, 1638-
1651.
(54) Kataja1, M.; Hakala, T.K.; Julku, A.; Huttunen, M. J.; Dijken, S.; Torma, P. Nat. Comm.
2015, 6, 7072 (1-8).
(55) Xiong, Z.; Chen, X.; Wang, X.; Peng, L.; Yan, D.; Lei, H.; Fu, Y.; Wu, J.; Li, Z.; An,
X.; Wu, W. App. Surf. Sci. 2013, 268, 524-528.
(56) Gangula, A.; Podila, R.; Karanam, R. M. L.; Janardhana, C.; Rao, A. M. Langmuir,
2011, 27, 15268-15274.
指導教授 高憲明(Hsien Ming Kao) 審核日期 2017-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明