博碩士論文 100286002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:54.242.25.198
姓名 張鴻聖(Hung-Sheng, Chang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 中小型光學鏡組之高密度全場波前量測
(The high resolution full field wavefront measurement of a misaligned miniature lens)
相關論文
★ 使用液晶空間光線調制器之相移式光柵-十字狹縫量測裝置★ 全像場同時取像像差量測
★ 單頻位移與傾角量測干涉儀★ 廣角物鏡之相對照度探討及其設計應用
★ 新型零後焦長太陽能集光器的設計★ 相移式干涉儀之系統校正及量測軟體的撰寫
★ 非球面干涉儀之離軸對心校正★ 高數值孔徑顯微物鏡設計
★ Double Zernike Polynomial 校準光學系統★ 薄型化光展量疊加太陽能集光器
★ A Similarity-Guided Spots Sorting Method to Increase the Dynamic Range of a Shack Hartmann Sensor★ 雷射微型投影機波前量測技術
★ 旋轉掃描式非球面干涉儀之演算法開發及應用★ 校準低敏型Shack-Hartmann波前感測器
★ 利用Slanted-edge方法以及相位回復演算法量測光學系統的成像像差★ 非準直系統下Shack-Hartmann波前檢測器的校正補償
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 成像光學系統的檢測,在現今的產業界中,缺乏一個完善的檢測儀器,針對光學系統中的各種製造誤差進行有效率的量測.光學系統的製造誤差包含了單一元件的偏心、傾角誤差與厚度誤差,以及各元件之間的偏心誤差、傾角誤差與距離誤差.現有的量測儀器中,包含了探針式表面輪廓儀、干涉儀、自準直儀與MTF檢測儀等,這些儀器均無法有效率且完整的檢測各種系統中的製造誤差.
本篇研究論文,提出了一個全場波前檢測架構,並使用本實驗室研究與開發多年的高動態範圍Shack-Hartmann波前檢測器,對一微型光學系統進行全視場的波前掃描.根據離軸像差理論,分析各視場的波前像差,進行全場像差多項式的數學擬合,並且實際驗證了離軸像差理論,分析出軸對稱設計系統中,因製造誤差所造成的非軸對稱誤差所產生的非軸對成像差,根據量測到的非軸對稱像差的數據,評估待測光學系統的系統誤差.
有別於其他光學檢測設備,此全場波前掃瞄系統可以應用於各種光學元件或是成像系統的檢測,無論是單片光學元件、組裝完成的光學成像鏡頭,或是未組裝完成的光學成像系統,並且可以得到高密度的全場波前像差之資料,是其他檢測設備無法達到的量測結果.
摘要(英) Compared with the industry standard MTF consequential testing result, the full field transmitted wavefront testing is more analytical for field aberration analysis. A novel wavefront measuring device specialized for the miniature lens testing application is developed to measure the full field aberration in a high resolution of 35x36 radial-azimuthal fields. The device adapts the high dynamic range Shack-Hartman wavefront sensor to minimize the alignment uncertainty induced from collimator under high field angle.
The plane symmetrical aberration due to elements misalignment are identified and quantified throughout the measured field. The resulting aberration field is therefore simply a combination of plane symmetric aberrations that do not necessarily share the same orientation for their respective plane of symmetry. The theory that describes the aberration of imaging optical system without symmetry including the effects of fabrication and assembly errors. As a result, the misaligned lens element inside lens barrel or the centering error of each single element induce the plane symmetric optical aberration throughout the optical field.
The field constant coma and field linear astigmatism contributes most aberration errors to the edge of the field as expected. Through the field dependent aberration analysis. this device proves that the miniature lens image quality near the edge of the field is practically limited by the misalignment of the optical elements.
關鍵字(中) ★ 波前檢測器
★ 光學鏡頭
★ 全場像差
關鍵字(英) ★ wavefront sensor
★ full field aberration
★ miniature lens
論文目次 中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
一、緒論 1
1-1  成像光學系統的發展 1
1-2  檢測技術之回顧 3
1-3  研究動機 9
二、研究理論與方法 12
2-1  光學系統之像差理論 12
2-1-1 波前像差與橫向像差 13
2-1-2 波前像差函數之數學多項式模型 16
2-1-3 全場波前像差之數學模型 19
2-2  Shack-Hartmann波前檢測器 33
2-2-1 波前檢測器之歷史 33
2-2-2 量測原理 35
2-2-3 解析度與樣本數、靈敏度與動態範圍 36
2-2-4 光點質心計算演算法與系統校正 39
2-2-5 光點指派演算法 40
2-2-6 高動態範圍Shack-Hartmann波前檢測器 42
2-3  Zernike多項式 45
三、實驗方法 48
3-1  硬體架構 48
3-2  光學模擬軟體之實驗模擬與分析 51
3-3  波前重建與資料擷取流程 54
3-4  全場波前掃描與座標轉換 56
3-4-1 全場波前掃描 56
3-4-2  量測座標與全場座標之座標轉換 58
四、數據分析 59
4-1  全場波前掃描之數據 59
4-1-1 全場傾斜像差之數據分析 59
4-1-2 全場失焦像差之數據分析 64
4-1-3 全場彗星像差之數據分析 69
4-1-4 全場像散之數據分析 72
4-1-5 全場球差之數據分析 75
4-2  重複量測之量測結果 77
4-3  不同樣品之量測 80
五、結論與未來展望 82
5-1  結論 82
5-2  未來展望 84
參考文獻 86
參考文獻 [1] wikipedia:History of optics.2018年11月16日,取自 https://en.wikipedia.org/wiki/History_of_optics
[2] wikipedia:Camera.2018年11月29日,取自 https://en.wikipedia.org/wiki/Camera#Camera_obscura
[3] Liang, C. W., and Chang, H. S., and Lin, P. C., and Lee, C. C., and Chen, Y. C., "Vibration modulated subaperture stitching interferometry ", Optics Express, 21(15), 18255-18260, 2013.
[4] Murphy, P., and Fleig, J., and Forbes, G., and Miladinovic, D., and DeVries, G., and O′Donohue, S., "Subaperture stitching interferometry for testing mild aspheres ", SPIE Proceeding, 10, 2006.
[5] Goodman, J. W., Introduction to Fourier Optics, Seconr Edition.The McGraw-Hill Companies, Inc..
[6] Mouroulis, P. and Macdonald, J., Geometrical Optics and Optical Design, Oxford, New York.
[7] Rayces, J. L., "Exact Relation between Wave Aberration and Ray Aberration ", Optica Acta: International Journal of Optics, 11(2), 85-88, 1964.
[8] Hopkins, H. H., The Wave Theory of Aberrations, Oxford, UK.
[9] Buchroeder, R. A.,"Tilted component optical systems.",University of Arizona, Tucson, Arizona, Ph.D. dissertation, 1976.
[10] Thompson, K., Aberration fields in tilted and decentered optical systems,
[11] Thompson, K., "Description of the third-order optical aberrations of near-circular pupil optical systems without symmetry ", Journal of the Optical Society of America A, 22(7), 1389-1401, 2005.
[12] Moore, L. B., and Hvisc, A. M., and Sasian, J., "Aberration fields of a combination of plane symmetric systems. ", Optics Express, 16(20), 15655-15670, 2008.
[13] Sasian, J. M., "How to approach the design of a bilateral symmetric optical system ", SPIE Proceeding, 17, 1994.
[14] Shack, R. V., Aberration theory, OPTI 514 course notes., College of Optical Sciences,University of Arizona, Tucson, Arizona.,
[15] Malacara, D. and Ghozeil, I., "Hartmann, Hartmann-Shack, and Other Screen Test", in Optical Shop Testing, third edition.John Wiley & Sons, Inc.
[16] Malacara-Hernández, D. and Malacara-Doblado, D., "What is a Hartmann test? ", Applied Optics, 54(9), 2296-2301, 2015.
[17] Hernández, D. M.:The myopia in the Hubble space telescope.2010年10月,取自 http://www.pointsdevue.com/article/myopia-hubble-space-telescope
[18] Platt, B. C. and Rv, S., "History and principles of Shack-Hartmann wavefront sensing ", Journal of refractive surgery, 17(S573-577, 2001.
[19] Liang, J., and Grimm, B., and Goelz, S., and Bille, J. F., "Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor ", Journal of the Optical Society of America A, 11(7), 1949-1957, 1994.
[20] Salmon, T. O., and Thibos, L. N., and Bradley, A., "Comparison of the eye’s wave-front aberration measured psychophysically and with the Shack–Hartmann wave-front sensor ", Journal of the Optical Society of America A, 15(9), 2457-2465, 1998.
[21] Schäfer, B. and Mann, K., "Determination of beam parameters and coherence properties of laser radiation by use of an extended Hartmann-Shack wave-front sensor ", Applied Optics, 41(15), 2809-2817, 2002.
[22] Nicolle, M., and Fusco, T., and Rousset, G., and Michau, V., "Improvement of Shack–Hartmann wave-front sensor measurement for extreme adaptive optics ", Optics Letters, 29(23), 2743-2745, 2004.
[23] Ares, J., and Mancebo, T., and Bará, S., "Position and displacement sensing with Shack–Hartmann wave-front sensors ", Applied Optics, 39(10), 1511-1520, 2000.
[24] Greivenkamp, J. E. and Smith, D. G., "Graphical approach to Shack-Hartmann lenslet array design ", SPIE Proceeding, 4, 2008.
[25] Arines, J. and Ares, J., "Minimum variance centroid thresholding ", Optics Letters, 27(7), 497-499, 2002.
[26] Thomas, S., and Fusco, T., and Tokovinin, A., and Nicolle, M., and Michau, V., and Rousset, G., "Comparison of centroid computation algorithms in a Shack–Hartmann sensor ", Monthly Notices of the Royal Astronomical Society, 371(1), 323-336, 2006.
[27] Nightingale, A. M. and Gordeyev, S. V., "Shack-Hartmann wavefront sensor image analysis: a comparison of centroiding methods and image-processing techniques ", SPIE Proceeding, 22, 2013.
[28] Jiang, Z., and Gong, S., and Dai, Y., "Numerical study of centroid detection accuracy for Shack-Hartmann wavefront sensor ", Optics & Laser Technology, 38(8), 614-619, 2006.
[29] 楊東諺,"Algorithm error analysis for relationship of centroid of spot and ray angle.",國立中央大學,碩士論文,民國106年.
[30] Chernyshov, A., and Sterr, U., and Riehle, F., and Helmcke, J., and Pfund, J., "Calibration of a Shack–Hartmann sensor for absolute measurements of wavefronts ", Applied Optics, 44(30), 6419-6425, 2005.
[31] Pfund, J., and Lindlein, N., and Schwider, J., "Misalignment effects of the Shack–Hartmann sensor ", Applied Optics, 37(1), 22-27, 1998.
[32] 李光權,"Calibration of precision platform with interferometer and automatize HDR Imaging",國立中央大學,碩士論文,民國107年.
[33] Smith, D. G., and Goodwin, E., and Greivenkamp, J. E., "Important considerations when using the Shack-Hartmann method for testing highly aspheric optics ", Optical Science and Technology, SPIE′s 48th Annual Meeting, 6, 2003.
[34] Smith, D. G. and Greivenkamp, J. E., "Generalized method for sorting Shack-Hartmann spot patterns using local similarity ", Applied Optics, 47(25), 4548-4554, 2008.
[35] Leroux, C. and Dainty, C., "A simple and robust method to extend the dynamic range of an aberrometer ", Optics Express, 17(21), 19055-19061, 2009.
[36] Groening, S., and Sick, B., and Donner, K., and Pfund, J., and Lindlein, N., and Schwider, J., "Wave-front reconstruction with a Shack–Hartmann sensor with an iterative spline fitting method ", Applied Optics, 39(4), 561-567, 2000.
[37] 潘淑芳,"A similarity guided Spots Sorting Method to increase the Dynamic Range of a Shack Hartmann Sensor.",國立中央大學,碩士論文,民國102年.
[38] 林廷謙,"Alignment insensitive Shack-Hartmann wavefront sensor.",國立中央大學,碩士論文,民國103年.
[39] Zernike, F. and Stratton, F. J. M., "Diffraction Theory of the Knife-Edge Test and its Improved Form, The Phase-Contrast Method ", Monthly Notices of the Royal Astronomical Society, 94(5), 377-384, 1934.
指導教授 梁肇文(Chao-Wen, Liang) 審核日期 2019-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明