博碩士論文 100287002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.119.17.207
姓名 張期富(Chi-Fu Chang)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱
(Attentional reorienting: the dynamic interaction between goal-directed and stimulus-driven attentioinal control)
相關論文
★ 時間及空間對注意力暫失的影響 以及其可能的神經生理機制★ 注意力分配及眼球運動準備歷程對於眼動潛伏時間與眼動軌跡的影響
★ 注意力暫失中的數字表徵: 數字距離對注意力暫失的影響★ 利用跨顱磁刺激探討主動式注意力攫取的神經機制
★ 以數學模型及跨顱磁刺激探討注意力分配及眼球運動準備歷程★ 學齡前兒童之視覺注意力發展及電腦化注意力訓練效果之探討
★ 以跨顱磁刺激探討左側下部頂葉以及左側上部頂葉的功能在中文處理中所扮演的角色★ 性侵害犯的衝動行為表現-情緒狀態如何影響性侵害犯的抑制能力?
★ 學齡前階段孩童眼動抑制能力的發展和特性★ 學齡前階段孩童衝突解決和動作反應抑制能力的發展
★ 6歲孩童與成人在數字和具體數量上的自動化處理★ 期望效果之影響與可能的神經機制
★ 前額葉眼動區在視覺搜尋作業上對不同干擾物特徵與顯示時間扮演的角色★ Roles of the Pre-supplementary Motor Area and Right Inferior Frontal Gyrus in Stimulus Selective Stop-signal task: A Theta Burst Transcranial!Magnetic! Stimulation!Study
★ Investigation of posterior parietal cortex visuospatial control over processing in near and far space using transcranial magnetic stimulation★ Using Transcranial Direct-Current Stimulation to Investigate the Roles of the Dorsal Lateral Prefrontal Cortex and the Temporoparietal Junction in Top-Down and Bottom-Up Conflict Resolution
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 人的認知資源是有限的,如何將注意力投注在關鍵的人事物,對於生存極其重要。注意力的導引可被區分為由刺激特性驅動或是由目標導向的控制方式,而依附性導引(contingent reorienting)則是同時根據兩種控制所產生的注意力導引過程。過去的神經造影研究指出腹側及背側的注意力網路和依附性導引有密切的關係,然而這些發現大多建立在相關性的神經造影證據,缺乏因果性證據的支持與時序上詳細的動態變化。
本論文研究著重在利用跨顱磁刺激及腦電波來了解依附性注意力導引的神經生理機制。在本研究中,跨顱磁刺激實驗建立了右腹側注意力網路與依附性注意力導引之間的因果關係。而在後續的腦電波實驗,實驗結果發現當發生依附性注意力導引時,theta波的振盪情形會產生顯著的變化,且此振盪變化在不同實驗階段中,頭皮上及訊號來源的分布皆有所不同。此結果顯示在不同階段時,依附性注意力導引可能是由不同腦區所主導,而左側注意力網路可能在導引初期仍舊有可能負責部分功能。綜合以上發現,本研究同時提供了關於注意力網路運作的因果性證據及時序上腦區的動態變化。
摘要(英) In the visual world, rapidly reorienting to relevant objects outside the focus of attention is vital for survival. This ability from the interaction between goal-directed and stimulus-driven attentional control is termed contingent reorienting. Neuroimaging studies have demonstrated activations of the ventral and dorsal attentional networks are related to contingent capture, but the causal evidence and the temporal dynamics of the attentional networks still remain unclear. Hence, this thesis used transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to investigate the underlying neural mechanism of contingent reorienting. The TMS results demonstrate a critical involvement of the right ventral attentional network in contingent reorienting and reveal the spatial selectivity within such network. On the other hand, the EEG results show that theta band oscillations and inter-trial coherence varied between hemispheres and experimental sessions during contingent reorienting. Overall, these findings elucidate the natures of attentional control with causal evidence and temporal profile.
關鍵字(中) ★ 依附性注意力導引
★ 腦電波
★ 跨顱磁刺激
★ 注意力網路
關鍵字(英) ★ contingent reorienting
★ electroencephalography
★ transcranial magnetic stimulation
★ attentional networks
論文目次 Table of Content
Chinese Abstract i
English Abstract ii
Acknowledgments iii
Table of Content iv
Table of Figures vi
Chapter 1. General introduction 1
1.1 Introduction 1
1.2 Attentional control and attentional reorienting 4
1.2.1 Selective attention 4
1.2.2 Attentional capture and behavioral paradigms 5
1.2.3 Issue of the behavioral research in attentional capture 10
1.3 attentional network of attentional reorienting 12
1.3.1 Dorsal attentional network (DAN) 13
1.3.2 Ventral attentional network (VAN) 16
1.3.3. The critical role of attentional network in contingent reorienting 19
1.4 Transcranial magnetic stimulation 22
1.5 Electroencephalography 27
1.6 Purpose and hypothesis 33
Chapter 2. TMS experiment 37
2.1 Background 37
2.2 Method 42
2.2.1 Participants 42
2.2.2 Apparatus 43
2.2.3 Stimulation site and TMS protocol 43
2.2.4 Stimuli and task 44
2.2.5 Design 48
2.3 Results 50
2.3.1 Behavioral session 50
2.3.2 Capture effects in the right attentional network 51
2.3.3 Capture effects in the left ventral attentional network 53
2.4 Discussion 56
2.4.1 Stimulus-driven effects in the dorsal network: 56
2.4.2 Ventral network 58
Chapter 3. EEG experiment 64
3.1 Background 64
3.2 Material and Methods 69
3.2.1 Participants 69
3.2.2 Stimuli and task 69
3.2.2 EEG protocol 70
3.2.3 ERP analysis 70
3.2.4 Hilbert-Huang transform (HHT) 71
3.2.5 Source reconstruction 74
3.3 Results 77
3.3.1 Behavioral performance 77
3.3.2 ERP analysis 78
3.3.3 HHT analysis 80
3.3.4 Inter-trial coherence 85
3.4 Discussion 89
3.4.1 Attentional network and contingent reorienting 90
3.4.2 The relationship between theta oscillation and N2pc 93
Chapter 4. General discussion 96
4.1 Results summary 96
4.2 Conclusion 98
4.3 limitations and future direction 100
References 104
參考文獻 Ashbridge, E., Walsh, V., & Cowey, A. (1997). Temporal aspects of visual search studied by transcranial magnetic stimulation. Neuropsychologia, 35(8), 1121–1131.
Asplund, C. L., Todd, J. J., Snyder, A. P., & Marois, R. (2010). A central role for the lateral prefrontal cortex in goal-directed and stimulus-driven attention. Nat Neurosci, 13(4), 507–512.
Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Percept Psychophys, 55(5), 485–496.
Beauchamp, M. S., Cox, R. W., & DeYoe, E. A. (1997). Graded effects of spatial and featural attention on human area MT and associated motion processing areas. J Neurophysiol, 78(1), 516–520.
Bohning, D. E., Shastri, A., McConnell, K. A., Nahas, Z., Lorberbaum, J. P., Roberts, D. R., et al. (1999). A combined TMS/fMRI study of intensity-dependent TMS over motor cortex. Biol Psychiatry, 45(4), 385–394.
Bowers, D., & Heilman, K. M. (1980). Pseudoneglect: effects of hemispace on a tactile line bisection task. Neuropsychologia, 18(4-5), 491–498.
Brookes, M. J., Zumer, J. M., Stevenson, C. M., Hale, J. R., Barnes, G. R., Vrba, J., & Morris, P. G. (2010). Investigating spatial specificity and data averaging in MEG. Neuroimage, 49(1), 525–538. http://doi.org/10.1016/j.neuroimage.2009.07.043
Burnham, B. R., Rozell, C. A., Kasper, A., Bianco, N. E., & Delliturri, A. (2011). The visual hemifield asymmetry in the spatial blink during singleton search and feature search. Brain Cogn, 75(3), 261–272. http://doi.org/10.1016/j.bandc.2011.01.003
Busch, N. A., Dubois, J., & VanRullen, R. (2009). The phase of ongoing EEG oscillations predicts visual perception. J Neurosci, 29(24), 7869–7876. http://doi.org/10.1523/JNEUROSCI.0113-09.2009
Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679), 1926–1929. http://doi.org/10.1126/science.1099745
Chambers, C. D., Payne, J. M., Stokes, M. G., & Mattingley, J. B. (2004). Fast and slow parietal pathways mediate spatial attention. Nat Neurosci, 7(3), 217–218. http://doi.org/10.1038/nn1203
Chang, C.-F., Hsu, T.-Y., Tseng, P., Liang, W.-K., Tzeng, O. J. L., Hung, D. L., & Juan, C.-H. (2013). Right temporoparietal junction and attentional reorienting. Hum Brain Mapp, 34(4), 869–877. http://doi.org/10.1002/hbm.21476
Chao, C.-M., Tseng, P., Hsu, T.-Y., Su, J.-H., Tzeng, O. J. L., Hung, D. L., et al. (2011). Predictability of saccadic behaviors is modified by transcranial magnetic stimulation over human posterior parietal cortex. Hum Brain Mapp, 32(11), 1961–1972. http://doi.org/10.1002/hbm.21162
Chawla, D., Rees, G., & Friston, K. J. (1999). The physiological basis of attentional modulation in extrastriate visual areas. Nat Neurosci, 2(7), 671–676. http://doi.org/10.1038/10230
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci, 3(3), 201–215.
Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P., & Shulman, G. L. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat Neurosci, 3(3), 292–297.
Corbetta, M., Kincade, M. J., Lewis, C., Snyder, A. Z., & Sapir, A. (2005). Neural basis and recovery of spatial attention deficits in spatial neglect : Article : Nature Neuroscience. Nat Neurosci, 16(11), 1603–1610.
Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: from environment to theory of mind. Neuron, 58(3), 306–324.
Daitch, A. L., Sharma, M., Roland, J. L., Astafiev, S. V., Bundy, D. T., Gaona, C. M., et al. (2013). Frequency-specific mechanism links human brain networks for spatial attention. Proceedings of the National Academy of Sciences, 110(48), 19585–19590. http://doi.org/10.1073/pnas.1307947110
Davis, K. D., Downar, J., Crawley, A. P., & Mikulis, D. J. (2000). A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci, 3(3), 277–283. http://doi.org/10.1038/72991
de Fockert, J., Rees, G., Frith, C., & Lavie, N. (2004). Neural correlates of attentional capture in visual search. J Cogn Neurosci, 16(5), 751–759.
Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. http://doi.org/10.1016/j.jneumeth.2003.10.009
Desimone, R., & Duncan, J. (1995). NEURAL MECHANISMS OF SELECTIVE VISUAL-ATTENTION. Annu Rev Neurosci, 18, 193–222.
Doricchi, F., Macci, E., Silvetti, M., & Macaluso, E. (2009). Neural Correlates of the Spatial and Expectancy Components of Endogenous and Stimulus-Driven Orienting of Attention in the Posner Task. Cerebral Cortex.
Dowdall, J. R., Luczak, A., & Tata, M. S. (2012). Temporal variability of the N2pc during efficient and inefficient visual search. Neuropsychologia, 50(10), 2442–2453. http://doi.org/10.1016/j.neuropsychologia.2012.06.015
Downar, J., Crawley, A. P., Mikulis, D. J., & Davis, K. D. (2001). The effect of task relevance on the cortical response to changes in visual and auditory stimuli: an event-related fMRI study. Neuroimage, 14(6), 1256–1267.
Du, F., & Abrams, R. A. (2010). Visual field asymmetry in attentional capture. Brain Cogn, 72(2), 310–316. http://doi.org/10.1016/j.bandc.2009.10.006
Dugué, L., Marque, P., & VanRullen, R. (2011). The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception. J Neurosci, 31(33), 11889–11893. http://doi.org/10.1523/JNEUROSCI.1161-11.2011

Edwards, E., Soltani, M., Kim, W., Dalal, S. S., Nagarajan, S. S., Berger, M. S., & Knight, R. T. (2009). Comparison of time–frequency responses and the event-related potential to auditory speech stimuli in human cortex. Journal of neurophysiology, 102(1), 377-386.
Eimer, M., Kiss, M., Press, C., & Sauter, D. (2009). The roles of feature-specific task set and bottom-up salience in attentional capture: an ERP study. J Exp Psychol Hum Percept Perform, 35(5), 1316–1328. http://doi.org/10.1037/a0015872
Ellison, A., Schindler, I., Pattison, L. L., & Milner, A. D. (2004). An exploration of the role of the superior temporal gyrus in visual search and spatial perception using TMS. Brain, 127(Pt 10), 2307–2315.
Fellrath, J., Manuel, A. L., & Ptak, R. (2014). Task relevance effects in electrophysiological brain activity: early, but not first. Neuroimage, 101, 68–75. http://doi.org/10.1016/j.neuroimage.2014.06.059
Folk, C. L., Leber, A. B., & Egeth, H. E. (2002). Made you blink! Contingent attentional capture produces a spatial blink. Percept Psychophys, 64(5), 741–753.
Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. J Exp Psychol Hum Percept Perform, 18(4), 1030–1044.
Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci, 9(10), 474–480. http://doi.org/10.1016/j.tics.2005.08.011
Geng, J. J., & Mangun, G. R. (2011). Right temporoparietal junction activation by a salient contextual cue facilitates target discrimination. Neuroimage, 54(1), 594–601. http://doi.org/10.1016/j.neuroimage.2010.08.025
Gregoriou, G. G., Gotts, S. J., & Desimone, R. (2012). Cell-type-specific synchronization of neural activity in FEF with V4 during attention. Neuron, 73(3), 581–594. http://doi.org/10.1016/j.neuron.2011.12.019
Gregoriou, G. G., Gotts, S. J., Zhou, H., & Desimone, R. (2009). High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science, 324(5931), 1207–1210. http://doi.org/10.1126/science.1171402
Groppe, D. M., Urbach, T. P., & Kutas, M. (2011). Mass univariate analysis of event-related brain potentials/fields II: Simulation studies. Psychophysiology, 48(12), 1726–1737. http://doi.org/10.1111/j.1469-8986.2011.01272.x
Grosbras, M. H., & Paus, T. (2002). Transcranial magnetic stimulation of the human frontal eye field: effects on visual perception and attention. J Cogn Neurosci, 14(7), 1109–1120.
Gross, J., Kujala, J., Hamalainen, M., Timmermann, L., Schnitzler, A., & Salmelin, R. (2001). Dynamic imaging of coherent sources: Studying neural interactions in the human brain. Proc Natl Acad Sci U S A, 98(2), 694–699. http://doi.org/10.1073/pnas.98.2.694
Hickey, C., Di Lollo, V., & McDonald, J. J. (2009). Electrophysiological Indices of Target and Distractor Processing in Visual Search. J Cogn Neurosci, 21(4), 760–775.
Hickey, C., McDonald, J. J., & Theeuwes, J. (2006). Electrophysiological evidence of the capture of visual attention. J Cogn Neurosci, 18(4), 604–613.
Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nat Neurosci, 3(3), 284–291.
Hsu, C.-H., Lee, C.-Y., & Liang, W.-K. (2016). ARTICLE IN PRESS. Journal of Neuroscience Methods, 1–8. http://doi.org/10.1016/j.jneumeth.2016.02.015
Huang, N. E., & Wu, Z. (2008). A review on Hilbert‐Huang transform: Method and its applications to geophysical studies. Reviews of Geophysics, 46(2). http://doi.org/doi:10.1029/2007RG000228
Huang, N. E., Long, S. R., & Shen, Z. (1996). The mechanism for frequency downshift in nonlinear wave evolution. Advances in Applied Mechanics, Vol 32, 32, 59–&.
Huang, N. E., Shen, Z., Long, S. R., Wu, M., Shih, H. H., Zheng, Q. N., et al. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 454(1971), 903–995.
Huang, Y.-Z., Chen, R.-S., Rothwell, J. C., & Wen, H.-Y. (2007). The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol, 118(5), 1028–1032. http://doi.org/10.1016/j.clinph.2007.01.021
Hung, J., Driver, J., & Walsh, V. (2005). Visual selection and posterior parietal cortex: effects of repetitive transcranial magnetic stimulation on partial report analyzed by Bundesen′s theory of visual attention. J Neurosci, 25(42), 9602–9612.
Husain, M., & Nachev, P. (2007). Space and the parietal cortex. Trends in Cognitive Sciences, 11(1), 30–36. http://doi.org/10.1016/j.tics.2006.10.011
Husain, M., & Rorden, C. (2003). Non-spatially lateralized mechanisms in hemispatial neglect. Nat Rev Neurosci, 4(1), 26–36. http://doi.org/10.1038/nrn1005
Indovina, I., & Macaluso, E. (2007). Dissociation of stimulus relevance and saliency factors during shifts of visuospatial attention. Cerebral Cortex, 17(7), 1701–1711.
Jensen, O., Bonnefond, M., & VanRullen, R. (2012). An oscillatory mechanism for prioritizing salient unattended stimuli. Trends in Cognitive Sciences, 16(4), 200–206. http://doi.org/10.1016/j.tics.2012.03.002
Jerde, T. A., Merriam, E. P., Riggall, A. C., Hedges, J. H., & Curtis, C. E. (2012). Prioritized maps of space in human frontoparietal cortex. J Neurosci, 32(48), 17382–17390. http://doi.org/10.1523/JNEUROSCI.3810-12.2012
Jewell, G., & McCourt, M. E. (2000). Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia, 38(1), 93–110.
Juan, C. H., Muggleton, N. G., Tzeng, O. J., Hung, D. L., Cowey, A., & Walsh, V. (2008). Segregation of Visual Selection and Saccades in Human Frontal Eye Fields. Cerebral Cortex.
Juan, C. H., Shorter-Jacobi, S. M., & Schall, J. D. (2004). Dissociation of spatial attention and saccade preparation. Proc Natl Acad Sci U S A, 101(43), 15541–15544. http://doi.org/10.1073/pnas.0403507101
Kalla, R., Muggleton, N. G., Juan, C. H., Cowey, A., & Walsh, V. (2008). The timing of the involvement of the frontal eye fields and posterior parietal cortex in visual search. Neuroreport, 19(10), 1067–1071.
Kanai, R., Paulus, W., & Walsh, V. (2010). Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds. Clin Neurophysiol, 121(9), 1551–1554. http://doi.org/10.1016/j.clinph.2010.03.022
Karnath, H.-O., Fruhmann Berger, M., Küker, W., & Rorden, C. (2004). The anatomy of spatial neglect based on voxelwise statistical analysis: a study of 140 patients. Cerebral Cortex, 14(10), 1164–1172. http://doi.org/10.1093/cercor/bhh076
Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1999). Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron, 22(4), 751–761.
Kelley, T. A., Serences, J. T., Giesbrecht, B., & Yantis, S. (2008). Cortical mechanisms for shifting and holding visuospatial attention. Cerebral Cortex, 18(1), 114–125. http://doi.org/10.1093/cercor/bhm036
Kincade, J. M., Abrams, R. A., Astafiev, S. V., Shulman, G. L., & Corbetta, M. (2005). An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. J Neurosci, 25(18), 4593–4604.
Kiss, M., Grubert, A., Petersen, A., & Eimer, M. (2012). Attentional capture by salient distractors during visual search is determined by temporal task demands. J Cogn Neurosci, 24(3), 749–759. http://doi.org/10.1162/jocn_a_00127
Lamy, D., Leber, A., & Egeth, H. E. (2004). Effects of task relevance and stimulus-driven salience in feature-search mode. J Exp Psychol Hum Percept Perform, 30(6), 1019–1031.
Liang, H., Bressler, S. L., Desimone, R., & Fries, P. (2005). Empirical mode decomposition: a method for analyzing neural data. Neurocomputing, 65, 801–807. http://doi.org/doi:10.1016/j.neucom.2004.10.077
Liang, W.-K., Lo, M.-T., Yang, A. C., Peng, C.-K., Cheng, S.-K., Tseng, P., & Juan, C.-H. (2010). Revealing the brain′s adaptability and the transcranial direct current stimulation facilitating effect in inhibitory control by multiscale entropy. Neuroimage, 90, 218–234. http://doi.org/10.1016/j.neuroimage.2013.12.048
Lisman, J. E., & Jensen, O. (2013). The θ-γ neural code. Neuron, 77(6), 1002–1016. http://doi.org/10.1016/j.neuron.2013.03.007
Liu, C. L., Tseng, P., Chiau, H. Y., Liang, W. K., Hung, D. L., Tzeng, O. J. L., et al. (2011). The location probability effects of saccade reaction times are modulated in the frontal eye fields but not in the supplementary eye field. Cerebral Cortex, 21(6), 1416–1425. http://doi.org/10.1093/cercor/bhq222
Luck, S. J., & Hillyard, S. A. (1994). Spatial-Filtering during Visual-Search - Evidence from Human Electrophysiology. J Exp Psychol Hum Percept Perform, 20(5), 1000–1014.
Maccabee, P. J., Eberle, L., Amassian, V. E., Cracco, R. Q., Rudell, A., & Jayachandra, M. (1990). Spatial distribution of the electric field induced in volume by round and figure “8” magnetic coils: relevance to activation of sensory nerve fibers. Electroencephalography and Clinical Neurophysiology, 76(2), 131–141.
Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177–190. http://doi.org/10.1016/j.jneumeth.2007.03.024
Mathewson, K. E., Gratton, G., Fabiani, M., Beck, D. M., & Ro, T. (2009). To see or not to see: prestimulus alpha phase predicts visual awareness. J Neurosci, 29(9), 2725–2732. http://doi.org/10.1523/JNEUROSCI.3963-08.2009
Meister, I. G., Wienemann, M., Buelte, D., Grunewald, C., Sparing, R., Dambeck, N., & Boroojerdi, B. (2006). Hemiextinction induced by transcranial magnetic stimulation over the right temporo-parietal junction. Neuroscience., 142(1), 119–123.
Mishra, J., Martinez, A., Schroeder, C. E., & Hillyard, S. A. (2012). Spatial attention boosts short-latency neural responses in human visual cortex. Neuroimage, 59(2), 1968–1978. http://doi.org/10.1016/j.neuroimage.2011.09.028
Mort, D. J., Malhotra, P., Mannan, S. K., Rorden, C., Pambakian, A., Kennard, C., & Husain, M. (2003). The anatomy of visual neglect. Brain, 126(Pt 9), 1986–1997. http://doi.org/10.1093/brain/awg200
Muggleton, N. G., Juan, C. H., Cowey, A., & Walsh, V. (2003). Human frontal eye fields and visual search. J Neurophysiol, 89(6), 3340–3343.
Muggleton, N. G., Kalla, R., Juan, C. H., & Walsh, V. (2011). Dissociating the contributions of human frontal eye fields and posterior parietal cortex to visual search. Journal of Neurophysiology, 105(6), 2891–2896. http://doi.org/10.1152/jn.01149.2009
Murzin, V., Fuchs, A., & Kelso, J. A. S. (2011). Anatomically constrained minimum variance beamforming applied to EEG. Exp Brain Res, 214(4), 515–528. http://doi.org/10.1007/s00221-011-2850-5
Nobre, A. C. (2001). The attentive homunculus: Now you see it, now you don′t. Neurosci Biobehav Rev, 25(6), 477–496.
Nobre, A. C., Coull, J. T., Maquet, P., Frith, C. D., Vandenberghe, R., & Mesulam, M. M. (2004). Orienting attention to locations in perceptual versus mental representations. J Cogn Neurosci, 16(3), 363–373.
Nyffeler, T., Wurtz, P., Luscher, H. R., Hess, C. W., Senn, W., Pflugshaupt, T., et al. (2006a). Repetitive TMS over the human oculomotor cortex: comparison of 1-Hz and theta burst stimulation. Neurosci Lett., 409(1), 57–60. Epub 2006 Oct 17.
Nyffeler, T., Wurtz, P., Pflugshaupt, T., Wartburg, von, R., Lüthi, M., Hess, C. W., & Muri, R. M. (2006b). One-Hertz transcranial magnetic stimulation over the frontal eye field induces lasting inhibition of saccade triggering. Neuroreport, 17(3), 273–5.
O′Craven, K. M., Rosen, B. R., Kwong, K. K., Treisman, A., & Savoy, R. L. (1997). Voluntary attention modulates fMRI activity in human MT-MST. Neuron, 18(4), 591–598.
O′shea, J., Muggleton, N. G., Cowey, A., & Walsh, V. (2004). Timing of target discrimination in human frontal eye fields. Cognitive Neuroscience, Journal of, 16(6), 1060-1067.
Painter, D. R., Dux, P. E., & Mattingley, J. B. (2015). Distinct roles of the intraparietal sulcus and temporoparietal junction in attentional capture from distractor features: An individual differences approach. Neuropsychologia. http://doi.org/10.1016/j.neuropsychologia.2015.02.029
Painter, D. R., Dux, P. E., Travis, S. L., & Mattingley, J. B. (2014). Neural responses to target features outside a search array are enhanced during conjunction but not unique-feature search. J Neurosci, 34(9), 3390–3401. http://doi.org/10.1523/JNEUROSCI.3630-13.2014
Peelen, M. V., Heslenfeld, D. J., & Theeuwes, J. (2004). Endogenous and exogenous attention shifts are mediated by the same large-scale neural network. Neuroimage, 22(2), 822–830. http://doi.org/10.1016/j.neuroimage.2004.01.044
Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. Attention and performance X: Control of language processes, 32, 531-556.
Ptak, R. (2012). The frontoparietal attention network of the human brain: action, saliency, and a priority map of the environment. The Neuroscientist, 18(5), 502–515. http://doi.org/10.1177/1073858411409051
Remington, R. W., Johnston, J. C., & Yantis, S. (1992). Involuntary attentional capture by abrupt onsets. Percept Psychophys, 51(3), 279–290.
Rosen, A. C., Rao, S. M., Caffarra, P., Scaglioni, A., Bobholz, J. A., Woodley, S. J., et al. (1999). Neural basis of endogenous and exogenous spatial orienting. A functional MRI study. J Cogn Neurosci, 11(2), 135–152.
Rothwell, J. C., Hallett, M., Berardelli, A., Eisen, A., Rossini, P., & Paulus, W. (1999). Magnetic stimulation: motor evoked potentials. The International Federation of Clinical Neurophysiology. Electroencephalography and Clinical Neurophysiology. Supplement.
Rushworth, M. F. S., & Taylor, P. C. J. (2006). TMS in the parietal cortex: updating representations for attention and action. Neuropsychologia, 44(13), 2700–2716. http://doi.org/10.1016/j.neuropsychologia.2005.12.007
Rushworth, M. F., Behrens, T. E., & Johansen-Berg, H. (2006). Connection patterns distinguish 3 regions of human parietal cortex. Cerebral Cortex, 16(10), 1418–1430. http://doi.org/10.1093/cercor/bhj079
Rushworth, M. F., Ellison, A., & Walsh, V. (2001). Complementary localization and lateralization of orienting and motor attention. Nat Neurosci, 4(6), 656–661. http://doi.org/10.1038/88492
Saenz, M., Buracas, G. T., & Boynton, G. M. (2002). Global effects of feature-based attention in human visual cortex. Nat Neurosci, 5(7), 631–632. http://doi.org/10.1038/nn876
Sauseng, P., & Klimesch, W. (2008). What does phase information of oscillatory brain activity tell us about cognitive processes? Neurosci Biobehav Rev, 32(5), 1001–1013. http://doi.org/10.1016/j.neubiorev.2008.03.014
Sauseng, P., Klimesch, W., Gruber, W. R., Hanslmayr, S., Freunberger, R., & Doppelmayr, M. (2007). Are event-related potential components generated by phase resetting of brain oscillations? A critical discussion. Neuroscience., 146(4), 1435–1444. http://doi.org/10.1016/j.neuroscience.2007.03.014
Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72(6), 1455–1470. http://doi.org/10.3758/APP.72.6.1455
Schindler, I., Ellison, A., & Milner, A. D. (2008). Contralateral visual search deficits following TMS. Journal of Neuropsychology, 2(Pt 2), 501–508.
Schoffelen, J.-M., Oostenveld, R., & Fries, P. (2008). Imaging the human motor system′s beta-band synchronization during isometric contraction. Neuroimage, 41(2), 437–447. http://doi.org/10.1016/j.neuroimage.2008.01.045
Serences, J. T., Shomstein, S., Leber, A. B., Golay, X., Egeth, H. E., & Yantis, S. (2005). Coordination of voluntary and stimulus-driven attentional control in human cortex. Psychol Sci, 16(2), 114–122.
Shulman, G. L., Astafiev, S. V., Franke, D., Pope, D. L., Snyder, A. Z., McAvoy, M. P., & Corbetta, M. (2009). Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks. J Neurosci, 29(14), 4392–4407.
Shulman, G. L., Astafiev, S. V., McAvoy, M. P., d′Avossa, G., & Corbetta, M. (2007). Right TPJ Deactivation during Visual Search: Functional Significance and Support for a Filter Hypothesis. Cerebral Cortex.
Shulman, G. L., Pope, D. L. W., Astafiev, S. V., McAvoy, M. P., Snyder, A. Z., & Corbetta, M. (2010). Right Hemisphere Dominance during Spatial Selective Attention and Target Detection Occurs Outside the Dorsal Frontoparietal Network. Journal of Neuroscience, 30(10), 3640–3651. http://doi.org/10.1523/JNEUROSCI.4085-09.2010
Silvanto, J., Cowey, A., Lavie, N., & Walsh, V. (2005). Striate cortex (V1) activity gates awareness of motion. Nat Neurosci, 8(2), 143–144. http://doi.org/10.1038/nn1379
Silvanto, J., Lavie, N., & Walsh, V. (2006). Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex. J Neurophysiol, 96(2), 941–945.
Silvanto, J., Muggleton, N. G., Cowey, A., & Walsh, V. (2007). Neural adaptation reveals state-dependent effects of transcranial magnetic stimulation. Eur J Neurosci, 25(6), 1874–1881.
Smith, D. T., Jackson, S. R., & Rorden, C. (2005). Transcranial magnetic stimulation of the left human frontal eye fields eliminates the cost of invalid endogenous cues. Neuropsychologia, 43(9), 1288–1296. http://doi.org/10.1016/j.neuropsychologia.2004.12.003
Stam, C. J. (2005). Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clinical Neurophysiology, 116(10), 2266–2301. http://doi.org/10.1016/j.clinph.2005.06.011
Stein, von, A., Chiang, C., & Konig, P. (2000). Top-down processing mediated by interareal synchronization. Proc Natl Acad Sci U S A, 97(26), 14748–14753. http://doi.org/10.1073/pnas.97.26.14748
Stevens, M. C., Calhoun, V. D., & Kiehl, K. A. (2005). Hemispheric differences in hemodynamics elicited by auditory oddball stimuli. Neuroimage, 26(3), 782–792. http://doi.org/10.1016/j.neuroimage.2005.02.044
Stewart, L. M., Walsh, V., & Rothwell, J. C. (2001). Motor and phosphene thresholds: a transcranial magnetic stimulation correlation study. Neuropsychologia, 39(4), 415–419.
Taylor, P. C., Nobre, A. C., & Rushworth, M. F. (2007). FEF TMS affects visual cortical activity. Cerebral Cortex, 17(2), 391–399.
Theeuwes, J. (1990). Perceptual selectivity is task dependent: evidence from selective search. Acta Psychol (Amst), 74(1), 81–99.
Theeuwes, J. (1991a). Cross-dimensional perceptual selectivity. Percept Psychophys, 50(2), 184–193.
Theeuwes, J. (1991b). Exogenous and endogenous control of attention: the effect of visual onsets and offsets. Percept Psychophys, 49(1), 83–90.
Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychol (Amst), 135(2), 77–99. http://doi.org/10.1016/j.actpsy.2010.02.006
Thiebaut de Schotten, M., Dell′Acqua, F., Forkel, S. J., Simmons, A., Vergani, F., Murphy, D. G. M., & Catani, M. (2011). A lateralized brain network for visuospatial attention. Nature Neuroscience, 14(10), 1245–1246. http://doi.org/10.1038/nn.2905
Toffanin, P., de Jong, R., & Johnson, A. (2011). The P4pc: an electrophysiological marker of attentional disengagement? International Journal of Psychophysiology : Official Journal of the International Organization of Psychophysiology, 81(2), 72–81. http://doi.org/10.1016/j.ijpsycho.2011.05.010
Umarova, R. M., Saur, D., Schnell, S., Kaller, C. P., Vry, M.-S., Glauche, V., et al. (2010). Structural connectivity for visuospatial attention: significance of ventral pathways. Cerebral Cortex, 20(1), 121–129. http://doi.org/10.1093/cercor/bhp086
Van Veen, B. D., van Drongelen, W., Yuchtman, M., & Suzuki, A. (1997). Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Transactions on Bio-Medical Engineering, 44(9), 867–880. http://doi.org/10.1109/10.623056
Verleger, R., Möller, F., Kuniecki, M., Śmigasiewicz, K., Groppa, S., & Siebner, H. R. (2010). The left visual-field advantage in rapid visual presentation is amplified rather than reduced by posterior-parietal rTMS. Exp Brain Res, 203(2), 355–365. http://doi.org/10.1007/s00221-010-2237-z
Walsh, V., & Rushworth, M. (1999). A primer of magnetic stimulation as a tool for neuropsychology. Neuropsychologia, 37(2), 125–135.
Walsh, V., Ellison, A., Ashbridge, E., & Cowey, A. (1999). The role of the parietal cortex in visual attention--hemispheric asymmetries and the effects of learning: a magnetic stimulation study. Neuropsychologia, 37(2), 245–251.
Williams, N., Nasuto, S. J., & Saddy, J. D. (2011). Evaluation of empirical mode decomposition for event-related potential analysis. EURASIP Journal on Advances in Signal Processing, 2011(1), 965237. http://doi.org/doi:10.1155/2011/965237
Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: evidence from visual search. J Exp Psychol Hum Percept Perform, 10(5), 601–621.
Yantis, S., & Jonides, J. (1990). Abrupt visual onsets and selective attention: voluntary versus automatic allocation. J Exp Psychol Hum Percept Perform, 16(1), 121–134.
Zehetleitner, M., Goschy, H., & Müller, H. J. (2012). Top-down control of attention: it′s gradual, practice-dependent, and hierarchically organized. Journal of Experimental Psychology: Human Perception and Performance, 38(4), 941–957. http://doi.org/10.1037/a0027629
指導教授 阮啟弘(Chi-Hung Juan) 審核日期 2016-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明