博碩士論文 100289001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:35.175.191.72
姓名 蘇羿豪(Yi-Hao Su)  查詢紙本館藏   畢業系所 天文研究所
論文名稱
(Applications of the Hilbert-Huang Transform on Low-Frequency Quasi-periodic Oscillations in Black Hole X-ray Binaries)
相關論文
★ 長期監測低質量X-Ray雙星4U 1820-30之軌道週期演化及運行機制★ 利用鹿林前山一米望遠鏡對低質量X-射線雙星 XTE J1118+480 (KV UMa) 之光學波段時變研究
★ 利用參數化的方法研究低質量X光雙星系統 X1916-053 的X光dip之性質★ 長期監測吸積驅動毫秒波霎SAX J1808.4-3658之時變性質
★ 吸積驅動毫秒脈衝星 XTE J1814-338 之軌道參數及不同能量間相位延遲之研究★ 吸積毫秒脈衝星XTE J0929-314之不同能量間脈衝相位關係之研究
★ 吸積毫秒脈衝星SAX J1808.4-3658於2002年爆發之不同能量間脈衝相位關係之研究★ 低質量X光食雙星EXO 0748-676之軌道週期改變之研究
★ 使用鹿林一米望遠鏡對黑洞雙星Swift J1753.5-0127及A0620-00之可見光波段時變研究★ 低質量X光雙星4U1820-30之長週期X-ray光變改變之研究
★ 以X射線連續光譜限制在GX 339-4中的黑洞的自旋★ Applications of the Hilbert-Huang Transform on the Non-stationary Astronomical Time Series
★ 低質量 X 光雙星 4U 1323-62 和 4U 1254-69 之軌道週期演化★ 高質量 X 光雙星 LMC X-4 之軌道與自轉參數變化之研究
★ 利用巡天計畫資料研究激變變星的長周期光變現象★ 以全天監測X光望遠鏡觀測資料進一步研究高質量X光雙星天鵝座X-3之軌道週期變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 低頻準週期振盪是在黑洞X光雙星中常見的非穩態天文物理現象。其振盪頻率範圍在數毫赫茲與30赫茲間,且根據其傅立葉功率密度頻譜的特性,低頻準週期振盪可細分為A、B及C三種型態。先前的時頻分析研究顯示,低頻準週期振盪是由頻率會變化且斷斷續續的訊號所構成。然而,基於傅立葉或小波分析所發展的時頻分析方法,因為其時頻解析度的限制,且因預先假設訊號符合某種波型或其頻率為常數,使得這類時頻分析方法難以解析超出其限制外的資訊,而它們的假設也可能太過嚴格以致於與低頻準週期振盪的性質不符。因此,我在本論文中將近年新發展的時頻分析方法「希爾伯特-黃轉換」(Hilbert-Huang transform, HHT),應用在低頻準週期振盪的分析上,以克服先前時頻分析方法的解析度限制。HHT能追蹤低頻準週期振盪這類非穩態訊號的相位、頻率及振幅的瞬時變化,且不預先對訊號做太嚴格的數學假設。

為了追蹤低頻準週期振盪的頻率及振幅詳細變化,我們首先將HHT應用在黑洞X光雙星XTE J1550-564中一個4赫茲的C型低頻準週期振盪。我們用HHT把X射線光變曲線拆解出一個約4赫茲的振盪項,並計算出它的瞬時頻率,發現該低頻準週期振盪是由頻率在3到5赫茲間的斷斷續續的訊號所構成。我們進一步利用HHT的信賴區間來統計該低頻準週期振盪的斷斷續續特徵,其結果顯示每次振盪維持的平均時間約為1.45秒,而回復振盪所需的平均時間為0.42秒。我們總結該低頻準週期振盪是由於頻率會變化且斷斷續續的訊號所造成,該結果能由Lense-Thirring進動模型解釋。

有了成功運用HHT的經驗,我們更進一步用它來追蹤黑洞X光雙星GX 339-4中14個B型低頻準週期振盪的X射線光譜變化。我們先利用HHT檢視這些B型低頻準週期振盪的頻率、相位和振幅等變化,發現這些低頻準週期振盪是由斷斷續續的訊號所構成(每次維持振盪的時間約為1秒)。為了追蹤光譜物理參數的變化,我們進一步分析來自不同相位的X射線光譜,其結果顯示黑洞附近產生逆康普頓散射(硬X射線)的熱冕有很明顯的準週期振盪變化,而吸積盤內緣溫度也有些微的準週期振盪。我們並提出光譜變化的可能解釋。

最後,我將我的研究工作做個總結,並且針對HHT在低頻準週期振盪的應用,提出其他可行的未來研究方向。
摘要(英) Low-frequency quasi-periodic oscillations (LFQPOs) with frequencies ranging from a few millihertz to 30 Hz are non-stationary astrophysical phenomena observed in most of black hole X-ray binaries (BHXBs). According to their Fourier power spectral shapes and fitting parameters, LFQPOs are further classified into A, B and C types. Previous time-frequency analysis research showed that LFQPOs are composed of frequency varying oscillations appearing occasionally. However, due to the time-frequency limitation and prior mathematical assumptions (a constant frequency or a waveform), the time-frequency analysis methods based on Fourier or wavelet transforms are difficult to resolve further information beyond the limitation and their assumptions may be too strict to be consistent with the properties of LFQPOs. Therefore, I adopted a recently developed time-frequency analysis method, the Hilbert-Huang transform (HHT), to cross the limitations for analyzing LFQPOs. HHT can instantaneously track phase, frequency, and amplitude variations of non-stationary signals such as LFQPOs, without strictly mathematical assumptions regarding the oscillatory components.

To track detailed frequency and amplitude variations of LFQPOs, we first apply HHT on a 4-Hz type-C LFQPO from the BHXB XTE J1550-564. By adaptively decomposing the ∼ 4-Hz oscillatory component from the X-ray light curve and acquiring its instantaneous frequency, the Hilbert spectrum illustrates that the LFQPO is composed of a series of intermittent oscillations appearing occasionally between 3 Hz and 5 Hz. We further characterized this intermittency by computing the confidence limits of the instantaneous amplitudes of the intermittent oscillations, and constructed both the distributions of the QPO’s high and low amplitude durations, which are the time intervals with and without significant ∼ 4-Hz oscillations, respectively. The mean high amplitude duration is 1.45 s and 90% of the oscillation segments have lifetimes below 3.1 s. The mean low amplitude duration is 0.42 s and 90% of these segments are shorter than 0.73 s. In addition, these intermittent oscillations exhibit a correlation between the oscillation’s rms amplitude and mean count rate. This correlation could be analogous to the linear rms-flux relation found in the 4-Hz LFQPO through Fourier analysis. We conclude that the LFQPO peak in the power spectrum is broadened owing to intermittent oscillations with varying frequencies, which could be explained by using the Lense-Thirring precession model.

Based on the successful application to the 4-Hz type-C LFQPO around XTE J1550-564, we further utilized HHT to track X-ray spectral modulations of 14 type-B LFQPOs in the BHXB GX 339-4. It has been shown that type-B QPO frequencies have strong correlation with the hard X-ray flux, but the detailed variations of hard X-ray spectral components during the oscillation are still not clear. To track modulations of spectral parameters, we utilized the HHT to characterize the HHT-based timing properties, extract the QPO instantaneous phases, and then construct its phase-resolved spectra. We found that these QPOs are composed of a series of intermittent oscillations with coherence times less than ∼ 1 s. Furthermore, the phase-resolved spectra illustrate significant modulations of Comptonization parameters with much smaller but also significant modulation of thermal disk component. We discussed possible interpretations of the spectral modulations.

Finally, I summarized my research works and pointed out possible future applications of the HHT on LFQPOs.
關鍵字(中) ★ 黑洞
★ 吸積
★ 時頻分析
★ 準週期振盪
★ 希爾伯特-黃轉換
關鍵字(英) ★ black hole
★ accretion
★ time-frequency analysis
★ quasi-periodic oscillation
★ Hilbert-Huang transform
論文目次 摘要ii
Abstract iii
List of figures vii
List of tables x
1 Introduction 1
1.1 Black Hole X-ray Binaries . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 X-ray Timing and Spectral Properties of Black Hole X-ray Binaries 2
1.1.2 States and Transitions in Black Hole X-ray Binaries . . . . . . . . . 5
1.2 Quasi-periodic oscillations in Black Hole X-ray Binaries . . . . . . . . . . 8
1.2.1 High-frequency Quasi-periodic Oscillations . . . . . . . . . . . . . 8
1.2.2 Low-frequency Quasi-periodic Oscillations and their subtypes . . . 9
1.2.3 Time-frequency Variations of Low-frequency Quasi-periodic Oscillations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Outline of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Hilbert-Huang Transform Analysis 13
2.1 Empirical Mode Decomposition . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Hilbert Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Scientific and Engineering Applications . . . . . . . . . . . . . . . . . . . 17
3 Intermittency of a 4-Hz Quasi-periodic Oscillation in XTE J1550-564 18
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Hilbert-Huang Transform Analysis . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 Adaptive Decomposition of the X-ray Light Curve . . . . . . . . . 21
3.3.2 Instantaneous Frequency and Amplitude of the 4-Hz Oscillation . . 24
3.3.3 Confidence Limits of the Instantaneous Frequency and Amplitude . 25
3.3.4 Characterization of the Intermittent Oscillations . . . . . . . . . . . 26
3.4 Interpretation of the Intermittent Oscillations . . . . . . . . . . . . . . . . 28
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4 X-ray Spectral Modulations of Type-B Quasi-periodic Oscillations in GX 339-4 31
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 QPO selection and data reduction . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Hilbert-Huang Transform Analysis . . . . . . . . . . . . . . . . . . . . . . 35
4.3.1 Adaptive Decomposition of a Quasi-periodic Oscillation Light Curve 35
4.3.2 Extraction of Instantaneous Phase, Frequency and Amplitude . . . 36
4.3.3 Confidence Limits and Intermittency Characterization . . . . . . . 38
4.4 Phase-resolved Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 44
5 Summary and Outlook 46
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
References 48
Appendix A Publication List 53
Appendix B Table of Acronyms 54
Appendix C HHTpywrapper and QPOpytracker 55
參考文獻 Abramowicz, M. A., Kluzniak, W., Stuchlik, Z., and Torok, G. (2004). The orbital resonance
model for twin peak kHz QPOs. eprint arXiv:astro-ph/0401464.
Arévalo, P. and Uttley, P. (2006). Investigating a fluctuating-accretion model for the spectraltiming
properties of accreting black hole systems. MNRAS, 367:801–814.
Balbus, S. A. and Hawley, J. F. (1998). Instability, turbulence, and enhanced transport in
accretion disks. Reviews of Modern Physics, 70:1–53.
Bedrosian, E. (1963). A product theorem for Hilbert transforms. Proceedings of the IEEE,
51:868–869.
Belloni, T., Homan, J., Casella, P., van der Klis, M., Nespoli, E., Lewin, W. H. G., Miller,
J. M., and Méndez, M. (2005). The evolution of the timing properties of the black-hole
transient GX 339-4 during its 2002/2003 outburst. A&A, 440:207–222.
Belloni, T., Psaltis, D., and van der Klis, M. (2002). A Unified Description of the Timing
Features of Accreting X-Ray Binaries. ApJ, 572:392–406.
Belloni, T. M. (2010). States and Transitions in Black Hole Binaries. In Belloni, T., editor,
Lecture Notes in Physics, Berlin Springer Verlag, volume 794 of Lecture Notes in Physics,
Berlin Springer Verlag, page 53.
Belloni, T. M. and Altamirano, D. (2013). High-frequency quasi-periodic oscillations from
GRS 1915+105. MNRAS, 432:10–18.
Belloni, T. M. and Motta, S. E. (2016). Transient Black Hole Binaries. Astrophysics of Black
Holes: From Fundamental Aspects to Latest Developments, 440:61.
Belloni, T. M., Sanna, A., and Méndez, M. (2012). High-frequency quasi-periodic oscillations
in black hole binaries. MNRAS, 426:1701–1709.
Bolton, C. T. (1972). Identification of Cygnus X-1 with HDE 226868. Nature, 235:271–273.
Casella, P., Belloni, T., and Stella, L. (2005). The ABC of Low-Frequency Quasi-periodic
Oscillations in Black Hole Candidates: Analogies with Z Sources. ApJ, 629:403–407.
Coriat, M., Corbel, S., Buxton, M. M., Bailyn, C. D., Tomsick, J. A., Körding, E., and
Kalemci, E. (2009). The infrared/X-ray correlation of GX 339-4: probing hard X-ray
emission in accreting black holes. MNRAS, 400:123–133.
Done, C., Gierliński, M., and Kubota, A. (2007). Modelling the behaviour of accretion flows
in X-ray binaries. Everything you always wanted to know about accretion but were afraid
to ask. A&A Rev., 15:1–66.
Dubus, G., Hameury, J.-M., and Lasota, J.-P. (2001). The disc instability model for X-ray
transients: Evidence for truncation and irradiation. A&A, 373:251–271.
Elvis, M., Page, C. G., Pounds, K. A., Ricketts, M. J., and Turner, M. J. L. (1975). Discovery
of powerful transient X-ray source A0620-00 with Ariel V Sky Survey Experiment.
Nature, 257:656.
Fragile, P. C., Blaes, O. M., Anninos, P., and Salmonson, J. D. (2007). Global General
Relativistic Magnetohydrodynamic Simulation of a Tilted Black Hole Accretion Disk.
ApJ, 668:417–429.
Gilfanov, M. (2010). X-Ray Emission from Black-Hole Binaries. In Belloni, T., editor,
Lecture Notes in Physics, Berlin Springer Verlag, volume 794 of Lecture Notes in Physics,
Berlin Springer Verlag, page 17.
Heil, L. M., Vaughan, S., and Uttley, P. (2011). Quasi-periodic oscillations in XTE J1550-
564: the rms-flux relation. MNRAS, 411:L66–L70.
Homan, J. and Belloni, T. (2005). The Evolution of Black Hole States. Ap&SS, 300:107–117.
Houck, J. C. and Denicola, L. A. (2000). ISIS: An Interactive Spectral Interpretation System
for High Resolution X-Ray Spectroscopy. In Manset, N., Veillet, C., and Crabtree, D., editors,
Astronomical Data Analysis Software and Systems IX, volume 216 of Astronomical
Society of the Pacific Conference Series, page 591.
Hu, C.-P., Chou, Y., Wu, M.-C., Yang, T.-C., and Su, Y.-H. (2011). Time-frequency Analysis
of the Superorbital Modulation of the X-Ray Binary SMC X-1 Using the Hilbert-Huang
Transform. ApJ, 740:67.
Hu, C.-P., Chou, Y., Yang, T.-C., and Su, Y.-H. (2014). Tracking the Evolution of Quasiperiodic
Oscillation in RE J1034+396 Using the Hilbert-Huang Transform. ApJ, 788:31.
Huang, H. and Pan, J. (2006). Speech pitch determination based on hilbert-huang transform.
Signal Processing, 86(4):792–803.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung,
C. C., and Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum
for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of
London Series A, 454:903–998.
Huang, N. E., Wu, M.-L. C., Long, S. R., Shen, S. S. P., Qu, W., Gloersen, P., and Fan, K. L.
(2003). A confidence limit for the empirical mode decomposition and Hilbert spectral
analysis. Proceedings of the Royal Society of London Series A, 459:2317–2345.
Huang, N. E. and Wu, Z. (2008). A review on Hilbert-Huang transform: Method and its
applications to geophysical studies. Reviews of Geophysics, 46:RG2006.
Huang, N. E., Wu, Z., Long, S. R., Arnold , K. C., Chen, X., and Blank, K. (2009). On
instantaneous frequency. Advances in Adaptive Data Analysis, 01(02):177–229.
Hynes, R. I., Steeghs, D., Casares, J., Charles, P. A., and O’Brien, K. (2003). Dynamical
Evidence for a Black Hole in GX 339-4. ApJ, 583:L95–L98.
Ingram, A. and Done, C. (2011). A physical model for the continuum variability and quasiperiodic
oscillation in accreting black holes. MNRAS, 415:2323–2335.
Ingram, A. and Done, C. (2012a). Modelling variability in black hole binaries: linking
simulations to observations. MNRAS, 419:2369–2378.
Ingram, A. and Done, C. (2012b). The effect of frame dragging on the iron K? line in X-ray
binaries. MNRAS, 427:934–947.
Ingram, A., Done, C., and Fragile, P. C. (2009). Low-frequency quasi-periodic oscillations
spectra and Lense-Thirring precession. MNRAS, 397:L101–L105.
Ingram, A. and van der Klis, M. (2015). Phase-resolved spectroscopy of low-frequency
quasi-periodic oscillations in GRS 1915+105. MNRAS, 446:3516–3525.
Ingram, A., van der Klis, M., Middleton, M., Done, C., Altamirano, D., Heil, L., Uttley, P.,
and Axelsson, M. (2016). A quasi-periodic modulation of the iron line centroid energy in
the black hole binary H1743-322. MNRAS, 461:1967–1980.
Kalamkar, M., Casella, P., Uttley, P., O’Brien, K., Russell, D., Maccarone, T., van der Klis,
M., and Vincentelli, F. (2016). Detection of the first infra-red quasi-periodic oscillation
in a black hole X-ray binary. MNRAS, 460:3284–3291.
Kato, S. (2005). Quasi-Periodic Oscillations Resonantly Induced on Spin-Induced
Deformed-Disks of Neutron Stars. PASJ, 57:679–690.
Kolotkov, D. Y., Broomhall, A.-M., and Nakariakov, V. M. (2015). Hilbert-Huang transform
analysis of periodicities in the last two solar activity cycles. MNRAS, 451:4360–4367.
Kotov, O., Churazov, E., and Gilfanov, M. (2001). On the X-ray time-lags in the black hole
candidates. MNRAS, 327:799–807.
Krolik, J. H. and Hawley, J. F. (2002). Where Is the Inner Edge of an Accretion Disk around
a Black Hole? ApJ, 573:754–763.
Kunwar, A., Jha, R., Whelan, M., and Janoyan, K. (2013). Damage detection in an experimental
bridge model using hilbert–huang transform of transient vibrations. Structural
Control and Health Monitoring, 20(1):1–15.
Lachowicz, P. and Done, C. (2010). Quasi-periodic oscillations under wavelet microscope:
the application of Matching Pursuit algorithm. A&A, 515:A65.
Lasota, J.-P. (2001). The disc instability model of dwarf novae and low-mass X-ray binary
transients. NewAR, 45:449–508.
Lyubarskii, Y. E. (1997). Flicker noise in accretion discs. MNRAS, 292:679.
McClintock, J. E. and Remillard, R. A. (1986). The black hole binary A0620-00. ApJ,
308:110–122.
Middleton, M., Uttley, P., and Done, C. (2011). Searching for the trigger of the active galactic
nucleus quasi-periodic oscillation: 8 years of RE J1034+396. MNRAS, 417:250–260.
Miller, J. M. (2007). Relativistic X-Ray Lines from the Inner Accretion Disks Around Black
Holes. ARA&A, 45:441–479.
Motta, S., Muñoz-Darias, T., Casella, P., Belloni, T., and Homan, J. (2011). Low-frequency
oscillations in black holes: a spectral-timing approach to the case of GX 339-4. MNRAS,
418:2292–2307.
Motta, S. E. (2016). Quasi periodic oscillations in black hole binaries. Astronomische
Nachrichten, 337:398.
Motta, S. E., Rouco Escorial, A., Kuulkers, E., Muñoz-Darias, T., and Sanna, A. (2017).
Links between quasi-periodic oscillations and accretion states in neutron star low-mass
X-ray binaries. MNRAS, 468:2311–2324.
Muñoz-Darias, T., Casares, J., and Martínez-Pais, I. G. (2008). On the masses and evolutionary
status of the black hole binary GX 339-4: a twin system of XTE J1550-564?
MNRAS, 385:2205–2209.
Nespoli, E., Belloni, T., Homan, J., Miller, J. M., Lewin, W. H. G., Méndez, M., and van der
Klis, M. (2003). A transient variable 6 Hz QPO from GX 339-4. A&A, 412:235–240.
Orosz, J. A., Steiner, J. F., McClintock, J. E., Torres, M. A. P., Remillard, R. A., Bailyn,
C. D., and Miller, J. M. (2011). An Improved Dynamical Model for the Microquasar XTE
J1550-564. ApJ, 730:75.
Parker, M. L., Tomsick, J. A., Kennea, J. A., Miller, J. M., Harrison, F. A., Barret, D.,
Boggs, S. E., Christensen, F. E., Craig, W. W., Fabian, A. C., Fürst, F., Grinberg, V.,
Hailey, C. J., Romano, P., Stern, D., Walton, D. J., and Zhang, W. W. (2016). NuSTAR
and Swift Observations of the Very High State in GX 339-4: Weighing the Black Hole
with X-Rays. ApJ, 821:L6.
Pigorini, A., Casali, A., Casarotto, S., Ferrarelli, F., Baselli, G., Mariotti, M., Massimini,
M., and Rosanova, M. (2011). Time–frequency spectral analysis of TMS-evoked EEG
oscillations by means of Hilbert–Huang transform. Journal of Neuroscience Methods,
198:236–245.
Rao, F., Belloni, T., Stella, L., Zhang, S. N., and Li, T. (2010). Low-frequency Oscillations
in XTE J1550-564. ApJ, 714:1065–1071.
Remillard, R. A. and McClintock, J. E. (2006). X-Ray Properties of Black-Hole Binaries.
ARA&A, 44:49–92.
Remillard, R. A., Sobczak, G. J., Muno, M. P., and McClintock, J. E. (2002). Characterizing
the Quasi-periodic Oscillation Behavior of the X-Ray Nova XTE J1550-564. ApJ,
564:962–973.
Shakura, N. I. and Sunyaev, R. A. (1973). Black holes in binary systems. Observational
appearance. A&A, 24:337–355.
Steiner, J. F., Reis, R. C., McClintock, J. E., Narayan, R., Remillard, R. A., Orosz, J. A., Gou,
L., Fabian, A. C., and Torres, M. A. P. (2011). The spin of the black hole microquasar
XTE J1550-564 via the continuum-fitting and Fe-line methods. MNRAS, 416:941–958.
Stella, L., Vietri, M., and Morsink, S. M. (1999). Correlations in the Quasi-periodic Oscillation
Frequencies of Low-Mass X-Ray Binaries and the Relativistic Precession Model.
ApJ, 524:L63–L66.
Stevens, A. L. and Uttley, P. (2016). Phase-resolved spectroscopy of Type B quasi-periodic
oscillations in GX 339-4. MNRAS, 460:2796–2810.
Su, Y.-H., Chou, Y., Hu, C.-P., and Yang, T.-C. (2015). Characterizing Intermittency of 4-
Hz Quasi-periodic Oscillation in XTE J1550-564 Using Hilbert-Huang Transform. ApJ,
815:74.
Tagger, M. and Pellat, R. (1999). An accretion-ejection instability in magnetized disks.
A&A, 349:1003–1016.
Uttley, P. and McHardy, I. M. (2001). The flux-dependent amplitude of broadband noise
variability in X-ray binaries and active galaxies. MNRAS, 323:L26–L30.
Uttley, P., McHardy, I. M., and Vaughan, S. (2005). Non-linear X-ray variability in X-ray
binaries and active galaxies. MNRAS, 359:345–362.
Varnière, P., Tagger, M., and Rodriguez, J. (2012). A possible interpretation for the apparent
differences in LFQPO types in microquasars. A&A, 545:A40.
Wang, Y.-H., Yeh, C.-H., Young, H.-W. V., Hu, K., and Lo, M.-T. (2014). On the computational
complexity of the empirical mode decomposition algorithm. Physica A Statistical
Mechanics and its Applications, 400:159–167.
Webster, B. L. and Murdin, P. (1972). Cygnus X-1-a Spectroscopic Binary with a Heavy
Companion ? Nature, 235:37–38.
Wu, Z. and Huang, N. E. (2004). A study of the characteristics of white noise using the
empirical mode decomposition method. Proceedings of the Royal Society of London Series
A, 460:1597–1611.
Wu, Z. and Huang, N. E. (2009). Ensemble empirical mode decomposition: a noise-assisted
data analysis method. Advances in Adaptive Data Analysis, 1(1):1–41.
Wu, Z., Huang, N. E., and Chen, X. (2011). Some considerations on physical analysis of
data. Advances in Adaptive Data Analysis, 3(1-2):95–113.
Yeh, J.-R., Shieh, J.-S., and Huang, N. E. (2010). Complementary ensemble empirical mode
decomposition: a novel noise enhanced data analysis method. Advances in Adaptive Data
Analysis, 2(2):135–156.
Zhang, S.-N. (2013). Black hole binaries and microquasars. Frontiers of Physics, 8:630–660.
指導教授 周翊(Yi Chou) 審核日期 2018-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明