博碩士論文 100322008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.138.175.180
姓名 李昱樵(Yu-Chiao Li)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 多項式摩擦單擺支承之二維動力分析與最佳參數研究
相關論文
★ PSO-DE混合式搜尋法應用於結構最佳化設計的研究★ 考量垂直向效應之多項式摩擦單擺支承之分析與設計
★ 以整合力法為分析工具之結構離散輕量化設計效率的探討★ 最佳化設計於結構被動控制之應用
★ 構件考慮剛域之向量式有限元素分析研究★ 矩形鋼管混凝土考慮局部挫屈與二次彎矩效應之軸壓-彎矩互制曲線研究
★ 橋梁多支承輸入近斷層強地動極限破壞分析★ 穩健設計於結構被動控制之應用
★ 二維結構與固體動力分析程式之視窗介面的開發★ 以離心機實驗與隱式動力有限元素法模擬逆斷層滑動
★ 以離心模型實驗探討逆斷層錯動下群樁基礎與土壤的互制反應★ 九二一地震大里奇蹟社區倒塌原因之探討
★ 群樁基礎之最低價設計★ 應用遺傳演算法於群樁基礎低價化設計
★ 應用Discrete Lagrangian Method於群樁基礎低價化設計★ 九二一地震『台中綠色大地社區』 受損原因之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 經振動台試驗結果證實正確設計之多項式摩擦單擺支承 (Polynomial Friction Pendulum Isolator,PFPI),不論於遠域或近域地震皆可有效降低結構系統之位移。然而,將振動台試驗所得之垂直加速度加入一維動力分析後,發現支承垂直震盪間接影響水平力的變化與支承狀態改變的時間,使PFPI支承遲滯迴圈邊緣有不平滑的現象,可見垂直震盪會影響PFPI隔震支承的反應。
本研究將介紹PFPI之二維動力分析程式的內容,數值模擬的動態歷時反應採用Newmark-β法分析,並利用振動台試驗結果驗證分析方法之正確性。最後藉由一受震之PFPI隔震橋梁探討垂直震盪對PFPI隔震性能與考慮垂直向自由度對模擬PFPI隔震橋梁受震反應的重要性,並利用FPS與PFPI之二維動力分析程式,針對含FPS與含PFPI之隔震橋梁於雙向震波中分別進行最佳化設計,除比較兩者之隔震效益外,同時探討垂直震波對PFPI之影響、PFPI曲面之支承參數與PFPI曲盤形狀之修正方法。
摘要(英) Experimental results have proven that properly designed Polynomial Friction Pendulum Isolator (PFPI) can effectively reduce the isolator drift not only in a far-fault earthquake but in a near-fault earthquake. However, the vertical vibration affects the history of horizontal force and the variation time of bearing state when the vertical acceleration has been considered in one dimensional motion equations program for PFPI, it cause the edge of the hysteresis loop of PFPI not smoothly. So the vertical vibration has effect upon the response of PFPI.
Consequently, two dimensional motion equations for PFPI isolated bridge were derived and presented in this paper. The responses of PFPI isolated bridge were solved by using Newmark-βmethod. The feasibility and correctness of solution procedures were verified by comparing the simulated responses with that measured from shaking table tests. A five-span PFPI isolated bridge subjects to ground excitations was then analyzed to demonstrate the effects of vertical vibration on the performance of PFPI and the importance of vertical free dimension. The optimal parameters study of PFPI and Friction Pendulum System (FPS) comparison the effectiveness between PFPI and FPS. Finally, the effects of considering vertical ground excitation, the function of PFPI sliding surface and the modification method for PFPI sliding surface were discussed in this study.
關鍵字(中) ★ 多項式摩擦單擺支承
★ 近域地震
★ 垂直震盪
★ PFPI二維動力分析程式
★ 垂直震波
關鍵字(英) ★ Polynomial Friction Pendulum Isolator
★ Near-fault earthquake
★ Vertical vibration
★ Two dimensional motion equations program for PFPI isolated bridge
★ Vertical ground motion
論文目次 目 錄
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 XI
第一章 緒論 1
1.1研究背景與動機 1
1.2文獻回顧 3
1.3研究內容 6
第二章 多項式摩擦單擺支承 8
2.1支承力學行為 8
2.2多項式摩擦單擺支承之曲面函數及特性 11
第三章 滑動支承之二維動力分析 18
3.1 Newmark-β直接積分法 18
3.2數值模型及運動方程式推導 20
3.2.1支承黏滯階段 23
3.2.1.1運動方程式 23
3.2.1.2下一步幅運動狀態之判別 25
3.2.2支承滑動階段 27
3.2.2.1運動方程式 27
3.2.2.2下一步幅運動狀態之判別 30
3.2.3上部結構騰空階段 32
3.2.3.1運動方程式 32
3.2.3.2下一步幅運動狀態之判別 34
3.3數值分析推導之驗證 35
3.3.1實驗試體模型及量測儀器配置 35
3.3.2實驗輸入震波 35
3.3.3實驗與數值模擬結果之比對與探討 36
3.4垂直震盪與二維動力分析的探討 38
3.4.1目標橋梁 39
3.4.2支承參數與分析震波 39
3.4.3分析結果與探討 40
3.5小結 42
第四章 PFPI最佳參數搜尋及分析結果探討 101
4.1 PSO-SA混合式搜尋法 102
4.1.1最佳化問題數學模式之建立 102
4.1.2粒子群演算法 103
4.1.3模擬退火法 106
4.1.4 PSO-SA混合式搜尋法 107
4.2支承最佳化設計 108
4.2.1目標橋梁及分析震波 108
4.2.2支承最佳參數搜尋之數學模式 109
4.2.3支承參數範圍 110
4.2.4最佳參數搜尋結果與探討 111
4.2.4.1雙向震波對PFPI隔震橋梁之影響 111
4.2.4.2 PFPI曲面函數之設計參數探討 118
4.2.4.3 FPS和PFPI之分析結果比較與PFPI曲盤形狀之探討
122
4.3小結 128
第五章 結論與建議 239
5.1結論 239
5.2建議及未來研究方向 242
參考文獻 243

參考文獻 參考文獻

1. Ghobarah, A. and Ali, H. M. (1988). “Seismic performance of highway bridges.” Engineering Structures, 10(3), 157-166.
2. Bruneau, M., Wilson, J. C., and Tremblay, R. (1996). “Performance of steel bridges during the 1995 Hyogoken-Nanbu (Kobe, Japan) earthquake.” Canadian Journal of Civil, 23(3), 678-713.
3. Otsuka, H. and et al. (1997). “Report on the Disaster Caused by the 1995 Hyogoken Nanbu Earthquake, Chapter 5, Damage to Highway Bridges.” Journal of Research, Public Works Research Institute, 33.
4. Basöz, N. I. and Kiremidjian, A. S. (1998). “Evaluation of bridge damage data from the Loma Prieta and Northridge, CA earthquakes.” Technical Report MCEER-98-0004, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York, 1-35.
5. Basöz N. I. and et al. (1999). “Statistical Analysis of Bridge Damage Data from the 1994 Northridge, CA Earthquake.” Earthquake Spectra, 15(1), 25-54.
6. Lee, G. C. and Loh, C. (1999). “Preliminary report from MCEER-NCREE workshop on the 921 Taiwan earthquake.” Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York.
7. Kosa, K. and et al. (2001). “Mechanism of Damage to Shiwei Bridge Caused by 1999 Chi-Chi Earthquake.” A Workshop on Seismic Fault-induced Failures, 143-154.
8. Kawashima, K. (2002). “Damage of bridge resulting from fault rupture in the 1999 KOCAELI and DUZCE, Turkey earthquakes and the 1999 Chi-Chi, Taiwan earthquake.” Structural Engineering/Earthquake engineering, JSCE, 19(2), 179-197.
9. Celebi, M. (1996). “Successful performance of a base-isolated hospital building during the 17 January 1994 Northridge earthquake.” The Structural Design of Tall Buildings, 5(2), 95-109.
10. Asher, J. W. and et al. (1997). “Performance of Seismically Isolated Structures in the 1994 Northridge and 1995 Kobe Earthquakes.” Proceedings of Structures Congress XV (ASCE), 1128-1132.
11. Martelli, A. and Forni, M. (1998). “Seismic isolation of civil buildings in Europe.” Progress in Structural Engineering and Materials, 1(3), 286-294.
12. Bozorgnia, Y., S. A. Mahin and A. G. Brady (1998) “Vertical response of twelve structures recorded during the Northridge earthquake,” Earthquake Spectra, 14(3), August, 411-432.
13. Kelly, J. M. (1998). “Seismic isolation of civil buildings in USA.” Progress in Structural Engineering and Materials, 1(3), 279-285.
14. Fujita, T. (1998). “Seismic isolation of civil buildings in Japan.” Progress in Structural Engineering and Materials, 1( 3), 295-300.
15. Naeim, F. and Kelly, J. M. (1999). Design of Seismic Isolated Structures: From Theory to Practice. John Wiley & Sons, inc.
16. Kelly, J. M. (1986). “Aseismic base isolation: review and bibliography.” Soil Dynamics and Earthquake Engineering, 5(3), 202-216.
17. Koh, C. G. and Kelly, J. M. (1988). “A simple mechanical model for elastomeric bearings used in base isolation.” International Journal of Mechanical Sciences, 30(12), 933-943.
18. Buckle, I. G. and Mayes, R. L. (1990). “Seismic Isolation History, Application, and Performance—A World View.” Earthquake Spectra, 6(2), 161-201.
19. 王健,盧煉元 “變曲率滑動隔震防制近斷層震波之實驗與分析”,高雄第一科技大學營建工程系碩士論文(2006)。
20. 董佩宜,李姿瑩 “應用多項式摩擦單擺支承之隔震橋梁研究”,國立中央大學土木系碩士論文(2010)。
21. 張釗熙、陳建州、葉銘煌 “國內隔震橋梁設計之發展及隔震方向探討”,中華技術,第28期,第55頁~第67頁(1995)。
22. 陳嘉盈 “921大地震台3線名竹大橋搶修與修復報告”,交通部公路總局,更新日期:2010年4月。
23. Zayas, V. A., Low, S. S., and Mahin, S. A. (1990). “A simple pendulum technique for achieving seismic isolation.” Earthquake Spectra, 6, 317-333.
24. Mokha, A. S., Constantinou, M. C., Reinhorn, A. M., and Zayas, V. A. (1991). “Experimental Study of Friction Pendulum Isolation System.” Journal of Structural Engineering, ASCE, 117(4), 1201-1217.
25. Wang, Y. P., Chung, L. L., and Liao, W. H. (1998). “Seismic response analysis of bridges isolated with friction pendulum bearing.” Earthquake Engineering and Structural Dynamics, 27, 1069-1093.
26. Hall, J. F, T. H. Heaton, and M. W. Halling, D. J. Wald (1995). “Near-source ground motions and its effects on flexible buildings.” Earthquake Spectra, 11, 569-605.
27. Loh, C. H. (1999). “Interpretation of structural damage in 921 Chi-Chi-earthquake.” Proceedings of International Workshop on Chi-Chi, Taiwan Earthquake of September 21, 1999, Dec. 14-17, pp 5-1 ~ 5-77.
28. 葉超雄“近斷層建築物設計地震力之研究”,921 集集地震與建築物耐震技術研討會論文集,內政部建研所企劃,台北,1999年12 月。
29. Chai, J. F. and C. H. Loh (2000). “Near-fault ground motion and its effect on civil structures.” International workshop on mitigation of seismic effects on transportation structures, July 12-14, Taipei, Taiwan, R.O.C. 70-81.
30. Liao, W. I., C. H. Loh and S. Wan (2000). “Responses of isolated bridges subjected to near-fault ground motions recorded on Chi-Chi earthquake.” International Workshop on Annual Commemoration of Chi-Chi Earthquake, Sep 18-20, Taipei, 371-380.
31. Jangid, R. S. and Kelly, J. M. (2001). “Base isolation for near-fault motion.” Earthquake Engineering and Structural Dynamics, 30, 691-707.
32. Rao, P. B. and Jangid, R. S. (2001). “Performance of sliding systems under near-fault motions.” Nuclear Engineering and Design, 203(2-3), 259-272.
33. Hall, J. F., Heaton, T. H., Halling, M. W., and Wald, D. J. (1995). “Near-Source Ground Motion and its Effects on Flexible Buildings.” Earthquake Spectra, 11(4), 569-606.
34. Makris N. and Chang, S. P. (1998). “Effect of Damping Mechanisms on the Response of Seismically Isolated Structures.” Report No. PEER-98/06, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley.
35. 張婉妮,盧煉元 “近斷層震波對滑動隔震結構之影響”,高雄第一科技大學營建工程系碩士論文(2001)。
36. 盧煉元、施明祥、張婉妮 “近斷層震波對滑動式隔震結構之影響評估”,結構工程,第十八卷,第四期,第23-48頁(2003)。
37. Pranesh, M. and Sinha, R. (2000). “VFPI: an isolation device for aseismic design.” Earthquake Engineering and Structural Dynamics, 29(5), 603-627.
38. Pranesh, M. and Sinha, R. (2002). “Earthquake Resistant Design of Structures using the Variable Frequency Pendulum Isolator.” Journal of Structural Engineering, ASCE, 128(7), 870-882.
39. Pranesh, M. and Sinha, R. (2004). “Aseismic design of structure–equipment systems using variable frequency pendulum isolator” Nuclear Engineering and Design, 231(2), 129-139.
40. Pranesh, M. and Sinha, R. (2004). “Behavior of structures isolated using VFPI during bear source ground motions.” 13th World Conference on Earthquake Engineering, Vancouver, Canada, No. 3105.
41. Lu, L. Y., Shih, M. H., and Wu, C. Y. (2004). “Near-fault seismic isolation using sliding bearings with variable curvatures.” 13th World Conference on Earthquake Engineering, Vancouver, Canada, No. 3264.
42. 吳政彥,盧煉元 “變曲率滑動隔震結構之實驗與分析”,高雄第一科技大學營建工程系碩士論文(2004)。
43. Lu, L. Y., Shih, M. H., and Wu, C. Y. (2006). “SLIDING ISOLATION USING VARIABLE FREQUENCY BEARINGS FOR NEAR-FAULT GROUND MOTIONS.” 4th International Conference on Earthquake Engineering, Taipei, Taiwan, No. 164.
44. 盧煉元,施明祥,吳政彥,許朝畯,葉奕麟 “錐形摩擦單擺支承之實驗研究” 第八屆結構工程研討會論文集,南投日月潭,論文編號:H-004 (2006)。
45. Lu, L. Y., Wang, J., and Yeh, S. W. (2007). “Experimental verification of polynomial friction pendulum isolator for near-fault seismic isolation.” The 4th International Structural Engineering and Construction Conference, Melbourne, Australia, 1065-1071.
46. Lu, L. Y., Lee, T. Y., and Yeh, S. W. (2011). “Theory and experimental study for sliding isolators with variable curvature.” Earthquake Engineering and Structural Dynamics, published on-line, DOI: 10.1002/eqe.1106.
47. Lu, L. Y., Lee, T. Y., Yeh, I. L., Chang, H. (2010). “Rocking bearings with variable frequency for near-fault seismic isolation (in Chinese).” Journal of the Chinese Institute of Civil and Hydraulic Engineering, 22(3), 283-298.
48. Newmark, N. M. (1959). “A Method of Computation for Structural Dynamics.” Journal of Engineering Mechanics Division, ASCE, 85(3), 97-94.
49. Chopra, A. K. (1996). Dynamics of Structures: Theory and Applications to Earthquake Engineering, Second Ed., Prentice Hall, Inc.
50. Bouc, R. (1967). “Forced vibrations of mechanical systems with hysteresis.” Proceedings of the Fourth Conference on Non-Linear Oscillations, Prague, Czechoslovakia, 315.
51. Wen, Y. K. (1976). “Method for random vibration of hysteretic systems.” Journal of Engineering Mechanics Division, ASCE, 102(2), 249-263.
52. 莊玟珊,莊德興 “PSO–SA 混合搜尋法與其他結構最佳化設計之應用”,國立中央大學土木工程學系碩士論文(2007)。
53. Kennedy, J. and Eberhart, R. C. (1995). “Particle swarm optimization.” Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, vol. 4, 1942-1948.
54. Deb, K., Gulati, S., and Chakrabarti, S. (1998). “Optimal Truss-Structure Design Using Real-Coded Genetic Algoritms.” Proceedings of the Third Annual Conference, 479−486.
55. Eberhart, R. C. and Kennedy, J. (1995). “A new optimizer using particle swarm theory.” Proceedings of the Sixth International Symposium on Micro machine and Human Science, Nagoya, Japan, 39-43.
56. Eberhart, R. C. and Shi, Y. H. (2001). “Particle swarm optimization: developments, applications and resources.” Proceedings of IEEE International Conference on Evolutionary Computation, Seoul, Korea, vol. 1, 81-86.
57. Eberhart, R. C. and Shi, Y. H. (1998). “Parameter Selection in Particle Swarm Optimization.” Evolutionary Programming VII, Springr, Berlin, pp.591-600.
58. Fourie, R. C. and Groenwould, A. A. (2002). “The particle swarm optimization algorithm in size and shape optimization.” Structural and Multidisciplinary Optimization, 23, 259-267.
59. Kirkpatrick, S. ,Gelatt, C. D., and Vecchi, M. P. (1983). “Optimization by Simulated Annealing.” Science, 220, No. 4598, 671-680.
60. Corana, A., Maechesi, M.,Martini, C., and Ridella, S. (1987). “Minimizing Multimodal Functions of Continuous Variables with the Simulated Annealing Algorithm.” ACM Transactions on Mathematical Software, 13(3), 262-280.
61. 方嬿甄,莊德興 “考量垂直向效應之多項式摩擦單擺支承之分析與設計”,國立中央大學土木系碩士論文(2011)。
62. Rial, J. A., Pereyra, V., and Wojcik, G.L. (1986). “An explanation for USGS Station 6 record, 1979 Imperial Valley earthquake: a caustic induced by a sedimentary wedge.” Geophysical Journal, RAS, 84 (2), 257–258.
指導教授 莊德興(Der-Shin Juang) 審核日期 2015-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明