博碩士論文 100322080 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.220.75.97
姓名 黃郁棠(Yu-tang Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 利用統計方法改善永久散射體干涉雷達技術於地表變形偵測之應用
(Statistical Methods for Improving the Application of a PSInSAR Technique to Surface Displacement Detection)
相關論文
★ 利用數個參考站模式化電離層影響量以進行GPS衛星測量★ 白化濾波應用於GPS動態衛星測量之研究
★ 應用數值地型於立體空載SAR影像之分析★ 消去GPS相位模稜OTF相對定位之研究
★ 應用地形物元於衛載SAR影像匹配之研究★ 參數解關聯應用於GPS雙主站相位模稜求解
★ 衛載SAR地塊影像匹配之參數最佳化★ 最小二乘過濾法應用於動態GPS衛星定位平穩性之研究
★ GPS即時動態定位最佳化演算法比較研究★ Radarsat-1 SAR影像最小二乘匹配之研究
★ 方差與協方差分量於Radarsat-1地塊影像匹配之研究★ 率定GPS接收器時間偏差對高程定位精度提升之研究
★ 分塊輻射參數調整應用於不同來源影像之匹配與套合★ 利用多參考站模式化相對對流層天頂向延遲以進行GPS動態定位
★ 應用時間序列分析於GPS多路徑效應之研究★ 研究不同資源衛星影像之匹配與套合
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著近年來遙測技術的發展,光學影像在土地資訊的獲得不只擁有一套完整的流程,且隨著太空科技之發展,光學衛星已不勝枚舉;雖然合成孔徑雷達影像還未開發至極,但雷達影像除可穿透雲層與日夜皆可拍攝外,更有利用干涉雷達製作數位地形模型與全極化影像分類等技術可與光學相輔相成。
本研究主要目的為,利用合成孔徑雷達影像的干涉技術量測地形;干涉雷達技術主要係藉由兩個不同位置的接收器,所收到的回波訊號之相位差,來獲取地表三維資訊。當擁有多時期干涉影像即可計算出地表變形速率。更進一步的利用永久散射體技術可以提升量測的精度,並忽略雜訊較多的區域,但台灣地形地貌變化迅速,使得永久散射體在山區、叢林地區的密度相較於都市區較低,而造成永久散射體干涉合成孔徑雷達技術的效果不彰。
論文成果使用統計方法,幫助適應性的濾波處理,不只使雜訊降低,同時保留永久散射體的回波正確性,並成功的在永久散射體密度較低的區域,找到大量的分布散射體。最後成功得結合永久散射體與分部散射體的訊號計算出地表變形率。
摘要(英) In recent development of remote sensing, there are complete procedures to acquire land information by optical images. And optical satellites have been launched too numerous to mention. Although the Synthetic Aperture Radar (SAR) technology has not yet developed extremely, the advantages of radar images can complement the optical images.
The purpose of this research is using Interferometric SAR (InSAR) algorithm to detect the topography. Interferograms were produced from the phase difference between two receivers. When there are interferograms with time series, then the surface deformation rate can be calculated. Further, using the Persistent Scatterers InSAR (PSInSAR) algorithm can improve the accuracy of measurement and ignore the noisy area, when the image quality is not so good. However, there is a limitation on the PS algorithm, the density of measurement points will reduce in mountain area or forest. It is because in those areas the coherence values are typically low.
Results of this research come from the statistical method by using the space adaptive filtering. It not only reduces the noise ratio but also keep the accuracy of PS point returns. Finding the Distributed Scatterers (DS) is successful in the area where the density of measurement points is low. Final, the PS and DS points can be jointly processed and then the surface deformation rate is estimated.
關鍵字(中) ★ 雷達影像
★ 差分干涉
★ 永久散射體
★ 地表變形速率
關鍵字(英) ★ Synthetic Aperture Radar
★ Differential InSAR
★ Persistent Scatterers
★ surface deformation rate
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章、 緒論 1
第二章、 雷達干涉技術 4
2.1 干涉合成孔徑雷達的發展 4
2.2 干涉處理 7
2.3 建立相位資訊模型 9
2.4 差分干涉雷達的發展 11
2.5 DInSAR原理介紹 12
第三章、 散射體干涉技術 16
3.1. PSInSAR原理 17
3.2. 分布散射體 19
3.3. Kolmogorov-Smirnov 檢定 21
3.4. 空間適應性濾波 24
3.5. 量測點相位差分 26
3.6. 最小二乘平差 27
3.7. 研究方法流程 30
第四章、 實驗成果與分析 33
4.1. 試驗一:ERS衛星 33
4.1.1. ERS1/2 衛星簡介 33
4.1.2. ERS使用影像 34
4.1.3. 永久散射體成果 38
4.1.4. 變形量計算方法之比較 42
4.1.5. 分布散射體 44
4.1.6. 量測點成果 49
4.1.7. 地表變形速率函數 51
4.2. 試驗二 ALOS衛星 55
4.2.1. ALOS衛星簡介 55
4.2.2. ALOS使用影像 57
4.2.3. 永久散射體成果 60
4.2.4. 分布散射體 63
4.2.5. 量測點成果 66
4.2.6. 權重 68
4.2.7. 驗證 69
第五章、 結論與建議 73
5.1. 結論 73
5.2. 建議 74
參考文獻 75
參考文獻 呂建興,2001,「使用三軌跡法與ERS資料偵測台灣都市地區地貌變化」,碩士論文,國立成功大學,台南。
陳鴻緒,2001,「使用ERS資料與SAR干涉技術在臺灣地區求定DEM之實務探討」,碩士論文,國立成功大學,台南。
張中白、王志添、王皓正、陳錕山,2002,「應用雷達差分干涉法監測都會型地表變形:以中壢工業區為例」,航測及遙測學刊,第九卷,第三期,第9–14頁。
楊佳祥,2011,「An Improved PS-InSAR Approach」,碩士論文,國立成功大學,台南。
蕭逸凡,2010,「永久散射體雷達干涉技術應用於地表變遷偵測」,碩士論文,國立中央大學,桃園。
Basilico, M., Ferretti, F., Novali, F., Prati, C., and Rocca F., 2004, “Advances in Permanent Scatterers Analysis: Semi and Temporary PS,” Proc. Eur. Conf. Synthetic Aperture Radar, Ulm, Germany May 25–27 pp.349–350.
Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E., 2002, “A New Alforithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, No. 11, pp. 2375–2383, doi: 10.1109/TGRS.2002.803792.
Chang, C. P., Wang, C. T., Chang, T. Y., Chen, K. S., Liang, L. S., Pathier, E., and Angelier, J., 2004, “Application of SAR Interferometry to a Large Thrust Deformation: the 1999 Mw=7.6 Chichi Earthquake in Central Taiwan,” Geophysical Journal International, Vol. 159, No. 50, pp. 9–16, doi: 10.1111/j.1365-246X.2004.02385.x.
Chen, C. W., and Zebker, H. A., 2000, “Network Approaches to Two-dimensional Phase Unwrapping: Intractability and Two New Algorithms,” Journal of the Optical Society of America A, Vol. 17, No. 3, pp. 401–414, doi: 10.1364/JOSAA.17.000401.
Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., and Rucci, A., 2011, “A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR” IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 9, pp. 3460–3470, doi: 10.1109/TGRS.2011.2124465.
Ferretti, A., Prati, C., and Rocca, F., 2000, “Nonlinear Subsidence Rate Estimation Using Permanent Sactterers in Differential SAR Interferometry,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 5, pp. 2202–2212, doi: 10.1109/36.868878.
Ferretti, A., Prati, C., and Rocca, F., 2001, “Permanent Scatterers in SAR Interferometry,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 1, pp. 8–20, doi: 10.1109/IGARSS.1999.772008.

Fruneau, B., Pathier, E., Raymond, D., Deffontaines, B., Lee, C. T., Wang, H. T., Angelier, J., Rudant, J. P., and Chang, C. P., 2001, “Uplift of Taiwan Tableland (SW Taiwan) Revealed by SAR Interferometry,” Geophysical Research Letters, Vol. 28, No. 16, pp. 3071–3074, doi: 10.1029/2000GL012437.
Gabriel, A. K., Goldstein, R. M., and Zebker, H. A., 1989, “Mapping Small Elevation Changes over Large Areas: Differential Radar Interferometry,” Journal of Geophysical Research, Vol. 94, No. 7, pp. 9183–9191, doi: 10.1029/JB094iB07p09183.
Gens, R., and van Genderen, J. L., 1996, “SAR Interferometry-issues, Techniques, Applications,” International Journal of Remote Sensing, Vol. 17, No. 10, pp. 1803–1835, doi: 10.1080/01431169608948741.
Ghiglia, D. C., and Romero, L. A., 1994, “Robust Two-dimensional Weighted and Unweighted Phase Unwrapping that Uses Fast Transform and Iterative Methods,” Journal of the Optical Society of America A, Vol. 11, No. 1, pp. 107–117, doi: 10.1364/JOSAA.11.000107.
Goldstein, R.M., 1965, Preliminary Venus Radar Results, Radio Science, Vol. 69D, pp. 1090–1092.
Graham, L. C., 1974, “Synthetic Interferometric Radar for Topographic Mapping,” Proceedings of the IEEE, Vol. 62, No. 6, pp. 763–768, doi: 10.1109/PROC.1974.9516.
Henderson, F. M., and Lewis, A. J., 1998, Principles and Applications of Imaging Radar, John Wiley, New York, USA.

Hooper, A., Segall, P., and Zebker, H., 2007, “Persistent Scatterer Interferometric Synthetic Aperture Radar for Crustal Deformation Analysis, with Application to Volcán Alcedo, Galápagos,” Journal of Geophysical Research, Vol. 112, B07407, 21 pages, doi: 10.1029/2006JB004763.
Huang, M.-H., Hu, J.-C., Hsieh, C.-S., Ching, K.-E., Rau, R.-J., Pathier, E., Fruneau, B., and Deffontaines, B., 2006, “A Growing Structure near the Deformation Front in SW Taiwan Deduced from SAR Interferometry and Geodetic Observation,” Journal of Geophysical Research, Vol. 33, No. 12(L12305), 5 pages, doi: 10.1029/2005GL025613.
Lanari, R., Mora, O., Manunta, M., Mallorquí, J. J., Berardino, P., and Sansosti, E., 2004, “A Small-Baseline Approach for Investigating Deformations on Full-Resolution Differential SAR Interferograms,” IEEE Transactions on Geosciences and Remote Sensing, Vol. 42 No. 7, pp.1377–1386, doi: 10.1109/TGRS.2004.828196.
Lillesand, T. M., Kiefer, R. W., and Chipman, J. W., Remote Sensing and Image Interpretation, John Wiley, New York, USA
Liu, G. X., Ding, X. L., Li, Z. L., Li, Z. W., Chen, Y. Q., and Yu, S. B., 2004, “Pre- and Co-seisimic Ground Deformations of the 1999 Chi-chi, Taiwan Earthquake, Measured with SAR Interferometry,” Computer and Geosciences, Vol. 30, No. 4, pp. 333–343, doi: 10.1016/j.cageo.2003.08.011.

Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Fiegl, K., and Rabaute, T., 1993, “The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry,” Nature, Vol. 364, No. 6433, pp. 138–142, doi: 10.1038/364138a0.
Mora, O., Mallorquí, J. J., and Broquetas, A., 2003, “Linear and Nonlinear Terrain Deformation Maps From a Reduced Set of Interferometric SAR Images,” IEEE Transactions on Geosciences and Remote Sensing, Vol. 41, No. 10, pp. 2243–2253, doi: 10.1109/TGRS.2003.814657.
Pathier, E., Fruneau, B., Deffontaines, B., Angelier, J., Chang, C. P., Yu, S. B., and Lee, C. T., 2003, “Coseismic Displacements of the Footwall of the Chelungpu Fault Caused by the 1999, Taiwan Chi-chi Earthquake from InSAR and GPS Data,” Earth and Planetary Science Letters, Vol. 212, No. 1–2, pp. 73–88, doi: 10.1016/S0012-821X(03)00244-9.
Rabus, B., Eineder, M., Roth, A., and Bamler, R., 2003, “The Shuttle Radar Topography Mission—a New Class of Digital Elevation Models Acquired by Spaceborne Radar,” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 57, No. 4, pp. 241–262, doi: 10.1016/S0924-2716(02)00124-7.
Xia Y., Kaufmann, H., and Guo, X. F., 2004, “Landslide Monitoring in the Three Gorges Area Using D-InSAR and Corner Reflector,” Photogrammetric Engineering & Remote Sensing, Vol. 70, No. 10, pp. 1167–1172.

Zebker, H. A., 2000, “Studying the Earth with Interferometric Radar,” Computer in Science and Engineering, Vol. 2, No.3, pp. 52–60, doi: 10.1109/5992.841796.
Zebker, H. A., Werner, C. L., Rosen, P. A., and Hensley, S., 1994, “Accuracy of Topographic Maps Derived from ERS-1 Interferometric Radar,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No. 4, pp. 823–836, doi: 10.1109/36.298010.
Zhang, L., Ding, X., Lu, Z. 2011, “Modeling PSInSAR Time Series Without Phase Unwrapping,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 1, pp. 547–556, doi: 10.1109/TGRS.2010.2052625.
Zisk, S. H., 1972, “A New Earth-based Radar Technique for the Measurement of Lunar Topography,” Moon, Vol. 4, No. 3–4, pp. 296–306, doi: 10.1007/BF00561997.
指導教授 吳究(Joz Wu) 審核日期 2013-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明