博碩士論文 100322081 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:44.200.169.3
姓名 盧佑樺(Yu-hua Lu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 二次微分法於空載全波形光達之特徵萃取與地物分類
(Using Second Derivative Method for Feature Extraction and Land Cover Classification in Airborne Full-waveform LiDAR)
相關論文
★ 三維房屋模型實景紋理影像製作與敷貼之研究★ 紋理輔助高解析度衛星影像分析應用於偵測入侵性植物分布之研究
★ 利用高光譜影像偵測外來植物-以恆春地區銀合歡為例★ 以視訊影像進行三維房屋模型實景紋理敷貼之研究
★ 區塊式Level of Detail地景視覺模擬之研究★ 高光譜影像立方體紋理特徵之三維計算
★ 漸變式多重解析度於大型地景視覺模擬之應用★ 區塊式LOD網格細化於大型地形視覺模擬之應用
★ 多層次精緻度三維房屋模型之建置★ 高光譜影像立方體於特徵空間之三維紋理計算
★ 影像修補技術於牆面紋理影像遮蔽去除之應用★ 結合遙測影像與GIS資料以資料挖掘 技術進行崩塌地辨識-以石門水庫集水區為例
★ 利用近景影像提高三維建物模型之細緻化等級★ 以地面及空載光達點雲重建複雜物三維模型
★ 高精緻度房屋模型結合蟻群演算法於室內最佳路徑選擇之應用★ 雲線擬合於全波形光達之特徵萃取與地物分類
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 空載光達(airborne LiDAR)是種主動式對地表的量測技術,利用直接地理對位轉換距離和角度,成為精準三維坐標的點雲。近年來,一種新興的光達稱為全波形(full-waveform)光達逐漸受重視,其可記錄完整光束回傳能量值,這些記錄能量值的集合稱為波形,使用者可藉由波形分析得到更完整的地表反射物理特性與細節變化,有助於地形三維重建及地物判識。
在處理全波形光達資料的過程,波形萃取與分析是必要的一環。本研究首先濾除背景雜訊,接著利用高斯函數配合二次微分法對波形進行擬合(fitting),並對儀器與二次微分法為初始值之擬合成果進行精度評估。接著萃取光達波形參數,包括波寬(Width)、振幅(Amplitude)、背向散射截面(Backscatter cross-section),再配合光達特徵包括正規化高程(normalized height)、強度(Intensity)與影像特徵綠指標(Greenness Index),作為地物分類的特徵。地物分類使用簡易貝氏(Naïve Bayes)與隨機森林(Random Forest)兩種分類器,並就分類成果評估精度,藉此探討全波形光達資料與一般空載光達資料於不同分類器的成效。
本研究結果顯示,使用二次微分法提供之初始值的擬合成功率較高,擬合誤差較小,且分類成果較佳。在地物分類的部分,全波形光達所提供的參數對於植物的分析的結果顯著。另外,相較於簡易貝氏分類器,以決策樹為基礎的隨機森林分類器較適合本研究的光達地物分類。
摘要(英) Airborne LiDAR is an active remote sensing system. It can transfer the distance and orientation to point cloud by direct georeferencing. A new generation of LiDAR system called Full-Waveform (FW) LiDAR which could receive the whole return signal (so-called waveform) in a ray has become popular recently. With FW LiDAR, users can obtain more information of objects by analyzing the waveform, and it is helpful for three dimensional reconstruction and land cover distinguishing.
In the processing of FW LiDAR data, the waveform parameter extraction and analysis are the important steps. In this study, after eliminating the background noise, the Gaussian modeling function with second derivative method was used for waveform fitting. The result was compared to Gaussian fitting using the initial value provided by the instrument. Then the features extracted from the waveform, including width, amplitude, backscatter cross-section, traditional LiDAR features, normalized height and intensity, and greenness index from image were used for land cover classification. The classifiers used in this study were Naïve Bayes and Random Forest and compared with each other.
The experimental results indicate that using the second derivative method could provide higher fitting successful rate, smaller Root Mean Square Error (RMSE) and better classification result. The land cover classification results demonstrate that full-waveform features are helpful for distinguishing different vegetation targets and the decision-tree-based Random Forest classifier is more suitable for landcover classification of LiDAR data used in this study.
關鍵字(中) ★ 全波形
★ 光達
★ 波形擬合
★ 地物分類
★ 隨機森林分類器
★ 二次微分法
關鍵字(英) ★ full-waveform
★ LiDAR
★ fitting
★ classification
★ Random Forest
★ second derivative
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 x
表目錄 xiv
第1章 緒論 1
1-1 研究背景 1
1-2 全波形光達原理 3
1-3 研究動機與目的 5
1-4 論文架構 6
第2章 文獻回顧 7
2-1 擬合函數模型 7
2-2 全波形光達的應用 13
2-2-1 三維重建 13
2-2-2 全波形光達於分類上之應用 16
2-3 全波形光達儀器介紹 20
2-3-1 ALTM Pegasus 21
2-3-2 Leica ALS系列 21
2-3-3 Riegl LMS系列 22
2-3-4 Trimble Harrier56 23
2-4 光達資料格式介紹 23
第3章 研究方法 26
3-1 波形分析 26
3-1-1 資料前處理 27
3-1-2 計算初始值 28
3-1-3 波形分解與高斯擬合 29
3-2 地物分類 42
3-2-1 分類特徵 43
3-2-2 隨機森林分類(Random Forests) 44
3-2-3 簡單貝氏分類器(Naïve Bayes) 47
3-2-4 分類精度評估 48
第4章 研究資料 49
4-1 測試資料一 51
4-2 測試資料二 52
4-3 測試資料三 53
第5章 成果分析 56
5-1 波形分析 56
5-1-1 地物與波形 56
5-1-2 波形擬合 62
5-2 分類成果分析 64
5-2-1 測試資料一 64
5-2-2 測試資料二 67
5-2-3 測試資料三 73
第6章 結論與建議 78
6-1 結論 78
6-2 建議 79
參考文獻 81
附錄 85
參考文獻 王匯智,2007,完整波形分析對於提升空載光達系統定位精度之研究,碩士論文,國立臺灣大學工學院土木工程學研究所。
林郁珊,2012,應用空載全波形光達資料於波形分析與地物分類,碩士論文,國立交通大學土木工程學系。
賴哲儇,2009,高光譜影像立方體於特徵空間之三維紋理計算,碩士論文,國立中央大學土木工程學系。
Alexander, C., Tansey, K., Kaduk, J., Holland, D., & Tate, N. J. (2010). Backscatter coefficient as an attribute for the classification of full-waveform airborne laser scanning data in urban areas. Isprs Journal of Photogrammetry and Remote Sensing, 65(5), 423-432. doi: DOI 10.1016/j.isprsjprs.2010.05.002
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. doi: Doi 10.1023/A:1010933404324
Bretar, F., Chauve, A., Mallet, C., & Jutzi, B. (2008). Managing full-waveform lidar data: a challenging task for the forthcoming years. In: International Archive of Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China. XXXVII (Part B1), 415-420
Briese, C., Höfle, B., Lehner, H., Wagner, W., Pfennigbauer, M., & Ullrich, A. (2008). Calibration of full-waveform airborne laser scanning data for object classification. In: Proceedings of SPIE-The International Society for Optical Engineering. 6950 (Laser Radar Technology and Applications XIII).
Celis, M. R. (1985). A trust region strategy for nonlinear equality constrained optimization (nonlinear programming, sequential quadratic). (Ph.D. thesis), University Micriofilms International. Retrieved from http://hdl.handle.net/1911/15885
Chauve, A., Mallet, C., Bretar, F., Durrieu, S., Pierrot-Deseilligny, M., & Puech, W. (2007). Processing Full-waveform LiDAR Data: Modelling Raw Signals. In: ISPRS Workshop on Laser Scanning and SilviLaser, Espoo, Finland. XXXVI (Part 3/W52), 102-107.
Chauve, A., Vega, C., Durrieu, S., Bretar, F., Allouis, T., Deseilligny, M. P., & Puech, W. (2009). Advanced full-waveform lidar data echo detection: Assessing quality of derived terrain and tree height models in an alpine coniferous forest. International Journal of Remote Sensing, 30(19), 5211-5228. doi: Doi 10.1080/01431160903023009
Dempster, A.P., Laird, N.M., & Rubin, D.B. (1977). Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39, 1-38.
Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4), 711-732. doi: Doi 10.2307/2337340
Guo, L., Chehata, N., Mallet, C., & Boukir, S. (2011). Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests. Isprs Journal of Photogrammetry and Remote Sensing, 66(1), 56-66. doi: DOI 10.1016/j.isprsjprs.2010.08.007
Heinzel, J., & Koch, B. (2011). Exploring full-waveform LiDAR parameters for tree species classification. International Journal of Applied Earth Observation and Geoinformation, 13(1), 152-160. doi: DOI 10.1016/j.jag.2010.09.010
Hofle, B., & Pfeifer, N. (2007). Correction of laser scanning intensity data: Data and model-driven approaches. Isprs Journal of Photogrammetry and Remote Sensing, 62(6), 415-433. doi: DOI 10.1016/j.isprsjprs.2007.05.008
Laky, S., Zaletnyik, P., & Toth, C. (2010). Land classification of wavelet-compressed full-waveform LiDAR data. In: International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, Saint-Mandé, France. XXXVIII (Part 3A), 115-119
Leica. (2013). Leica ALS60 Airborne Laser Scanner. Retrieved February 20, 2013, from http://www.leica-geosystems.com/en/Leica-ALS60-Airborne-Laser-Scanner_86842.htm
Levenberg, K. (1944). A method for the solution of certain problems in least squares Quart. Applied Math., 2, 164-168.
Lin, Y. C., Mills, J. P., & Smith-Voysey, S. (2010). Rigorous pulse detection from full-waveform airborne laser scanning data. International Journal of Remote Sensing, 31(5), 1303-1324. doi: Doi 10.1080/01431160903380599
Liu, X. . (2008). Airborne LiDAR for DEM generation: some critical issues. Progress in Physical Geography, 32(1), 31-49. doi: 10.1177/0309133308089496
Mallet, C., Bretar, F., Roux, M., Soergel, U., & Heipke, C. (2011). Relevance assessment of full-waveform lidar data for urban area classification. Isprs Journal of Photogrammetry and Remote Sensing, 66(6), S71-S84. doi: DOI 10.1016/j.isprsjprs.2011.09.008
Mallet, C., Lafarge, F., Bretar, F., Roux, M., Soergel, U., & Heipke, C. (2009). A stochastic approach for modelling airborne lidar waveforms. In: Laserscanning, Paris, France. XXXVIII, 201-206
Marquardt, D.W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431-441.
Optech. (2013). ALTM Pegasus. Retrieved February 20, 2013, from http://www.optech.ca/pegasus.htm
Reitberger, J., Schnorr, C., Krzystek, P., & Stilla, U. (2009). 3D segmentation of single trees exploiting full waveform LIDAR data. Isprs Journal of Photogrammetry and Remote Sensing, 64(6), 561-574. doi: DOI 10.1016/j.isprsjprs.2009.04.002
Riegl. (2013). LMS-Q680i. Retrieved February 20, 2013, from http://www.riegl.com/nc/products/airborne-scanning/produktdetail/product/scanner/23/
Roncat, A., Bergauer, G., & Pfeifer, N. (2011). B-spline deconvolution for differential target cross-section determination in full-waveform laser scanning data. Isprs Journal of Photogrammetry and Remote Sensing, 66(4), 418-428. doi: DOI 10.1016/j.isprsjprs.2011.02.002
Trimble. (2013). Trimble Harrier 56. Retrieved February 20, 2013, from http://www.trimble.com/imaging/Harrier-56.aspx?dtID=overview&
Tsai, F., & Lai, J-S. (2013). Feature Extraction of Hyperspectral Image Cubes Using Three-Dimensional Gray-Level Cooccurrence. IEEE Trans. Geoscience and Remote Sensing, 51(6), 3504-3513. doi: 10.1109/TGRS.2012.2223704
Tsai, F., & Philpot, W. (1998). Derivative analysis of hyperspectral data. Remote Sensing of Environment, 66(1), 41-51. doi: Doi 10.1016/S0034-4257(98)00032-7
Ullrich, A., & Reichert, R. (2005). High resolution laser scanner with waveform digitization for subsequent full waveform analysis. SPIE, 5791, 82-88. doi: 10.1117/12.623847
Wagner, W., Ullrich, A., Ducic, V., Melzer, T., & Studnicka, N. (2006). Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. Isprs Journal of Photogrammetry and Remote Sensing, 60(2), 100-112. doi: DOI 10.1016/j.isprsjprs.2005.12.001
Wagner, W., Ullrich, A., Melzer, T., Briese, C., & Kraus, K. (2004). FROM SINGLE-PULSE TO FULL-WAVEFORM AIRBORNE LASER SCANNERS: POTENTIAL AND PRACTICAL CHALLENGES. In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. 35, 201-206 (Part B203)
指導教授 蔡富安(Fuan Tsai) 審核日期 2013-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明