博碩士論文 100323010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.239.109.55
姓名 陳威呈(Wei-cheng chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 小軸交角之修整型正齒輪與凹面錐形齒輪組設計與負載下齒面接觸分析
(Design and loaded tooth contact analysis of a modified spur pinion and a concave conical gear with small intersected axes)
相關論文
★ G10液晶玻璃基板之機械手臂牙叉結構改良與最佳化設計★ 線性齒頂修整對正齒輪之傳動誤差與嚙合頻能量影響分析
★ 以互補型盤狀圓弧刀具創成之曲線齒齒輪有限元素應力分析★ 修整型曲線齒輪對齒面接觸應力與負載下傳動誤差之研究
★ 衛載遙測取像儀反射鏡加工缺陷檢測與最佳光學成像品質之運動學裝配設計★ 應用經驗模態分解法於正齒輪對之傳動誤差分析
★ 修整型正齒輪對動態模擬與實驗★ 應用繞射光學元件之齒輪量測系統開發
★ 漸開線與切線雙圓弧齒形之諧波齒輪有限元素分析與齒形設計★ 創成螺旋鉋齒刀之砂輪輪廓設計與最佳化
★ 動力刮削創成內正齒輪之刀具齒形輪廓最佳化設計★ 非接觸式章動減速電機結構設計與模擬
★ Helipoid齒輪接觸特性研究與最佳化分析★ 高轉速正齒輪之多目標最佳化與動態特性分析
★ 具齒形修整之圓弧形曲線齒輪接觸分析★ 運用主成分分析於加速規訊號模擬壓力中心之人體靜態平衡評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 首先以相交軸之正齒輪與錐形齒輪為出發,其嚙合具有點接觸之特性。本論文為避免因加工或組裝誤差造成不連續的傳動誤差,與改善於固定軸交角下嚙合應力較高之問題,因此選用由圓弧形法向剖面半徑之假想齒條刀與磨輪創成修整型正齒輪與凹面錐形齒輪,並透過其數學模式進行齒頂變尖與過切分析。
依據所推導修整型正齒輪與凹面錐形齒輪之數學模式,完成軸交角裝配齒輪組之齒面接觸分析與建立有限元素齒面網格分割程式,並由微分幾何與曲率分析求得兩嚙合齒面之主軸方向與主軸曲率,分別以赫茲應力公式與有限元素分析計算結果討論齒輪設計參數對齒面接觸應力之影響。最後為探討齒輪於負載下之嚙合情形,分別以有限元素分析與赫茲公式計算之彈性變形量,整合齒面接觸分析之結果完成負載下傳動誤差。
摘要(英) This study investigation a gear set composed of a modified spur pinion and a concave conical gear. The pinion and gear were generated by a rack-cutter with a circular-arc normal section and grinding wheel respectively. The proposed gear set with a small intersected axes exhibits point contact. According to the developed concave conical gear tooth mathematical model, tooth pointing and undercutting were investigated.
Here, tooth contact analysis was applied to explore the contact characteristics of the modified spur pinion and concave conical gear with intersected axes. Based on the differential geometry and curvature analysis, the principal directions and curvatures of the mating tooth surfaces were investigated. A mesh-generation computer program was developed based on the mathematical model of the gear set. This research studied loaded transmission errors and contact stress based on finite element method and Hertzion contact theory. The effects of design parameters various on contact stress were investigated based on the Hertz theory and finite element method.
關鍵字(中) ★ 錐形齒輪
★ 接觸應力
★ 有限元素法
★ 齒面接觸分析
關鍵字(英) ★ Conical gear
★ Contact stress
★ Finite Element Method
★ tooth contact analysis
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xii
符號表 xiii
第1章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 錐形齒輪 2
1.2.2 接觸分析 4
1.3 研究目的 5
1.4 論文架構 6
第2章 修整型正齒輪與凹面錐形齒輪數學模式 8
2.1 前言 8
2.2 創成修整型正小齒輪假想齒條刀 數學模式 8
2.3 創成凹面錐形大齒輪磨輪 之數學模式 11
2.4 修整型正小齒輪齒面 數學模式 17
2.5 凹面錐形大齒輪齒面 數學模式 20
2.6 修整型正齒輪與凹面錐形齒輪之齒形特徵 23
第3章 凹面錐形齒輪齒頂變尖與過切分析 28
3.1 前言 28
3.2 齒頂變尖 28
3.3 過切分析 30
3.4 齒頂變尖與過切分析範例 34
3.5 討論 37
第4章 齒面接觸分析 38
4.1 前言 38
4.2 傳動誤差分析 38
4.3 接觸齒印 42
4.4 不發生邊緣接觸之最小磨輪半徑EG 45
4.5 齒面接觸分析範例 47
4.5.1 凹面錐形齒輪避免邊緣接觸之最小磨輪半徑EG 47
4.5.2 標準理想裝配情況 49
4.5.3 組裝誤差 52
4.5.4 討論 54
第5章 曲率分析與赫茲接觸應力 56
5.1 前言 56
5.2 修整型正小齒輪與凹面錐形大齒輪之刀面數學模式 57
5.3 曲率分析 58
5.3.1 齒條刀 之主軸曲率與主軸方向 58
5.3.2 修整型正齒輪小齒輪 之主軸曲率與主軸方向 59
5.3.3 齒條刀 主軸曲率與主軸方向 62
5.3.4 凹面錐形大齒輪 之主軸曲率與主軸方向 63
5.4 接觸橢圓與赫茲應力 66
5.4.1 單齒對接觸分析 66
5.4.2 兩齒對接觸分析 70
5.4.3 接觸橢圓應力分佈 76
5.4.4 不同旋轉角度之數值範例 76
5.4.5 改變齒輪刀具參數之接觸橢圓與接觸應力 81
5.5 結論 86
第6章 負載下齒面接觸分析 88
6.1 前言 88
6.2 單齒對有限元素模型建立 91
6.2.1 接觸敏感區域 91
6.2.2 接觸表面特性定義與邊界條件設定 93
6.3 單齒對有限元素模擬結果 94
6.4 多齒對有限元素模型建立 101
6.5 多齒對模擬結果 102
6.5.1 接觸應力分析 102
6.5.2 齒輪強度分析 106
6.6 負載下傳動誤差 109
6.6.1 有限元素分析計算負載下傳動誤差 110
6.6.2 赫茲應力計算負載下傳動誤差 112
6.6.3 負載下傳動誤差分析範例 112
6.7 結論 117
第7章 齒輪修整選用與比較 119
7.1 選用一般漸開線正齒輪與修整型正齒輪之加工誤差分析 119
7.2 選用傳統錐形齒輪與凹面錐形齒輪之接觸應力與接觸橢圓比較 122
7.3 標準理想裝配 127
7.4 組裝誤差 128
7.5 結論 133
第8章 修整型正齒輪與凹面錐形齒輪製造與齒印實驗 135
8.1 泛用型嚙合測試機 136
8.2 實驗齒輪參數 137
8.3 實驗流程 138
8.4 接觸齒印 140
8.5 結論 144
第9章 實驗傳動誤差數據分析 145
9.1 單齒腹測試 145
9.2 實驗齒輪參數 146
9.3 經驗模態分解法(Empirical Mode Decomposition, EMD) 147
9.4 集成經驗模態分解法(Ensemble EMD, EEMD) 147
9.5 實驗流程與訊號分析步驟 148
9.6 齒形誤差結果與討論 148
第10章 結論與未來工作 152
10.1 結論 152
10.2 未來工作 155
參考文獻 156
附錄一 標準齒輪檢測報告 160
附錄二 修整型正齒輪(RP=500mm)檢測報告 162
附錄三 修整型正齒輪(RP=350mm)檢測報告 165
附錄四 修整型正齒輪(RP=250mm)檢測報告 167
參考文獻 [1] F. L. Litvin, J. Zhang, R. F. Handschuh, and J. J. Coy, "Topology of modified helical gears,", pp. 547-554, 1989.
[2] F. L. Litvin, D. Vecchiato, E. Gurovich, A. Fuentes, I. Gonzalez-Perez, K. Hayasaka, and K. Yukishima, "Computerized developments in design, generation, simulation of meshing, and stress analysis of gear drives," Meccanica, vol. 40, pp. 291-323, 2005.
[3] F. L. Litvin and A. Fuentes, "Gear geometry and applied theory," Cambridge University Press, 2004.
[4] Y. Zhang and Z. Fang, "Analysis of tooth contact and load distribution of helical gears with crossed axes," Mechanism and Machine Theory, vol. 34, pp. 41-57, 1999.
[5] R.-T. Tseng and C.-B. Tsay, "Contact characteristics of cylindrical gears with curvilinear shaped teeth," Mechanism and Machine Theory, vol. 39, pp. 905-919, 2004.
[6] A. Fuentes, I. Gonzalez-Perez, and K. Hayasaka, "Computerized design of conical involute gears with improved bearing contact and reduced noise and vibration," International conference on gears, Technical University of Munich, 2010.
[7] A. S. Beam, "Beveloid Gearing," Machine Design, vol. 26, pp. 220-238, 1954.
[8] K. Mitome, "Table Sliding Taper Hobbing of Conical Gear Using Cylindrical Hob. Part 2: Hobbing Of Conical Involute Gear," Trans. of ASME, J. Eng. Ind., vol. 103, p. 452, 1981.
[9] K. Mitome, "Table Sliding Taper Hobbing of Conical Gear Using Cylindrical Hob. Part 1: Theoretical Analysis of Table Sliding Taper Hobbing," Trans. of ASME, J. Eng. Ind., vol. 103, p. 446, 1981.
[10] K. Mitome, "Conical Involute Gear : Part 3. Tooth Action of a Pair of Gears," Bulletin of JSME, vol. 28, pp. 2757-2764, 1985.
[11] K. Mitome, "Conical Involute Gear : Part 2. Design and Production System of Involute Pinion-type Cutter," Bulletin of JSME, vol. 26, pp. 306-312, 1983.
[12] K. Mitome, "Conical Involute Gear : 1st Report, Design and Production System," Transactions of the Japan Society of Mechanical Engineers. C, vol. 48, pp. 852-859, 1982.
[13] K. Mitome, "Design of Miter Conical Involute Gears Based on Tooth Bearing," JSME international journal. Ser. C, Dynamics, control, robotics, design and manufacturing, vol. 38, pp. 307-311, 1995.
[14] K. Mitome, "Conical Involute Gear : Design of Nonintersecting-Nonparallel-Axis Conical Involute Gear," JSME international journal. Ser. 3, Vibration, control engineering, engineering for industry, vol. 34, pp. 265-270, 1991.
[15] K. Mitome and T. Yamazaki, "Design of Conical Involute Gear Engaged with Profile Shifted Spur Gear on Intersecting shafts," Transactions of the Japan Society of Mechanical Engineers. C, vol. 62, pp. 2436-2441, 1996.
[16] C.-C. Liu and C.-B. Tsay, "Tooth Undercutting of Beveloid Gears," Journal of Mechanical Design, vol. 123, p. 569, 2001.
[17] C.-C. Liu and C.-B. Tsay, "Contact characteristics of beveloid gears," Mechanism and Machine Theory, vol. 37, pp. 333-350, 2002.
[18] K. Mitome, "Infeed Grinding of Straight Conical Involute Gear," Transactions of the Japan Society of Mechanical Engineers. C, vol. 57, pp. 3656-3661, 1991.
[19] K. Mitome, "Concave Conical Gear," Transactions of the Japan Society of Mechanical Engineers. C, vol. 65, pp. 1629-1634, 1999.
[20] T. Ohmachi, "Development of Gear Grinding Machine for Concave Conical Gear," Trans. Jpn. Soc. Mech. Eng., C, vol. 65, p. 4464, 1999.
[21] H. Komatsubara, K. Mitome, and T. Ohmachi, "Development of Concave Conical Gear Used for Marine Transmissions : 1st Report, Principle of Generating Helical Concave Conical Gear," JSME international journal. Series C, Mechanical systems, machine elements and manufacturing, vol. 45, pp. 371-377, 2002.
[22] 劉家彰, "漸開線錐形齒輪對之特性研究,國立交通大學,博士輪文,民國九十一年六月。."
[23] C.-C. Liu and C.-B. Tsay, "Mathematical Models and Contact Simulations of Concave Beveloid Gears," Journal of Mechanical Design, vol. 124, p. 753, 2002.
[24] F. L. Litvin, J. S. Chen, J. Lu, and R. F. Handschuh, "Application of finite element analysis for determination of load share, real contact ratio, precision of motion, and stress analysis," Journal of Mechanical Design, Transactions of the ASME, vol. 118, pp. 561-567, 1996.
[25] Y. Zhang and Z. Fang, "Analysis of transmission errors under load of helical gears with modified tooth surfaces," Journal of Mechanical Design, Transactions of the ASME, vol. 119, pp. 120-126, 1997.
[26] M. Umeyama, M. Kato, and K. Inoue, "Effects of gear dimensions and tooth surface modifications on the loaded transmission error of a helical gear pair," Journal of Mechanical Design, Transactions of the ASME, vol. 120, pp. 119-125, 1998.
[27] Y.-C. Chen and C.-B. Tsay, "Stress analysis of a helical gear set with localized bearing contact," Finite Elements in Analysis and Design, vol. 38, pp. 707-723, 2002.
[28] Y.-C. Chen and C.-C. Liu, "Contact stress analysis of concave conical involute gear pairs with non-parallel axes," Finite Elements in Analysis and Design, vol. 47, pp. 443-452, 2011.
[29] F. L. Litvin, A. Fuentes, Q. Fan, and R. F. Handschuh, "Computerized design, simulation of meshing, and contact and stress analysis of face-milled formate generated spiral bevel gears," Mechanism and Machine Theory, vol. 37, pp. 441-459, 2002.
[30] F. L. Litvin, A. Fuentes, and K. Hayasaka, "Design, manufacture, stress analysis, and experimental tests of low-noise high endurance spiral bevel gears," Mechanism and Machine Theory, vol. 41, pp. 83-118, 2006.
[31] F. L. Litvin, D. Vecchiato, K. Yukishima, A. Fuentes, I. Gonzalez-Perez, and K. Hayasaka, "Reduction of noise of loaded and unloaded misaligned gear drives," Computer Methods in Applied Mechanics and Engineering, vol. 195, pp. 5523-5536, 2006.
[32] F. L. Litvin, I. Gonzalez-Perez, K. Yukishima, A. Fuentes, and K. Hayasaka, "Design, simulation of meshing, and contact stresses for an improved worm gear drive," Mechanism and Machine Theory, vol. 42, pp. 940-959, 2007.
[33] I. Gonzalez-Perez, J. L. Iserte, and A. Fuentes, "Implementation of Hertz theory and validation of a finite element model for stress analysis of gear drives with localized bearing contact," Mechanism and Machine Theory, vol. 46, pp. 765-783, 2011.
[34] S.-H. Wu and S.-J. Tsai, "Contact stress analysis of skew conical involute gear drives in approximate line contact," Mechanism and Machine Theory, vol. 44, pp. 1658-1676, 2009.
[35] M. K. Kolivand, A, "A load distribution model for hypoid gears using ease-off topography and shell theory," Mechanism and Machine Theory, vol. 44, pp. 1848-1865, 2009.
[36] Y. Zhang and Z. Wu, "Offset Face Gear Drives: Tooth Geometry and Contact Analysis," Journal of Mechanical Design, vol. 119, pp. 114-119, 1997.
[37] 駱建成, "修整型曲線齒輪對齒面接觸應力與負載下傳動誤差之研究,國立中央大學,碩士論文,民國101年6月."
[38] K. L. Johnson, "Contact Mechanics, Cambridge University Press, New York," Cambridge University Press, New York, 1985.
[39] A. Dyson, H. P. Evans, and R. W. Snidle, "A Simple, Accurate Method for Calculation of Stresses and Deformations in Elliptical Hertzian Contacts," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 206, pp. 139-141, 1992.
[40] K. L. Johnson, "One Hundred Years of Hertz Contact," Proceedings of the Institution of Mechanical Engineers, vol. 196, pp. 363-378, 1982.
[41] P. H. Markho, "Highly accurate formulas for rapid calculation of the key geometrical parameters of elliptic Hertzian contacts," TRANS. ASME J. TRIBOLOGY, vol. 109, pp. 640-641, 1987.
[42] A. P. Boresi and O. M. Sidebottom, "Advanced Mechanics of Materials, 4th Ed. John Wiley and Sons, New York," 1985.
[43] F. L. Litvin, N. X. Chen, and J. S. Chen, "Computerized determination of curvature relations and contact ellipse for conjugate surfaces," Computer Methods in Applied Mechanics and Engineering, vol. 125, pp. 151-170, 1995.
[44] M. H. Sadd, "Elasticity Theory, Applications, and Numerics, Elsevier Butterworth Heinemann, New York," 2005.
[45] 陳義仁, "受負載之正齒輪對的傳動誤差探討",國立交通大學,碩士論文, 民國94年6月。
[46] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.C. Yen, C. C. Tung, and H. H. Liu, "The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis, " Proceedings of the royal society London A, Vol.454, pp.903-995, 1998.
[47] Z. Wu, and N. E. Huang, "Ensemble empirical mode decomposition: a noise-assisted data analysis method, " Advance in adaptive data analysis, Vol.1, No.1, pp1-41, 2009.
指導教授 陳怡呈(Yi-cheng chen) 審核日期 2013-11-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明