博碩士論文 100323017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:138 、訪客IP:18.226.177.223
姓名 徐瑋鴻(Wei-Hong Shiu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 固態氧化物燃料電池堆 接合件介面破裂阻抗分析
(Analysis of Interfacial Cracking Resistance of Solid Oxide Fuel Cell Stack Joints)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主旨在探討固態氧化物燃料電池(SOFC)用GC-9封裝玻璃陶瓷和金屬連接板不銹鋼(Crofer 22 H)與GC-9封裝玻璃陶瓷和陶瓷電極板(PEN)接合件之介面破裂阻抗及破壞模式。藉由製作三款三明治試片,經不同時效處理在不同溫度下(25 oC-800 oC)測試,藉以評估不同溫度與時效處理對接合件介面破裂阻抗的影響。
實驗結果顯示,經過100小時時效處理後之封裝玻璃陶瓷與金屬連接板之接合介面破裂阻抗與時效處理前在不同溫度下並無明顯之差異。至於經過1000小時時效處理後之介面破裂阻抗與經過100小時處理後試片在相同溫度下有些許差異,推測與封裝玻璃陶瓷經過較長時效處理後結晶相的增加及介面裂紋成長於不同氧化層之間有關,然而隨著溫度變化的趨勢並無明顯之差異。在室溫至700 oC間,介面破裂阻抗會隨著溫度增加而提高,且破裂阻抗最大值發生在700 oC ,此乃700 oC高於GC-9之玻璃轉化溫度,使GC-9有明顯的黏滯現象,致使裂縫跨橋效應發生;在700 oC至800 oC則會隨著溫度增加而下降,主要是因為跨橋效應影響下降且750 oC高於玻璃軟化溫度,玻璃流動性大增所致。關於封裝玻璃陶瓷與陶瓷電極板接合件之介面破裂阻抗,僅在室溫下測試,裂縫會沿著介面成長,然而在其他高溫下,裂縫皆直接穿過陶瓷電極板並未沿著介面成長。實驗結果顯示,在室溫下,介面破裂阻抗經過100小時時效處理後有明顯的提升。
由微結構及破斷面分析顯示,封裝玻璃陶瓷與金屬連接板介面有兩種破壞模式。第一,脫層現象發生在玻璃陶瓷基材與鉻酸鋇層之界面。第二,脫層現象發生於鉻酸鋇層之內。對於封裝玻璃陶瓷與陶瓷電極板介面,裂縫於陶瓷電極板與玻璃陶瓷基材之介面以及在玻璃陶瓷基材裡成長。
另外,藉由對一款SOFC電池堆進行具有介面裂縫之有限元素熱應力模擬分析,且將計算所得之圓形裂縫尖端在特定模態I及模態II比例角之應變能釋放率與實驗所得之介面破裂阻抗比對,發現該款SOFC電池堆所能容許最大的介面裂縫或缺陷尺寸為70 m。
摘要(英) The interfacial fracture energy of glass-ceramic (GC-9)/metallic interconnect (Crofer 22 H) and glass-ceramic/PEN joints for solid oxide fuel cell (SOFC) stack is investigated using a four-point bending test technique. The interfacial fracture energy is determined at room temperature, 650 oC, 700 oC, 750 oC, 800 oC by testing three types of sandwich-like specimens. The effects of temperature and aging treatment on the interfacial fracture energy are studied.
A 100 h-aging treatment does not significantly influence the interfacial fracture energy of glass-ceramic/metallic interconnect joint. Compared with that of 100 h-aged condition, a difference is found for the 1000 h-aged interfacial fracture energy at each given temperature. It may result from change of crystalline phase content in a longer aging treatment and difference in fracture site. However, the variation trend of interfacial fracture energy with temperature is similar for all the given aged conditions. The interfacial fracture energy increases with temperature from room temperature to a peak value at 700 oC. As 700 oC is higher than the glass transition temperature (668 oC), a greater viscosity takes place and causes a crack bridging phenomenon. The interfacial fracture energy decreases at 750 oC due to a softening behavior of GC-9 as the temperature is higher than the softening temperature (745 oC). The interfacial fracture energy decreases further at 800 oC as a result of flowability of GC-9. For the glass-ceramic/PEN joint, interfacial cracking takes place only when the test is conducted at room temperature. At elevated temperatures, crack penetrates though PEN directly leading to specimen fracture without interfacial cracking. Comparison of the interfacial fracture energy for non-aged and 100 h-aged specimens indicates the interfacial fracture energy increases after a 100 h-aging treatment.
Through analysis of interfacial microstructure, two types of fracture modes are identified for the glass-ceramic/metallic interconnect joint. Firstly, delamination takes place at the interface between the glass-ceramic substrate and chromate layer. Secondly, delamination occurs within the chromate layer. For the glass-ceramic/PEN joint, crack propagates along the interface between GC-9 and PEN and also kinks into the glass-ceramic layer.
A simulation through finite element analysis is conducted to calculate the energy release rate at the crack front of an interfacial circular crack placed at the highly stressed region in a prototypical SOFC stack subjected to thermal stresses. Comparison of the simulation and experimental results at specific mixity angles between Mode I and Mode II indicates that the critical crack or defect size at the interface of the joint of GC-9 glass-ceramic sealant and Crofer 22 H interconnect in the given SOFC stack is 70 m.
關鍵字(中) ★ 固態氧化物燃料電池
★ 玻璃陶瓷
★ 介面破裂阻抗
★ 四點彎曲試驗
關鍵字(英) ★ Solid oxide fuel cell
★ Glass-ceramic
★ Interfacial fracture energy
★ Four-point bending test
論文目次 LIST OF TABLES VIII
LIST OF FIGURES IX
NOMENCLATURE XIV
1. INTRODUCTION 1
1.1 Solid Oxide Fuel Cell 1
1.2 Glass Sealant 2
1.3 Joint of Glass-Ceramic Sealant, Metallic Interconnect, and Cell 5
1.4 Simulation of Cracking Behavior 9
1.5 Purposes 10
2. MATERIALS AND EXPERIMENTAL PROCEDURES 12
2.1 Materials and Specimen Preparation 12
2.2 Four-Point Bending Test 14
2.3 Microstructural Analysis 17
3. MODELING 18
3.1 Finite Element Model 18
3.2 Material Properties 19
3.3 Boundary Conditions 20
3.4 Temperature Profile 21
3.5 Investigated Cases 22
3.5.1 Thermal stress analysis 22
3.5.2 Calculation of stress intensity factor 22
4. RESULTS AND DISCUSSION 25
4.1 Interfacial Cracking Resistance of Glass-Ceramic/Metallic Interconnect Joint 26
4.1.1 Non-aged metallic interconnect/glass-ceramic/notched metallic interconnect 26
4.1.2 100 h-aged metallic interconnect/glass-ceramic/notched metallic interconnect 27
4.1.3 1000 h-aged metallic interconnect/glass-ceramic/notched metallic interconnect 29
4.1.4 Metallic interconnect/glass-ceramic/notched PEN 30
4.1.5 Interfacial fracture energy and critical interfacial stress intensity factor 31
4.1.6 Failure analysis 34
4.2 Interfacial Cracking Resistance of Glass-Ceramic/PEN Joint 37
4.2.1 PEN/glass-ceramic/notched metallic interconnect 37
4.2.2 Failure analysis 38
4.3 Simulation of Interfacial Crack in Glass-Ceramic/Metallic Interconnect Joint 39
4.3.1 Thermal stress analysis 39
4.3.2 Energy release rate of glass-ceramic/metallic interconnect joint 40
5. CONCLUSIONS 44
REFERENCES 46
TABLES 51
FIGURES 56
參考文獻 1. A. Choundhury, H. Chandra, and A. Arora, “Application of Solid Oxide Fuel Cell Technology for Power Generation-A Review,” Renewable and Sustainable Energy Reviews, Vol. 20, pp. 430-442, 2013.
2. J. Fergus, R. Hui, X. Li, D. P. Wilkinson, and J. Zhang, Solid Oxide Fuel Cells: Materials Properties and Performance, CRC Press, New York, USA, 2008.
3. J. Malzbender, J. Mönch, R. W. Steinbrech, T. Koppitz, S. M. Gross, and J. Remmel, “Symmetric Shear Test of Glass-Ceramic Sealants at SOFC Operation Temperature,” Journal of Materials Science, Vol. 42, pp. 6297-6301, 2007.
4. J. W. Fergus, “Sealants for Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 147, pp. 46-57, 2005.
5. W. Z. Zhu and S. C. Deevi, “A Review on the Status of Anode Materials for Solid Oxide Fuel Cells,” Materials Science and Engineering, Vol. A362, pp. 228-239, 2003.
6. T. L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Nie, and W. Huang, “Material Research for Planar SOFC Stack,” Solid State Ionics, Vol. 148, pp. 513-519, 2002.
7. Y. Zhao, J. Malzbender, and S. M. Gross, “The Effect of Room Temperature and High Temperature Exposure on the Elastic Modulus, Hardness and Fracture Toughness of Glass Ceramic Sealants for Solid Oxide Fuel Cells,” Journal of the European Ceramic Society, Vol 31, pp. 541-548, 2011.
8. P. A. Lessing, “A Review of sealing Technologies Applicable to Solid Oxide Electrolysis Cells,” Journal of Materials Science, Vol. 42, pp. 3465-3476, 2007.
9. W. Liu, X. Sun, and M. A. Khaleel, “Predicting Young’s Modulus of Glass/Ceramic Sealant for Solid Oxide Fuel Cell Considering the Combined Effects of Aging, Micro-Voids and Self-Healing,” Journal of Power Sources, Vol. 185, pp. 1193-1200, 2008.
10. H.-T. Chang, “High-Temperature Mechanical Properties of a Glass Sealant for Solid Oxide Fuel Cell,” Ph.D. Thesis, National Central University, 2010.
11. W. Xu, X. Sun, E. Stephens, I. Mastorakos, M. A. Khaleel, and H.Zbib, “A Mechanistic-Based Healing Model for Self-Healing Glass Seals Used in Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 218, pp. 445-454, 2012.
12. W. N. Liu, X. Sun, and M. A. Khaleel, “Study of Geometric Stability and Structural Integrity of Self-Healing Glass Seal System Used in Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 196, pp. 1750-1761, 2011.
13. S. R. Choi and N. P. Bansal, “Mechanical Properties of SOFC Seal Glass Composites,” Ceramic Engineering and Science Proceedings, Vol. 26, pp. 275-283, 2005.
14 V. A. Haanappel, V. Shemet, I. C. Vinke, and W. J. Quadakkers, “A Novel Method to Evaluate the Suitability of Glass Sealant-Alloy Combinations under SOFC Stack Conditions,” Journal of Power Sources, Vol. 141, pp. 102-107, 2005.
15. P. Batfalsky, V. A. C. Haanappel, J. Malzbender, N. H. Menzler, V. Shemet, I. C. Vinke, and R. W. Steinbrech, “Chemical Interaction Between Glass-Ceramic Sealants and Interconnect Steels in SOFC Stacks,” Journal of Power Sources, Vol. 155, pp. 128-137, 2006.
16. S. Ghosh, A. D. Sharma, P. Kundu, and R. N. Basuz, “Glass-Ceramic Sealants for Planar IT-SOFC: A Bilayered Approach for Joining Electrolyte and Metallic Interconnect,” Journal of the Electrochemical Society, Vol. 155, pp. 473-478, 2008.
17. K. S. Weil, J. E. Deibler, J. S. Hardy, D. S. Kim, G.-G. Xia, L. A. Chick, and C. A. Coyle, “Rupture Testing as a Tool for Developing Planar Solid Oxide Fuel Cell Seals,” Journal of Materials Engineering and Performance, Vol. 13, pp. 316-326, 2004.
18. J. Milhans, M. Khaleel, X. Sun, M. Tehrani, M. Al-Haik, and H. Garmestani, “Creep Properties of Solid Oxide Fuel Cell Glass-Ceramic Seal G18,” Journal of Power Sources, Vol, 195, pp. 3631-3635, 2010.
19. Y.-S. Chou, J. W. Stevenson, and P. Singh, “Effect of Pre-Oxidation and Environmental Aging on the Seal Strength of a Novel High-Temperature Solid Oxide Fuel Cell (SOFC) Sealing Glass with Metallic Interconnect,” Journal of Power Sources, Vol. 184, pp. 238-244, 2008.
20. E. V. Stephens, J. S. Vetrano, B. J. Koeppel, Y. Chou, X. Sun, and M. A. Khaleel, “Experimental Characterization of Glass-Ceramic Seal Properties and Their Constitutive Implementation in Solid Oxide Fuel Cell Stack Models,” Journal of Power Sources, Vol. 193, pp. 625-631, 2009.
21. C.-K. Lin, T.-T. Chen, Y.-P. Chyou, and L.-K. Chiang, “Thermal Stress Analysis of a Planar SOFC Stack,” Journal of Power Sources, Vol. 164, pp. 238-251, 2007.
22. A.-S. Chen, “Thermal Stress Analysis of a Planar SOFC Stack with Mica Sealants,” M.S. Thesis, National Central University, 2007.
23. C.-K. Lin, L.-H. Huang, L.-K. Chiang, and Y.-P. Chyou, “Thermal Stress Analysis of a Planar Solid Oxide Fuel Cell Stacks: Effects of Sealing Design,” Journal of Power Sources, Vol. 192, pp. 515-524, 2009.
24. J. Malzbender and Y. Zhao, “Micromechanical Testing of Glass–Ceramic Sealants for Solid Oxide Fuel Cells,” Journal of Materials Science, Vol. 47, pp. 4342-4347, 2012.
25. K. S. Weil, J. E. Deibler, J. S. Hardy, D. S. Kim, G.-G. Xia, L. A. Chick, and C. A. Coyle, “Rupture Testing as a Tool for Developing Planar Solid Oxide Fuel Cell Seals,” Journal of Materials Engineering and Performance, Vol. 13, pp. 316-326, 2004.
26. E. V. Stephens, J. S. Vetrano, B. J. Koeppel, Y. Chou, X. Sun, and M. A. Khaleel, “Experimental Characterization of Glass-Ceramic Seal Properties and their Constitutive Implementation in Solid Oxide Fuel Cell Stack Models,” Journal of Power Sources, Vol. 193, pp. 625-631, 2009.
27. J.-Y. Chen, “Analysis of Mechanical Properties for the Joint of Metallic Interconnect and Glass Ceramic in Solid Oxide Fuel Cell,” M.S. Thesis, National Central University, 2010.
28. J.-H. Yeh, “Analysis of High-Temperature Mechanical Durability for the Joint of Glass Ceramic Sealant and Metallic Interconnect for Solid Oxide Fuel Cell,” M.S. Thesis, National Central University, 2011.
29. J. Malzbender, R. W. Steinbrech, and L. Singheiser, “Determination of the Interfacial Fracture Energies of Cathodes and Glass Ceramic Sealants in a Planar Solid-Oxide Fuel Cell Design,” Materials Research Society, Vol. 18, pp. 929-934, 2003.
30. X. Sun, W. N. Stephens, and M. A. Khaleel, “Determination of Interfacial Adhesion Strength Between Oxide Scale and Substrate for Metallic SOFC Interconnects,” Materials Research Society, Vol. 176, pp. 167-176, 2008.
31. K. Hbaieb, “Measurement of Fracture Toughness of Anode Used in Solid Oxide Fuel Cell,” Thin Solid Films, Vol. 517, pp. 4892-4894, 2009.
32. A. N. Kumar and B. F. Sørensen, “Fracture Energy and Crack Growth in Surface Treated Yttria Stabilized Zirconia for SOFC Applications,” Materials Science and Engineering, Vol. A333, pp. 380-389, 2001.
33. J. Johnson and J. Qu, “Three-Dimensional Numerical Simulation Tools for Fracture Analysis in Planar Solid Oxide Fuel Cells (SOFCs),” pp. 393-405 in Proceedings of the 30th International Conference on Advanced Ceramics and Composites, Cocoa Beach, Florida, January 22-27, 2006.
34. B. N. Nguyen, B. J. Koeppel, S. Ahzi, M. A. Khaleel, and P. Singh, “Crack Growth in Solid Oxide Fuel Cell Materialas: From Discrete to Continuum Modeling,” Journal of the American Ceramic Society, Vol. 89, pp. 1358-1368, 2006.
35. S. J. Howard, A. J. Phillipps, and T. W. Clyne, “The Interpretation of Data From the Four-Point Bend Delamination Test to Measure Interfacial Fracture Toughness,” Composites, Vol. 24, pp. 103-112, 1993.
36. P. G. Charalambides, J. Lund, A. G. Evans, and R. M. McMeeking, “A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces,” Journal of Applied Mechanics, Vol. 56, pp. 77-82, 1989.
37. L. R. Katipelli, A. Agarwal, and N. B. Dahotre, “Interfacial Strength of Laser Surface Engineered TiC Coating on 6061 Al Using Four-Point Bend Test,” Materials Science and Engineering, Vol. A289, pp. 34-40, 2000.
38. H. Hirakata, T. Yamada, Y. Nobuhara, A. Yonezu, and K. Minoshima, “Hydrogen Effect on Fracture Toughness of Thin Film/Substrate Interfaces,” Engineering Fracture Mechanics, Vol. 77, pp. 803-818, 2010.
39. L. Zou, Y. Huang, and C. Wang, “The Characterization and Measurement of Interfacial Toughness for Si3N4/BN Composites by the Four-Point Bend Test,” Journal of the European Ceramic Society, Vol. 24, pp. 2861-2868, 2004.
40. “Continuum Elements,” Chapter 27 in ABAQUS 6.11-1 Analysis User’s Manual, Vol. IV, ABAQUS, Inc., Providence, RI, USA, 2011.
41. “Special-Purpose Techniques,” Chapter 11 in ABAQUS 6.11-1 Analysis User’s Manual, Vol. IV, ABAQUS, Inc., Providence, RI, USA, 2011.
42. Y.-T. Chiu, “Creep and Thermo-Mechanical Fatigue Properties of Ferritic Stainless Steels for Use in Solid Oxide Fuel Cell Interconnect,” Ph.D. Thesis, National Central University, 2012.
43. Metals Handbook, 10th Ed., Vol. 2, ASM International, Materials Park, OH, 1990, pp. 437-441.
44. W. Koster, “The Temperature Dependence of the Elasticity Modulus of Pure Metals,” Zeitschrift fur Metallkunde, Vol. 39, 1948, pp. 1-9. (in German)
45. Material Data Sheet No. 4050: Crofer 22 H, http://www.thyssenkruppvdm.com/en/downloads/data-sheets/?no cache=1 (accessed 11.10.12).
46. T.-T. Chen, “Thermal Stress Analysis of a Planar SOFC Stack,” M.S. Thesis, National Central University, 2006.
47. Y.-P. Chyou, T.-D. Chung, J.-S. Chen, and R.-F. Shie, “Integrated Thermal Engineering Analyses with Heat Transfer at Periphery of Planar Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 139, 2005, pp. 126-140.
48. V. T. Do, H. Hirakata, T. Kitamura, V. T. Vuong, and V. L. Le, “Evaluation of Interfacial Toughness Curve of Bimaterial in Submicron Scale,” International Journal of Solids and Structures, Vol. 49, pp. 1676-1684, 2012.
49. “Fracture Mechanics,” Chapter 31 in ABAQUS 6.11-1 User’s Manual, Vol. IV, ABAQUS, Inc., Providence, RI, USA, 2011.
50. H. C. Cao and A. G. Evans, “An Experimental Study of the Fracture Resistance of Bimaterial Interfaces,” Mechanics of Materials, Vol. 7, pp. 295-304, 1989.
51. G. Delette, J. Laurencin, S. Murer, and D. Leguillon, “Effect of Residual Stresses on the Propagation of Interface Cracks Between Dissimilar Brittle Materials: Contribution of Two and Three-Dimensional Analyses,” European Journal of Mechanics A/Solids, Vol. 35, pp. 97-110, 2012.
指導教授 林志光 審核日期 2013-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明