博碩士論文 100323018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.189.193.134
姓名 張湧翔(Yung-hsiang Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 可撐式椎籠於骨融合手術初期之生物力學影響
相關論文
★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發★ 駕駛模擬器技術開發及其在駕駛行為研究之應用
★ 電源模組老化因子與加速試驗模型之研究★ 應用駕駛模擬器探討語音防撞警示系統 對駕駛行為之影響
★ 遠距健康監測與復健系統之開發與研究★ 藥柱低週疲勞特性與壽限評估模式之研究
★ 非接觸式電子經緯儀電腦模擬教學系統之研究★ 適應性巡航控制系統對於駕駛績效影響之研究
★ 車輛零組件路況模擬系統之開發研究★ 應用殘障駕駛模擬器探討失衡路況對人體重心影響之研究
★ 聚縮醛(POM)機械性質之射出成型條件最佳化研究★ 駕駛模擬儀之開發驗證及應用於駕駛疲勞之研究
★ 即時眼部狀態偵測系統之研究★ 短玻璃纖維強化聚縮醛射出成型條件最佳化與機械性質之研究
★ 手推輪椅虛擬實境系統開發之研究★ 應用駕駛績效預測車輛碰撞風險之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著醫療技術的進步,人口老化已是世界的趨勢。隨著年紀的攀升人體老化的情況與意外事故的發生也隨之增加。其中尤以腰椎椎間盤的退化最為常見。醫療手術中治療腰椎椎間盤退化通常是使用脊椎融合術,融合術是擺入椎籠替代原本退化的椎間盤
並植入骨粉將上下兩塊椎骨融合成一塊椎骨。本篇研究是新設計一種可撐開式的椎籠取代傳統椎籠探討其生物力學行為,觀察是否能比傳統椎籠更有其優勢。
本篇研究使用AMIRA與SolidWorks建立L3-L5腰椎模型,並移除L4/L5椎間盤置入不同形式之椎籠(可撐式椎籠、一般圓椎籠、一般方椎籠),再以ANSYS Workbench進行有限元素分析,探討其融合初期之生物力學行為。
結果顯示可撐式椎籠之運動範圍(ROM)值在後仰、前彎、左彎及右彎表現上都比同外型尺寸的圓椎籠好;在後仰、前彎與右彎的表現比方椎籠好。可撐式椎籠抵抗扭轉能力較差,ROM較大。可撐式椎籠最大應力值高於圓椎籠與方椎籠,可考慮在應力集中處的凹槽底部增大曲率半徑,以降低應力。可撐式椎籠造成的鄰近椎間盤應力值提升不明顯,較不會導致鄰近椎間盤退化。
摘要(英) In resent years, the aging population becomes the trend in the world. With the age rising, the effect of aging and the accidents are increasing. The most common degeneration is in the lumbar intervertebral disc. Lumbar interbody fusion is usually used in the treatment of the degeneration. The fusion uses the cage to replace the degenerated disc and insert some bone graft to let the inferior/exterior intevertebarl body fuse together. The present study develops a new expandable cage to substitute for the traditional cage, and finds the differences of biomechanical behaviors between the expandable cage and traditional cage.
The software AMIRA and SolidWorks were adopted to establish the lumbar model. The L4/L5 intervertebral disc was replaced by different cages such as expandable cage, circular cage, and square cage. The biomechanical behaviors of the lumbar in the initial stage of fusion were analyzed with finite element method.
From the results, the range of motion (ROM) of pillar-spine is better than that of circular- spine in the case of extension, flexion, left-bending, and right-bending. Also, the ROM of pillar-spine is better than s that of Square-spine in the case of extension, flexion, and, right- bending. But the ROM of pillar-spine is higher in the case of left-rotation and right-rotation. The max. von Mises stress in pillar-spine is higher than the others. This study suggests that increasing the radius of the fillet to decrease the stress concentration. The degeneration of adjacent intervertebral disc is not obvious in this study.
關鍵字(中) ★ 骨融合手術
★ 椎籠
★ 有限元素法
關鍵字(英)
論文目次 第一章 前言..........1
1-1 研究背景..........1
1-2 脊椎構造簡介..........2
1-2-1 椎骨..........3
1-2-2 椎間盤..........4
1-2-3 韌帶..........5
1-3 常見的腰椎疾病治療與其手術發展..........6
1-3-1 常見的腰椎疾病-骨質疏鬆症..........6
1-3-2 常見的腰椎疾病-椎間盤退化..........9
1-3-3 骨融合手術..........10
1-3-4 非骨融合手術..........14
1-3-5 椎籠相關變革..........16
1-4 研究動機與目的..........18
第二章 文獻回顧..........19
2-1 臨床手術文獻回顧..........19
2-2 有限元素法文獻回顧..........21
第三章 研究方法..........23
3-1 研究流程..........23
3-2 脊椎外型建構..........24
3-2-1 AMIRA影像處理..........24
3-3 椎籠設計..........27
3-4 有限元素法(Finite Element Method)..........30
3-4-1 材料性質(Material Properties)與網格(Mesh)設定..........31
3-4-2 邊界條件(Boundary Conditions)設定..........33
第四章 結果與討論..........34
4-1 脊椎模型驗證(Model Validation)..........35
4-1-1 網格收斂性分析..........35
4-1-2 模型準確性驗證..........36
4-2 脊椎運動範圍(Range of Motion)結果..........37
4-3 脊椎鄰近椎間盤(L3/L4)應力值結果..........38
4-4 椎籠應力值結果..........40
4-5 椎籠與上下椎骨交界面應力值結果..........42
4-6 討論..........46
4-6-1 正常脊椎與損壞脊椎比較..........46
4-6-2 植入方椎籠與圓椎籠之影響..........46
4-6-3 植入可撐式椎籠的影響..........50
第五章 結論與未來展望..........53
參考文獻..........54
參考文獻 [1] 蘇崇瑋,「微創椎弓根螺釘補強之最佳化分析」,國立中央大學,碩士論文,民國101年7月。
[2] 洪志毅,「不同的脊椎植入物對腰椎椎體與小面關節的影響」,碩士論文,國立陽明大學,民國95年8月。
[3] 鄭筱瑾,「植入擴張型椎間融合器之鄰近椎體應力分析」,國立陽明大學,碩士論文,民國98年8月。
[4] Fourney DR, Schomer DF, Nader R, et al. Percutaneous Vertebroplasty and Kyphoplasty for painful vertebral body fractures in cancer patients. J Neurosurg 2003; 98:21-30.
[5] 鮑卓倫:常見脊椎疾病,2013。http://ispinecare.com/index.html
[6] Tang S, Rebholz BJ. Does anterior lumbar interbody fusion promote adjacent degeneration in degenerative disc disease? A finite element study, J Orthop Sci 2011;16:221-228.
[7] Rohlmann A, Zander T, Bergmann G. Spinal loads after osteoporotic vertebral fractures treated by Vertebroplasty or Kyphoplasty. Eur Spine J 2006;15: 1255-64.
[8] Foley KT, Holly LT, Schwender JD. Minimally invasive lumbar fusion. Spine 2003; 28: 526-35.
[9] Zdeblick TA, David SM. A prospective comparison of surgical approach for anterior L4–L5 fusion. Spine 2000; 25: 2682-87.
[10] Spine-Health, 2013, http://www.spine-health.com
[11] Cole CD, McCall TD, Schmidt MH, Dailey AT. Comparison of low back fusion techniques: transforaminal lumbar interbody fusion (TLIF) or posterior lumbar interbody fusion (PLIF) approaches. Musculoskeletal Medicine 2009; 2:118-26.
[12] Jang JS, Lee SH. Minimally invasive transforaminal lumbar interbody fusion with ipsilateral pedicle screw and contralateral facet screw fixation. J Neurosurg Spine 2005; 3: 218-23.
[13] Kim JS, Lee KY, Lee SH, Lee HY. Which lumbar interbody fusion technique is better in terms of level for the treatment of unstable isthmic spondylolisthesis. J Neurosurg Spine 2010; 12:171-77.
[14] Min JH, Jang JS, Lee SH. Comparison of anterior- and posterior-approach instrumented lumbar interbody fusion for spondylolisthesis. J Neurosurg Spine 2007; 7:21-26.
[15] Humphreys SC, Hodges SD, Patwardhan AG, Eck JC, Murphy RB, Covington LA. Comparison of posterior and transforaminal approaches to lumbar interbody fusion. Spine 2001; 26:567-71.
[16] Rahm MD, Hall BB. Adjacent-segment degeneration after lumbar fusion with instrumentation: A retrospective study. Journal of Spinal Disorders 1996; 9:392-400.
[17] Lee CK. Accelerated degeneration of the segment adjacent to a lumbar fusion. Spine 1988;13:375-7.
[18] Stoffel M, Behr M, Reinke A, Stuer C, Ringel F, Meyer B. Pedicle screw-based dynamic stabilization of the thoracolumbar spine with the Cosmic®-system: a prospective observation. Acta Neurochir 2010;152:835-43.
[19] Schmoelz W, Huber J F, Nydegger T, Claes L, Wilke HJ. Dynamic stabilization of the lumbar spine and its effects on adjacent segments an in Vitro experiment. Journal of Spinal Disorders & Techniques 2003;16:418-23.
[20] Pienkowski D et al. Multicycle mechanical performance of titinium and stainless steel transpedicular spine implants. Spine 1998; 23:782-8.
[21] Chou YC, Chen DC, Hsieh WA, Chen WF, Yen PS, Harnod T, Chiou TL, Chang YL, Su CF, Lin SZ, Chen SY. Efficacy of anterior cervical fusion: Comparison of titanium cages, polyetheretherketone (PEEK) cages and autogenous bone grafts. Journal of Clinical Neuroscience 2008;15:1240-5.
[22] Invibio, 2013, http://www.invibio.com
[23] MedicalEXPO, 2013, http://www.medicalexpo.com/
[24] Zhang H, Li W, Li F, Chen Q, Xu K, Chen W. New expanded cage designed for lumbar disc herniation : finite element analysis. Applied Mechanics and Materials 2012;140: 78-83.
[25] Lund T, Oxland TR, Jost B, Cripton P, Grassmann S, Etter C, Nolte LP. Interbody cage stabilisation in the lumbar spine: Biomechanical evalution of cage design, Posterior instrumentation and bone density. J Bone Joint Surg1998; 80:351-9.
[26] 陳信豪,「二維CT醫學影像之骨頭輪廓自動擷取」,國立中央大學,碩士論文,民國97年6月。
[27] 許誌文,「腿骨二維輪廓點資料之三維網格模型重建」,國立中央大學,碩士論文,民國97年6月。
[28] Kim Y. Finite element analysis of anterior lumbar interbody fusion. Spine 2007; 32: 2558-68.
[29] Tsuang YH, Chiang YF, Hung CY, Hung WW , Huang CH, Cheng CK. Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation-A finite element study. Medical Engineering & Physics 2009; 31: 565-70.
[30] Goto K, Tajima N, Chosa E, Totoribe K, Kubo S, Kuroki H, Arai T. Effects of lumbar spinal fusion on the other lumbar intervertebral levels (three-dimensional finite element analysis). Journal of Orthopaedic Science 2003; 8: 577-5.
[31] Vadapalli S, Sairyo K, Goel VK, Robon M, Biyani A, Khandha A, Ebraheim NA. Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A Finite Element Study. Spine 2006; 31: E992-8.
[32] Lee KK, Teo EC, Fuss FK, Vanneuville V, Qiu TX, Ng HW, Yang K, Sabitzer RJ. Finite-element analysis for lumbar interbody fusion under axial loading. IEEE Transactions on Biomechanical Engineering 2004; 51:393-400.
[33] Polikeit A, Ferguson SJ, Nolte LP, Orr T E. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J 2003; 12: 413-20.
[34] Liu CL, Zhong ZC, Shih SL, Hung CH, Lee YE, Chen CS. Influence of Dynesys system screw profile on adjacent segment and screw. J Spinal Disord Tech 2010; 23: 410-7.
[35] Fan CY, Hsu CC, Chao CK, Lin SC, Chao KH. Biomechanical comparisons of different posterior instrumentation constructs after two-level ALIF:A Finite Element Study. Medical Engineering & Physics 2010; 32: 203-11.
[36] Chiang MF, Zhong ZC, Chen CS, Cheng CK, Shih SL. Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis. Spine 2006; 31: E682-9.
[37] Pintar FA, Yoganandann N, Myers T, Elhagediab A, Sances A. Biomechanical properties of human lumbar spine ligaments. J. Biomechanics 1992; 25: 1351-56.
[38] Goel VK, Kim YE, LIM TH ,Weinstein JN. An analytical investigation of the mechanics of spinal instrumentation. Spine 1988; 13: 1003-11.
[39] Chao CK, Hsu CC, Wang JL, Lin J. Increasing bending strength and pullout strength in conical pedicle screw: biomechanical tests and finite element analyses. Journal of Spinal Disorders & Techniques 2008; 21: 130-8.
[40] 鍾政成,「腰椎椎間融合器之設計與生物力學評估」,國立陽明大學,碩士論文,民國93年6月。
[41] Livestrong.com, 2013, http://www.livestrong.com/
[42] Galbusera F, Schmidt H, Wilke HJ. Lumbar interbody fusion: a parametric investigation of a novel cage design with and without posterior instrumentation. Eur Spine J 2012; 21:455-62.
[43] Kiapour A, Kiapour MA, Kodigudla M, Hill GM, Mishra S, Goel VK. A Biomechanical FE study of subsidence and migration tendencies in Stand-Alone fusion procedures-comparison of an in Situ expandable device with a rigid device. Journal of Spine 2012; 1:1-5.
[44] ASM Areospace Specification Metals,2013, http://www.aerospacemetals.com/index.html
指導教授 黃俊仁 審核日期 2013-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明