博碩士論文 100323027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.140.186.241
姓名 時瑞甫(Shr Ruei-Fu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以濺鍍CIG三元靶調變硒化製程壓力製作CIGS太陽能電池之特性分析
(Effects of Selenization Pressure during Rapid Thermal Process on CIGS/MoSe2 Films and Solar Cells)
相關論文
★ 以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力★ 高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析
★ 局域性表面電漿效應應用於增益有機發光二極體發光強度之參數優化研究★ 最佳化設計金屬有機化學氣相沉積高溫加熱系統數值分析研究
★ 最佳化OLED面型蒸鍍加熱器設計與腔體流場數值分析★ 以電漿診斷探討電漿輔助化學氣相沉積系統之製程環境優化對氫化非晶矽鈍化品質之影響
★ 電漿診斷系統輔助化學氣相沉積之鈍化層薄膜製程區間研究★ 以數值分析法分析氮化鎵薄膜沉膜機制之探討暨實作驗證
★ 電弧噴塗積層製造:Ta/TaN 薄膜物理氣相沉積中腔體襯套翻新與顆粒缺陷減少相關性研究★ 以RTP硒化法探討CIS薄膜及元件特性之研究
★ 局域性表面電漿共振效應應用於OLED出光增益之研究★ TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究
★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究★ 自製蘭牟爾探針診斷TE微波模式電子迴旋共振電漿
★ 以噴塗技術在不銹鋼基板上沉積氧化矽阻隔層應用於可撓式CIGS太陽電池之研究★ 使用電子迴旋共振化學氣相沉積製備異質接面太陽能電池表面鈍化氫化非晶矽薄膜之製程參數研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本研究中主要是探討RTP硒化法中的硒蒸氣壓對於Cu(Inx,Ga1-x)Se2薄膜的影響,Cu(Inx,Ga1-x)Se2薄膜的製備上將採用兩階段RTP金屬前驅物層硒化法,在金屬前驅物是採用CIG三元靶,使用DC Sputtering Module製備,其靶材Cu:In:Ga的比例為42:44:16 wt%。
在Se/CIG的堆疊結構方面,有改變其厚度的兩種結構堆疊,第一種堆疊結構為Se(1.8μm)/CIG(650nm),第二種結構為Se(3.7μm)/CIG(1.3μm),而在硒化壓力方面,在第一種堆疊中有三種硒的蒸氣壓力分別為23 Pa、495 Pa以及1.45×104 Pa,在第二種堆疊中硒的壓力分別為48 Pa、1021 Pa以及1.45×104 Pa。根據第一個結構的實驗我們可以得知當硒化壓力越大時,其Grain Size越大,CIGS薄膜品質越好。雖然在第二種堆疊中,對於硒壓力的增加,可以得到與第一種堆疊相同的現象,但是由於1.45×104 Pa壓力下製作出來的Cu(Inx,Ga1-x)Se2會剝落且MoSe2會過厚(~2μm),在先前的實驗中得知,如果MoSe2過厚將會影響Cu(Inx,Ga1-x)Se2薄膜,使其剝落。因此,故多製作一洩氣孔的模組,使過量的硒蒸氣壓釋放,降低MoSe2的厚度與薄膜剝落的現象。
其經由不同硒化壓力下製備出來的Cu(Inx,Ga1-x)Se2薄膜,都將會以XRD、EDS以及FESEM進行量測分析。其分析結果洩氣孔的模組所製備的Cu(Inx,Ga1-x)Se2薄膜,晶粒較大,MoSe2較薄,其薄膜品質較好。在本實驗中經由效率量測可以得知,由第二種堆疊結構Se(3.7μm)/CIG(1.3μm)經洩氣孔模組,所製備的Cu(Inx,Ga1-x)Se2薄膜相較其他樣品,在不同硒壓力下堆疊製元件後,為其最高其效率5.2%。
摘要(英) In this study, it was mainly discussed the effect of selenium vapor to Cu(Inx,Ga1-x)Se2 thin film by using precursor-rapid thermal process (RTP) Selenization two-step method. The metallic precursors were formed by direct current (DC) magnetron sputtering system using CuInGa ternary alloy target with a composition ratio of Cu:In:Ga of 42:44:16 wt%.
The structure of Se/CIG had two types under different thickness in each layers. The first structure was Se(1.8μm)/CIG(650nm); The second structure was Se(3.7μm)/CIG(1.3μm). The first structure used different selenium vapor under 23 Pa, 495 Pa and 1.45×104 Pa during selenization process, respectively. The second structure used different selenium vapor under 48 Pa, 1021 Pa and 1.45×104 Pa during selenization process, separately.
Based on the experiment of first structure, the grain size would be larger and the quality of Cu(Inx,Ga1-x)Se2 thin film would be better with increasing selenium vapor. Although we could also find the same phenomenon in the second structure of Cu(Inx,Ga1-x)Se2 thin film with increasing Se vapor, the Cu(Inx,Ga1-x)Se2 thin film would be peeled off and MoSe2 thickness (~2μm) would be increased dramatically at 1.45×104 Pa. In the previous studies, if the thickness of MoSe2 was too thick that would influence Cu(Inx,Ga1-x)Se2 thin film to be peeled. Therefore, we used a pressure released vent module to leak over high selenium vapor for avoiding the peeling and decreasing the thickness of MoSe2 thin film.
The CIGS thin films were measured by X-ray diffraction (XRD), Energy dispersive spectrometer (EDS), Field-emission scanning electron microscopy (FESEM) and Solar simulation. To analyze Cu(Inx,Ga1-x)Se2 thin film in the pressure released vent module, it was found that the grain size of film was larger, the thickness of MoSe2 was thinner and the quality of Cu(Inx,Ga1-x)Se2 film was better when compared to other Cu(Inx,Ga1-x)Se2 film under different selenium pressures. Based on the measurement of solar simulation, the best efficiency 5.2% was obtained in the second structure sample of the pressure released vent module under selenization process.
關鍵字(中) ★ 銅銦鎵硒
★ 快速熱退火
★ 硒化
★ 硒化蒸氣壓
關鍵字(英) ★ CIGS
★ RTP
★ Selenization
★ Se vapor
論文目次 第一章 緒論 1
1-1 前言 1
1-2 太陽能電池原理簡介 5
第二章 文獻回顧與研究動機 12
2-1薄膜沉積 12
2-1-1 薄膜沉積原理 12
2-1-2 PVD(Physical Vapor Deposition)沉積原理 16
2-2 CuInSe2薄膜太陽能電池 17
2-2-1 CuInSe2太陽能電池之研究發展 17
2-2-2 CuInSe2的薄膜特性 18
2-2-3 CuInSe2的薄膜製備方式 22
2-3 研究動機與目的 25
第三章 實驗步驟與薄膜分析 30
3-1薄膜分析儀器 30
3-1-1 X-ray繞射儀 (X-ray Diffract meter, XRD) 30
3-1-2場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscopy, FESEM) 31
3-1-3電流-電壓特性量測(I-V Curve Measurement) 32
3-1-4光譜儀(UV/VIS/NIR Spectrometer) 32
3-1-5表面輪廓儀(α-Step) 33
3-1-6四點探針(Four Point Probe) 33
3-2 實驗流程 34
3-2-1 基板的製備 34
3-2-2 Mo背電極的製備 35
3-2-3 CIGS吸收層的製備 36
3-2-4 CdS的製備 39
3-2-5 ZnO與AZO薄膜製備 40
第四章 實驗結果與討論 41
4-1 銅銦鎵(Cu-In-Ga)前驅物特性分析 41
4-1-1 RTP硒化製程之CIGS薄膜及元件特性分析 44
4-2 CIGS薄膜特性分析 49
4-2-1 硒化壓力對Se(1.8μm)/CIG(650nm)堆疊結構之CIGS薄膜特性分析 49
4-2-2 硒化壓力對Se(3.7um)/CIG(1.3m)堆疊結構之CIGS薄膜特性分析 54
4-3 CdS與ZnO之參數優化 61
4-4 元件效率探討 65
第五章 結論 72
第六章 參考文獻 75

表目錄
表2-1 CuInSe2材料基本性質表 21
表2-2 CuInSe2結晶的本質缺陷 21
表4-1 JCPDS資料庫In,CuIn2,和Cu11In9的繞射角度與方向 43
表4-2 CIGS元件平均效率: (A) Pse: 23 PA (B) Pse: 495 PA (C) Pse: 1.45×104 PA 66
表4-3 CIGS元件平均效率: (A) Pse: 48 PA (B) Pse: 1021 PA (C) PRV: 1mm 69

圖目錄
圖1-1 不同世代太陽能電池之成本效率圖 2
圖1-2 全球PV供應模組預測 3
圖1-3 全球薄膜PV供應模組預測 3
圖1-4 世界太陽能電池最高效率的演變圖 4
圖1-5 薄膜型太陽能電池之分類 5
圖1-6 太陽電池電路模型 9
圖1-7 太陽電池I-V 曲線 10
圖2-1 薄膜沉積的吸附步驟 13
圖2-2 對氣相與凝結相的分子距離位能圖 14
圖2-3 物理吸附模組的能量示意圖 14
圖2-4 薄膜沉積示意圖 15
圖2-5 薄膜生長過程 16
圖2-6 磁控濺鍍示意圖 17
圖2-7 常用半導體材料之光吸收係數 18
圖2-8 黃銅礦結構 20
圖2-9 Cu2Se-In2Se3 二元相圖 20
圖2-10 共蒸鍍法之In-line量產型設計 24
圖2-11 高溫爐管硒化系統 24
圖2-12 前驅物RTP硒化法示意圖 25
圖2-13 不同硒含量CIGS薄膜之表面形貌 26
圖2-14 在不同Se蒸氣束的流量下,其Cu/In與Se/(Cu+In)的比例 27
圖2-15 Cu-In Precursor的SEM正面與剖面圖 29
圖2-16 CIGS薄膜在不同硒化壓力下的SEM正、剖面圖(A)0.15mmHg(B)22mmHg(C)25mmHg 29
圖3-1 X光對晶體繞射示意圖 31
圖3-2 SEM主要結構示意圖 32
圖3-3 太陽能電池I-V圖 32
圖3-4 四點探針示意圖 34
圖3-5 實驗流程圖 34
圖3-6 Mo背電極雙層結構 35
圖3-7 不同模組的硒化壓力(A)14500 PA (B)495 PA (C)23 PA 38
圖3-8 硒化壓力調變模組(1MM洩壓孔) 39
圖4-1 CIG前驅物之FESEM表面圖(A)濺鍍功率:50W (B)濺鍍功率:70W 42
圖4-2 CIG前驅物之XRD圖(A)濺鍍功率:50W (B)濺鍍功率:70W 43
圖4-3 快速熱退火(RTP)製程系統示意圖 44
圖4-4 CIG前驅物 RTP硒化製程示意圖 44
圖4-5 RTP硒化反應製程參數圖 45
圖4-6 CIS薄膜樣品之Cu-In前驅物(A)Se:1.8um (B)Se:3.5um 46
圖4-7 RTP硒化製程系統示意圖(洩壓孔徑:1MM) 48
圖4-8 共蒸鍍CIGS元件效率: (A) CdS: 10min(50nm) (B) CdS: 20min (60nm) 62
圖4-9共蒸鍍CIGS元件效率: (A) 50W-2hr (B) 100W-100min (C)無i-ZnO薄膜 63
圖4-10 CIGS薄膜之XRD圖(入射角: 1°):(A)Pse: 23 PA (B)Pse: 495 PA (C)Pse: 1.45×104 PA 49
圖4-11 CIGS薄膜之XRD圖(入射角: 5°): (A)Se: 23 PA (B)Se: 495 PA (C)Se: 1.45×104 PA 50
圖4-12 CIGS薄膜之FESEM表面圖(A) Pse: 23 PA (B) Pse: 495 PA (C) Pse: 1.45×104 PA 51
圖4-13 CIGS薄膜之FESEM剖面圖(A) Pse: 23 PA (B) Pse: 495 PA (C) Pse: 1.45×104 PA 52
圖4-14 CIGS薄膜之EDS圖: (A) Pse: 23 PA (B) Pse: 495 PA (C) Pse: 1.45×104 PA 53
圖4-16 CIGS元件最佳效率圖:(A) Pse: 23 PA (B) Pse: 495 PA (C) Pse: 1.45×104 PA 67
圖4-17 CIGS薄膜之FESEM表面圖(A) Pse: 48 PA (B) Pse: 1021 PA (C) Pse: 1.45×104 PA (D) PRV: 1mm 56
圖4-18 CIGS薄膜之FESEM剖面圖(A) Pse: 48 PA (B) Pse: 1021 PA (C) Pse: 1.45×104 PA (D) PRV: 1mm 58
圖4-19 CIGS薄膜之XRD圖(入射角: 5°): (A) Pse: 48 PA (B) Pse: 1021 PA (C) PRV: 1mm 59
圖4-20 CIGS薄膜之EDS圖: (A) Pse: 48 PA (B) Pse: 1021 PA (C) Pse: 1.45×104 PA 60
圖4-21 CIGS薄膜元件圖: (A) Pse: 48 PA (B) Pse: 1021 PA (C) PRV: 1mm 68
圖4-22 CIGS元件最佳效率圖: (A) Pse: 48 PA (B) Pse: 1021 PA (C) PRV: 1mm 71
參考文獻 [1]T. M. Razykov et al., “Solar photovoltaic electricity: Current status and future prospects”, Sol. Energy, Vol. 85, pp. 1580–1608, 2011.
[2]T. W. Zeng el al., ”Hybrid Poly (3-hexylthiophene) / Titanium Dioxide Nanorods Material for Solar Cell Applications”, Sol. Energy Mater. Sol. Cells, Vol. 93, pp. 952-957, 2009.
[3]S. Y. Chuang et al., “Regioregularity effects in the chain orientation and optical anisotropy of composite polymer/fullerene films for high-efficiency, large-area organic solar cells”, J. Mater. Chem., Vol. 19(31), pp. 5554-5560, 2009.
[4]K. Ardani and R. Margolis, 2010 Solar Technologies Market Report, U.S. department of enregy,2011.
[5]D. L. Staebler and C. R. Wronski, "Reversible conductivity changes in discharge-produced amorphous Si", Appl. Phys. Lett., Vol. 31(4), pp. 292-294, 1977.
[6]E. Janik and R. Triboulet, “Ohmic contacts to p-type cadmium telluride and cadmium mercury telluride”, J. Phys. D: Appl. Phys., Vol. 16(12), pp. 2333-2340, 1983.
[7]蔡進譯,「超高效率太陽電池-從愛因斯場的光電效應談起」,物理雙月刊, 27(5), 701-719頁,2005。
[8]黃惠良,曾百亨 太陽能電池,五南圖書出版有限公司,民國九十八年。
[9]D. Smith, Thin-Film Deposition Principles and Practice, McGraw-Hill, Inc., Boston, 1995.
[10]M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Prentice Hal, U.S.A., 2001.
[11]莊達人,VLSI 製造技術,高立圖書有限公司,1996.
[12]J. A. Venables et al., “Nucleation and Growth of Thin films”, Rep. Prog. Phys., Vol. 47, pp. 399-459, 1984.
[13]J. Hedstrom et al.,” ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance” Proceedings 23rd IEEE Photovolt. Spec. Conf., Louisville, KY, pp. 364-371 1993.
[14]K. Ramanathan et al., ” Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells”, Prog. Photovolt: Res. Appl., Vol. 11, pp. 225-230, 2003.
[15]Moller, H. J., Semiconductors for solar cells, Artech House, Boston, 1993.
[16]J. R. Woodyard and G.A. Landis,” Radiation resistance of thin-film solar cells for space photovoltaic power”, Sol. Cells, Vol. 31, pp. 297-329, 1991.
[17]W. N. Shafarman and J. E. Phillips, “Direct current-voltage measurements of the Mo/CuInSe2 contact on operating solar cells”, Proceedings of the 25th IEEE Photovolt. Spec. Conf., Washington, D.C., pp. 917-919, 1996.
[18]S. Siebentritt and U.Rau, Wide-Gap Chalcopyrites, Springer, Berlin, 2006.
[19]A. Luque and S. Hegedus, Handbook of photovoltaic science and engineering, John Wiley & Sons, Singapore, 2003.
[20]S. Wagner, “Symposium on Materials and New Processing Technologies for Photovoltaics”, Proc. Symp. Matr. New Process. Tech. Photovolt. Electrochem. Soc., Vol. 83, p410-412, 1983.
[21]D. Cahen, “Some thoughts about defect chemistry in ternaries”, Proc. 7th Int. Conf. on Ternary and Multinary Compounds, Mater. Res. Soc., Pittsburgh, p433-442, 1987.
[22]S.M. Wasim, Sol. Cells, Vol. 16, pp. 289-316, 1986.
[23]H.H. Chang et al., “New Perspectives of Defect Physics and Defect Chemistry for Copper Ternary Chalcopyrite Semiconductors” Jap. J. Appl. Phys., Vol.39, pp. 399-401, 2000.
[24]A. Goetzberger, J. Luther and G. Willeke, “Solar cells: past, present, future”, Sol. Energy Mater. Sol. Cells, Vol. 74, pp.1-11, 2002.
[25]J. Sites and X. Liu,” Recent efficiency gains for CdTe and CuIn1−xGaxSe2 solar cells: What has changed?”, Sol. Energy Mater. Sol. Cells, Vol.41-42, pp.373-379, 1996.
[26]T. Walter et al., ” Parameter studies and analysis of high efficiency Cu(In,Ga)Se2 based solar cells”, Proc. 22nd IEEE Photovoltaic Spec. Conf., Las Vegas. NK , New York, pp. 924-929, 1991.
[27]S. H. Wei, S. B. Zhang and A. Zunger, “Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties”, Appl. Phys. Lett, Vol. 72, pp. 3199-3201, 1998.
[28]J.A. Thornton, T.C. Lommasson, H.Talidh and B.H. Tseng, ” Reactive sputtered CuInSe2”, Sol. Cell, Vol. 24, pp. 1-9, 1988.
[29]M. E. Calixto and P.J. Sebastian, “CuInSe2 thin films formed by selenization of Cu–In precursors”, J. Mater. Sci., Vol. 33(2), pp. 339-345, 1998.
[30]J. Palm et al.,” CIS module pilot processing applying concurrent rapid selenization and sulfurization of large area thin film precursors”, Thin Solid Films, Vol. 431-432, pp. 514-522, 2003.
[31]顧鴻濤,太陽能電池元件導論,全威圖書出版有限公司,民國九十八年。
[32]S. T. Lakshmikumara and A. C. Rastogi, “Phase evolution in low‐pressure Se vapor selenization of evaporated Cu/In bilayer precursors”, J. Appl. Phys., Vol. 79, pp. 3585-3591, 1996.
[33]T. Pisarkiewicz and H. Jankowski, ” Vacuum selenization of metallic multilayers for CIS solar cells”, Vacuum, Vol. 70, pp. 435-438, 2003.
[34]R. Caballero and C. Guillen, ” CuInSe2 Formation by selenization of sequentially evaporated metallic layers”, Sol. Energy Mater. Sol. Cells, Vol. 86, pp. 1-10, 2005.
[35]F. Hergert et al., “In situ investigation of the formation of Cu(In,Ga)Se2 from selenised metallic precursors by X-ray diffraction—The impact of Gallium, Sodium and Selenium excess”, J. Phys. Chem. Solids, Vol. 66, pp. 1903–1907, 2005.
[36]J. Koo et al., “Cu(InGa)Se2 thin film photovoltaic absorber formation by rapid thermal annealing of binary stacked precursors”, Thin Solid Films, Vol. 520, pp. 1484–1488, 2011.
[37]K. Kushiya et al., “Development of High-Efficiency CuInxGa1-xSe2 Thin-Film Solar Cells by Selenization with Elemental Se Vapor in Vacuum”, Jpn. J. Appl. Phys., Vol. 34, pp.54-60, 1995.
[38]O. Volobujeva et al., “SEM analysis and selenization of Cu–In alloy films produced by co-sputtering of metals”, Sol. Energy Mater. Sol. Cells, Vol. 93, pp. 11–14, 2009.
[39]汪建民,材料分析,中國材料科學學會,民國八十七年。
[40]J. Scofield et al., “Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells”, Thin Solid Films, Vol. 260, pp. 26-31, 1995.
[41]M. Jubaultet al., “Optimization of molybdenum thin films for electrodeposited CIGS solar cells”, Sol. Energy Mater. Sol. Cells, Vol. 95, pp. S26-S31, 2011.
[42]T. Wadaet al., “Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells”, Thin Solid Films, Vol.387, pp. 118-122, 2001.
[43]M. DAVE et al., “High pressure effect on MoS2 and MoSe2 single crystals grown by CVT method”, Bull. Mater. Sci., Vol. 27, pp. 213–216, 2004.
[44]W.K. Kim et al., “In situ investigation on selenization kinetics of Cu–In precursor using time-resolved, high temperature X-ray diffraction”, J. Cryst. Growth, Vol. 294, pp. 231-235, 2006.
指導教授 利定東(Tomi T. Li) 審核日期 2013-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明