博碩士論文 100323031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.135.195.91
姓名 林坤緯(Kun-wei Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證
(Optimal design and experimental verification of a method for reducing geometrical fluctuations of laser by diffuser)
相關論文
★ 超快雷射薄石英晶圓微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 雷射直寫技術應用於金屬網格軟性透明電極製作★ 多功能崁入式金屬網格透明電極技術開發
★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作★ 雷射直寫自還原金屬複合墨水製作高抗氧化銅鎳合金網格透明電極
★ 以雷射碳化靜電紡絲碳奈米纖維製作超級電容電極★ 航太用鋁合金板熱處理爐設施之研究
★ 雷射加工機應用於微米元件轉印製程之研究★ 連續與脈衝式近紅外光雷射對無鹼玻璃之改質與雙面微透鏡陣列加工
★ 使用濕式蝕刻後處理輔助之雷射藍寶石通孔研究★ 鋰離子電池模組之產熱模型建立與熱傳模擬分析
★ 脈衝雷射切割無定向矽鋼片及人工智能質量預測的實驗研究★ 雷射選擇圖案與無電鍍銅沉積應用於鋁矽酸玻璃基板之金屬化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究一種降低雷射光源幾何擾動的方法,由於雷射光源本身並非穩定的,因此在本論文中主要是將一轉動之擴散片加入系統中,使雷射光源通過後降低由於雷射之不穩定所產生的誤差。研究方法主要是利用ASAP光學軟體來模擬當光通過轉動之擴散片後產生的現象並根據成像光形來計算其重心位置,藉著重心位置變化量來判斷光源擾動程度,最後再搭配實驗驗證。
本論文系統架構茲說明如下:雷射光源通過一擴散片後,在其內部產生好幾次折射與反射並且透過轉動來使光強度均化,接著通過兩透鏡準直並聚焦,再通過兩濾光片來降低其光強度,最後藉由反射鏡將光源送至CCD上成像。由CCD所成像之光強度分佈來計算其重心位置,並根據此重心位置變化量來判斷光源擾動程度。通過實驗來得知光源所產生之重心位置變化量,並使用此結果來設定模擬的擾動量,最後模擬不同參數來分析其重心位置變化量與光強度分佈,根據其結果找出最佳化之參數,且搭配實驗來驗證模擬結果。
而根據模擬與實驗結果顯示,在系統中加入擴散片後相較於未加入時,其重心位置變化量有明顯降低,代表此法對於抑制光源擾動是有效的。
摘要(英) In this thesis we present a preliminary study and experimental results on the use of a system reducing the geometrical fluctuations of a laser, in which the effects of geometrical fluctuations of the laser beam are minimized by means of a high-speed rotating diffuser. A numerical model was implemented by using the ASAP ray tracing software to simulate the process when laser light passed through the rotating diffuser and an intensity distribution of the laser spot was recorded. Then the centroid calculated by the resultant intensity of the laser spot at different time is considered to be the extent of fluctuations. Finally, we simulated different parameters to analyze the variation of centroid and the intensity distribution of the laser spot, and find the optimal parameters.
The validity of the proposed system was verified by constructing a laboratory-built prototype. In this structure of the prototype, the light beam passed through a high-speed rotating diffuser and then the light beam was collimated and focused by means of two convex lenses and was incident on a CCD camera. According to the intensity distribution of the laser spot without diffuser, the centroid of the laser spot was calculated and then the geometrical fluctuations of the laser could be obtained at different time. The simulation and experimental results show that compared to the conventional system without diffuser, the variation of centroid with present system is much lower. It represents that the proposed method is effective for suppressing geometrical fluctuations of the laser beam.
關鍵字(中) ★ 雷射
★ 光束強度
★ 幾何擾動
★ 光強度擾動
關鍵字(英) ★ Laser
★ Geometrical fluctuations
★ Diffuser
論文目次 目錄
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 IV
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-2-1 光源擾動文獻回顧 2
1-2-2 降低光源擾動相關文獻 4
1-3 研究動機與目的 13
1-4 論文架構 13
第二章 基礎理論 14
2-1 擴散片原理介紹 14
2-2 瑞立散射與米氏散射 17
2-3 多重散射理論 19
2-4 雙向散射光分布函數 20
2-5 重心演算法 24
2-6 擴散片轉動原理 25
2-7 小結 27
第三章 系統架構 28
3-1 設備及元件介紹 28
3-1-1 量測設備 28
3-1-2 光學元件 29
3-2 量測方法 31
3-3 系統架構 33
3-4 小結 34
第四章 光學模擬 35
4-1 模擬流程 35
4-2 系統模組建立 36
4-3 光源建立 37
4-3-1 光源設定 37
4-3-2 光線數量 38
4-3-3 擾動量 39
4-4 參數規劃與分析 40
4-4-1 參數規劃 40
4-4-2 轉動圈數與顆粒大小 41
4-4-3 粒子濃度與轉動圈數 46
4-4-4 顆粒大小與粒子濃度 51
4-5 小結 55
第五章 模擬與實驗結果驗證 56
5-1 擾動實驗結果 56
5-1-1 雷射光源重心偏移結果 56
5-1-2 各轉速擴散片之重心偏移結果 58
5-2 光形實驗結果 65
5-3 實驗與模擬結果驗證 77
5-4 小結 81
第六章 結論與未來展望 82
6-1 結論 82
6-2 未來展望 83
參考文獻 85
參考文獻 參考文獻
[1] C. S. Liu, K. W. Lin, and S. H. Jiang, “Development of precise autofocusing microscope based on reduction of geometrical fluctuations,” Proceedings of SICE Annual Conference 2012, pp. 967-972, 2012. (Akita, Japan, August 20-23, 2012).
[2] J. A. Armstrong and A. W. SMITH, “Intensity fluctuations in GaAs laser emission,” Phys. rev., vol. 40, pp.155-164 , 1965.
[3] E. Jakeman, C. J. Oliver, E. R. Pike, M. Lax, and M. Zwanziger, “The intensity fluctuation distribution of laser light,” J. Phys. A: Gen. Phys., vol. 3, pp. 52-55, 1970.
[4] K. A. Janulewicz, C. M. Kim, and H. Stiel, “Speckle statistics and transverse coherence of an x-ray laser with fluctuations in its active medium,” Opt. Express., vol. 21, pp. 3225-3234, 2013.
[5] I. Takeshi, S. Machida, K. Nawata, and T. Ikegami, “Intensity fluctuations in each longitudinal mode of a multimode ALGaAs Laser,” IEEE J. Quantum Electron., vol. 13, pp. 574-579, 1977.
[6] A. Rüdigera, R. Schillinga, L. Schnuppa, W. Winklera, H. Billinga, and K. Maischbergera, “ A mode selector to suppress fluctuations in laser beam geometry,” J. Mod. Opt., vol. 28, pp. 641-658, 1981.
[7] M. Tamir, U. Halavee and, E. Azoulay, “ Power fluctuations caused by laser beam wandering and shift,” Appl. Optics., vol. 20, pp. 734-735, 1981.
[8] S. Rowan and J. Hough, “Gravitational wave detection by interferometry (ground and space),” Living Rev. Relativity., vol. 3, pp. 4-31, 2005.
[9] J. M. Alonso, B. Monacelli, J. Alda, and G. D. Boreman, “Infrared laser beam temporal fluctuations: characterization and filtering,” Opt. Eng., vol. 44, no. 5, pp. 054203-1- 054203-10, 2005.
[10] C. C. Kuo and C. S. Chao, “Characterization of probe lasers for precision thin films optical inspection system,” J. Russ. Laser Res., vol. 31, pp. 22-31, 2010.
[11] D. W. Smith, “Reducing phase fluctuations in a coherent radiation beam using feedforward control,” U.S. Patent 4847477, 1989.
[12] E. Muka and N. Y. Woo, “Apparatus for stabilizing a laser beam,” European Patent 0 229 825 B1, 1986.
[13] H. Mizoguchi, Y. Amada, and N. Ito, “Laser device,” U.S. Patent 5535233, 1996.
[14] M. J. W. Rodwell, K. J. Weingarten, and D. M. Bloom, “Reduction of timing fluctuations in a mode-locked Nd:YAG laser by electronic feedback,” Opt. Lett., vol. 11, pp. 638-640, 1986.
[15] S. Nakamura, T. Maeda, and Y. Tsunoda, “Autofocusing effect due to wavelength change of diode lasers in an optical pickup,” Appl. Opt., vol. 26, pp. 2549-2553, 1987.
[16] I. A. Andronova and I. L. Bershtein, “Suppression of fluctuations of the intensity of radiation emitted by semiconductor lasers,” Sov. J. Quantum Electron., vol. 21, pp. 616-618, 1991.
[17] V. V. Vorobev, “Reduction of fluctuations of the laser beam intensity by defocusing with an extended lens,” Sov. J. Quantum Electron., vol. 11, pp. 405-406, 1981.
[18] S. E. Miller, “On single-mode injection laser structures for reduced output fluctuations,” IEEE J. Quantum Electron., vol. 21, pp. 1644-1658, 1985.
[19] S. Matsuo, L. Yan, J. Si, T. Tomita, and S. Hashimoto, “Reduction of pulse-to-pulse fluctuation in laser pulse energy using the optical Kerr effect,” Opt. Lett., vol. 37, pp. 1646-1648, 2012.
[20] H. M. Wiseman and G. J. Milburn, “Reduction in laser-intensity fluctuations by a feedback-controlled output mirror,” Phys. Rev. A., vol. 46, pp. 2853-2858, 1992.
[21] W. R. Bennett and V. P. Chebotayev, “Laser with reduced intensity fluctuations,” U.S. Patent 5251229, 1993.
[22] R. V. Leeuwen and T. Oh, “Stabilized laser using multiphoton absorption to reduce intensity fluctuations,” U.S. Patent 6788715, 2004.
[23] C. S. Liu and S. H. Jiang, “A novel laser displacement sensor with improved robustness toward geometrical fluctuations of the laser beam,” Meas. Sci. Technol., vol. 24, pp. 105101-105108, 2013.
[24] E. Calloni, J. T. Baker, F. Barone, R. DeRosa, L. Di Fiore, L. Milano, and S. R. Restaino, “Adaptive optics approach for prefiltering of geometrical fluctuations of the input laser beam of an interferometric gravitational waves detector,” Rev. Sci. Instrum., vol. 74, pp. 2570-2574, 2003.
[25] K. H. Kim, S. Y. Lee, S. Kim, S. G. Jeong, ”DNA microarray scanner with a DVD pick-up head,” Curr. Appl. Phys., vol. 8, pp. 687-691, 2008.
[26] J. Y. Lee, Y. H. Wang, L. J. Lai, Y. J. Lin, and Y. H. Chang, “Development of an auto-focus system based on the Moiré method,” Measurement, vol. 44, pp. 1793-1800, 2011.
[27] E. Muka and N. Y. Woo, “Apparatus for stabilizing a laser beam,” European Patent 0 229 825 B1, 1986.
[28] K. Volyanskiy, Y. K. Chembo, L. Larger, and E. Rubiola, “Contribution of laser frequency and power fluctuations to the microwave phase noise of optoelectronic oscillators,” J. Lightwave Technol., vol. 28, pp. 2730-2735, 2010.
[29] M. He, W. Zhang, and X. Zhang, “A displacement sensor of dual-light based on FPGA,” Optoelectron.Lett., vol. 3, pp. 294-298, 2007.
[30] S. Nakamura, T. Maeda, and Y. Tsunoda, “Autofocusing effect due to wavelength change of diode lasers in an optical pickup,” Appl. Opt., vol. 26, pp. 2549-2553, 1987.
[31] X. Meng and L. Zeng, “Reducing the effect of laser beam fluctuations in a wind tunnel experiment by using an orthogonal-polarization compensation method,” Dept. of Precision Instrum., vol. 2, pp. 276-277, 2001.
[32] S. Gossler, M. M. Casey, A. Freise, A. Grant, and H. Grote, “Mode-cleaning and injection optics of the gravitational-wave detector GEO600,” Rev.Sci. Instrum., vol. 74, pp. 3787-3795, 2003.
[33] S. Avino, F. Barone, J. T. Baker, E. Calloni, R. DiRosa, L. DiFiore, L. Milano, and S. R. Restaino, “Adaptive Optics correction of geometrical fluctuations of Virgo input laser beam: preliminary results,” Proc. SPIE., vol. 4493, pp. 156-165, 2002.
[34] N. Descharmes and F. P. Shevlin, “Optical system and method,” U.S. Patent 20110102748, 2011.
[35] B. D. Silverstein and G. E. Nothhard, “Uniform speckle reduced laser projection using spatial and temporal mixing,” U.S. Patent 7959297, 2011.
[36] J. M. Florence, “Speckle-free display system using coherent light,” U.S. Patent 5313479, 1994.
[37] A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE., vol. 6911, pp. 69110-1-69110-7, 2008.
[38] W. Haa, S. Leea, Y. Jungb, J. Kimb, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE., vol. 6873, pp. 68731-1-68731-8, 2008.
[39] S. Lowenthal and D. Joyeux, “Speckle Removal by a Slowly Moving Diffuser Associated with a Motionless Diffuser,” J. Opt. Soc. Am., vol. 61, pp. 847-851, 1971.
[40] Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” J. Opt. Soc. Am. A-Opt. Image Sci. Vis., vol. 27, pp. 1812-1817, 2010.
[41] K. Curtis, D. A. Coleman, and G. D. Sharp, “Speckle reduction using screen vibration techniques and apparatus,” U.S. Patent 20130010356, 2013.
[42] J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE., vol. 4657, pp. 131-1-131-7, 2002.
[43] B. D. Maxson, “Systems and methods for despeckling a laser light source,” U.S. Patent 20100053476, 2010.
[44] Z. Liao, T. Xing, G. Cheng, and W. Lin, “Speckle reduction in laser projection display by modulating illumination light,” Proc. SPIE, vol. 6622, pp. 662229-1-662229-9, 2008.
[45] S. V. Egge, M. N. Akram, V. Kartashov, K. Welde, Zhaomin Tong, U. Österberg, and A. Aksnes, “Sinusoidal rotating grating for speckle reduction in laser projectors: feasibility study,” Opt. Eng., vol. 50, pp. 083202-1-083202-8, 2011.
[46] J. Domm, “Decohered laser light production system,” U.S. Patent 20090168025, 2009.
[47] J. I. Trisnadi, “Hadamard speckle contrast reduction,” Opt. Lett., vol. 29, pp. 11-13, 2004.
[48] J. Knittel, “Beam shaper for an optical storage system,” U.S. Patent 8351316, 2013.
[49] E. M. H. P. V. Dijk, S. Stallinga, D. Leo J. Vossen, and M. I. Boamfa, “Beam shaping without introducing divergence within a light beam,” U.S. Patent 8421000, 2013.
[50] D. Michaelis, C. Wachter, N. Danz, S. Kudaev, and M. Flaemmich, “Beam shaper,” U.S. Patent 8469549, 2013.
[51] T. Rupp, J. Braun, D. Vees, J. M. Weick, and D. Burger, “Beam Shaping Unit For Focusing a Laser Beam,” U.S. Patent 20130044371, 2013.
[52] F. M. Dickey, L. S. Weichrnan, and R. N. Shagam, “Laser beam shaping techniques,” Proc. SPIE, vol. 4065, pp. 338-350 , 2000.
[53] R. Pereira, B. Weichelt, D. Liang, P. J. Morais, H. Gouveia, M. A. Ahmed, A. Voss, and T. Graf, “Efficient pump beam shaping for high-power thin-disk laser systems,” Appl. Opt., vol. 49, pp. 5157-5162, 2010.
[54] K. H. Hsu and H. Y. Lin, “Effects of the spatial frequency composition of the target pattern and the number of quantization levels in diffractive beam shaper design,” Appl. Opt., vol. 51, pp. 3313-3322, 2012.
[55] H. D. Doan, Y. Akamine, and K. Fushinobu, “Fluidic laser beam shaper by using thermal lens effect,” Int. J. Heat Mass Transf., vol. 55, pp. 2807-2812, 2012.
[56] X. Deng, X. Liang, Z. Chen, W. Yu, and R. Ma, “Uniform illumination of large targets using a lens array,” Appl. Opt., vol. 25, pp. 377-381, 1986.
[57] C. Liu, F. Zhang, C. Wang, Y. Lu, R. Geng, and S. Jian, “Silica-Taper Array for Beam Shaping of High Power Laser Diode Bar,” Opt. Rev., vol. 19, pp. 150-153, 2012.
[58] P. J. Smilie and T. J. Suleski, “Variable-diameter refractive beam shaping with freeform optical surfaces,” Opt. Lett., vol. 36, pp. 4170-4172, 2011.
[59] X. H. Lee, Y. Y. Chang, and C. C. Sun, “Highly energy-efficient agricultural lighting by B+R LEDs with beam shaping using micro-lens diffuser,” Opt. Commun, vol. 291, pp. 7-14, 2013.
[60] C. Zhu and Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,” J. Biomed. Opt., vol. 18, pp. 050902-1-050902-12, 2013.
[61] F. C. MacKintosh and S. John, “Diffusing-wave spectroscopy and multiple scattering of light in correlated random media,” Phys. Rev. B., vol. 40, pp. 2383-2406, 1989.
[62] S. F. Chen, C. C. Sun, and C. S. Wu, “Design for a high dense wavelength division multiplexer based on volume holographic gratings,” Opt. Eng., vol. 43, pp. 2028-2033, 2004.
[63] H. C. Hulst, “Light scattering by small particles,” Dover Pubns, 1981.
[64] A. Horibe, M. Izhuara, E. Nihei, and Y. Koike, “Brighter backlights using highly scattered optical-transmission polymer,” J. Soc. Inf. Disp., vol. 3, pp. 169-171, 1995.
[65] A. Tagaya, M. Nagai, Y. Koike, and K. Yokoyama, “Thin liquid-crystal display backlight system with highly scattering optical transmission polymers,” Appl. Optics., vol. 40, pp. 6274-6280, 2001.
[66] J. C. Stover, “Optical scattering: measurement and analysis,” Society of Photo-Optical, 1995.
[67] J. M. Bennett, “Introduction to Surface Roughness and Scattering,” Optical Society of America, 1999.
[68] P. Beckmann and A. Spizzichino, “The scattering of electromagnetic waves from rough surfaces,” Artech House, 1987
[69] J. E. Harvey, “Light-scattering characteristics of optical surfaces,” Proc. SPIE, vol. 107, pp. 41-47, 1977.
[70] P. S. Heckbert, “Simulating global illumination using adaptive meshing,” University of California, PhD thesis, 1991.
[71] V. N. Mahajan, “Optical Imaging and Aberrations: Part I. Ray Geometrical Optics,” SPIE PRESS, 1998.
[72] R. W. Boyd, “Radiometry and the detection of optical radiation,” Wiley, 1983.
[73] C. S. Liu, and S. H. Jiang, “A novel laser displacement sensor with improved robustness toward geometrical fluctuations of the laser beam,” Meas. Sci. Technol., 2013.
[74] http://www.edmundoptics.com/
[75] http://www.thorlabs.com/
[76] G. M. Morris, S. Chakmakjian, and D. J. Schertler, “Engineered diffusers™ for display and illumination systems: Design, fabrication, and applications,” RPC Photonics, Inc., 2006.
[77] http://www.suss-microoptics.com/media/downloads/Instruction%20manual%20for%20Rotating%20diffuser%20system.pdf
指導教授 何正榮、劉建聖(Chien-Sheng Liu) 審核日期 2013-10-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明