博碩士論文 100323035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.231.229.89
姓名 謝孟傑(MENG-JIE XIE)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 運用慣性感測器於遠距復健之偵測與診斷
相關論文
★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究★ 多重微流體晶片機械應力刺激細胞培養之研究
★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)
★ 奈米矽質譜晶片於質譜檢測之應用研究★ 矽奈米結構對於質譜離子化效率探討之研究
★ 微滾軋製程應用於高分子材料轉印微結構之研究★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究
★ 利用熱壓製造類多孔隙介質之 微流道模型研究★ 單晶矽材料電化學放電鑽孔及同軸電度之研究
★ 微流道中液滴成形及滴落現象之模擬分析★ 兆聲波輔助化學溶液清潔晶圓表面汙染顆粒研究
★ 真空加熱矽奈米結構晶片對於提升質譜檢測靈敏度與離子化機制探討與應用★ 應用磁性粒子於微流體裝置之可逆接合
★ 裝置於微流體晶片上的環狀超聲波共振壓電片套用於微流體技術與質譜儀分析之間的介面應用★ Fabrication of 2.5D Micromodel for Air-Liquid Interaction Experiment
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 遠距復健為近年來全新的復健領域,藉由醫療與工程的結合,對於醫療資源不發達的地方或者因為病患失能造成的就醫不便,提供全新的復健治療方式。本研究針對膝關節處,利用微機電(MEMS,Micro-electro-mechanical system)之慣性感測器(IMU,Inertial Measurement Unit)開發一微型遠距復健裝置(Telerehabilitation device),並設計出一遠距復健整合之系統去量測觀察復健之相關成效以及研討遠距復健之可行性。預計先以膝關節置換術(TKR,Total knee replacement)的術後病患以及肌肉無力(Muscle weakness)之病患為收集之主要目標,收集之動作方面為單純膝關節活動,作為後續分析的先遣研究。研究中提出之微型遠距復健系統將有助於減輕病患在復健時的負擔、降低治療師的勞力付出、減少病患往來醫院的不便,並達到居家復健照顧與病情追蹤的目的。
首先,經由國泰綜合醫院的共同研究之下,藉由醫師與研究對象溝通並向其說明研究的目的以及相關之流程,並在受測者有自主判定之情況下取得受測者同意書;隨後,將非侵入式感測器綁至於腳踝外側,並請研究對象執行相關復健行為。經由慣性感測器將人體執行復健之波動讀取收集後,將受測者以及正常人做為比對,希望藉由程式的判定並評估病患在主動式以及被動式的復健情況下之復健情形,並對其復健狀況來探討遠距復健之成效。
摘要(英) Telerehabilitation is a new field of the rehabilitation in recent years. Through the combination of rehabilitation medicine and engineering, a new way to provide patients with rehabilitation is available now.
In this study, we used inertial sensors to design a miniature telerehabilitation equipment, which was able to detect the motion of knee joint and further to design a telerehabilitation system for measuring and following the effectiveness of rehabilitation program. The telerehabilitation system was made as a Graphical User Interface(GUI), which make the observers more easily to monitor the effectiveness of rehabilitation. We used Fast Fourier Transform(FFT) and prototype wave to analyze all the motions. Finally , we discussed the feasibility of IMU as the sensors of telerehabilitation.
This research is in collaboration with Cathay General Hospital. All informed contents were obtained before participants receiving tests. Then, we choice the patients who would receive total knee replacement and patients with muscle weakness due to brain injury.
In this study, we proposed IMU is a potential tool for the telerehabilitation. It could be reliable, to save time and reduce the cost of rehabilitation and reduce the burden of clinical health providers. Compared with traditional telerehabilitation sensors, IMU seems more convenient, reliable and useful..
關鍵字(中) ★ 遠距復健 關鍵字(英) ★ Telerehabilitation
論文目次 中文摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1前言 1
1-2微機電系統 3
1-3研究動機 3
1-4論文架構 4
第二章 文獻回顧 7
2-1遠距醫療之起源與發展 7
2-2視訊與虛擬實境應用於遠距復健 9
2-3標記追蹤(Marker tracking)應用於遠距復健 13
2-3-1超聲波 13
2-3-2磁性 16
2-3-3視覺 19
2-4視覺辨識 21
2-5慣性感測器應用於遠距復健 23
2-6文獻回顧總結 27
第三章 系統架構與測量方式 31
3-1儀器介紹 31
3-1-1 感測器 31
3-1-2踝足輔具Ankle-foot orthosis(AFO) 33
3-2系統之架構 34
3-2-1 感測器設計之位置 34
3-2-2 復健輔具的選擇 36
3-2-3 硬體架設實驗流程 36
3-3 測試者的選擇以及量測動作 37
3-3-1 量測的動作 37
3-3-2 受測者的選擇 39
3-3-3量測方式流程圖 40
3-4程式的設計 41
3-4-1 人機介面(GUI) 41
3-4-2 數據分析 43
3-4-3 參數定義 47
3-4-4 判定邏輯流程 48
3-4-5 判定參數之數據 50
3-5 系統正確評估 54
第四章 結果與討論 56
4-1 正確性 59
4-1-1 儀器評估(正常人測試) 59
4-1-2 肌肉無力 60
4-1-3 膝關節置換術 62
4-1-4 正確性總論 62
4-2 進步性 66
第五章 結論與未來展望 72
參考文獻 75
參考文獻 [1] 行政院經建會, "人力資源與社會福利," 2012.
[2] "World Population Ageing 1950-2050," 2002.
[3] 辛柏陞, "虛擬實境手部功能訓練系統之設計開發與成效探討之研究," 2005.
[4] 鍾燕宜, "行動通信即時視訊對遠距醫療諮詢成功關鍵因素之討碳," 2009.
[5] E. Taub, P. S. Lum, P. Hardin, V. W. Mark, and G. Uswatte, "AutoCITE - Automated delivery of CI therapy with reduced effort by therapists," Stroke, vol. 36, pp. 1301-1304, Jun 2005.
[6] B. Dinesen, O. Grann, C. Nielsen, O. Hejlesen, and E. Toft, "Telerehabilitation across sectors: The experiences of chronic obstructive pulmonary disease (COPD) patients and healthcare professionals," in Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE), 2011 2nd International Conference on, 2011, pp. 1-4.
[7] G. Saposnik, M. Levin, and S. Stroke Outcome Res Canada, "Virtual Reality in Stroke Rehabilitation A Meta-Analysis and Implications for Clinicians," Stroke, vol. 42, pp. 1380-1386, May 2011.
[8] L. F. Lucca, "VIRTUAL REALITY AND MOTOR REHABILITATION OF THE UPPER LIMB AFTER STROKE: A GENERATION OF PROGRESS?," Journal of Rehabilitation Medicine, vol. 41, pp. 1003-1006, Oct 2009.
[9] B. Lange, S. M. Flynn, and A. A. Rizzo, "Game-based telerehabilitation," European Journal of Physical and Rehabilitation Medicine, vol. 45, pp. 143-151, Mar 2009.
[10] D. Kairy, C. Vincent, and P. Lehoux, "How do the properties of telerehabilitation technologies change clinical practice and interprofessional communication? A qualitative case-study," in Virtual Rehabilitation International Conference, 2009, 2009, pp. 16-22.
[11] B. Q. Tran, "Home care technologies for promoting successful aging in elderly populations," in Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, 2002. Proceedings of the Second Joint, 2002, pp. 1898-1899 vol.3.
[12] N. T. E. Arsand, G. Østengen, and G. Hartvigsen, "Mobile phone-based self-management tools for type 2 diabetes: the few touch application.," Journal of Diabetes Science and Technology, vol. vol. 4, pp. pp. 328-36, 2010.
[13] 謝. 姚建安, and 陳恆順, "末期照護 :遠距安寧療護," 台灣醫學, vol. vol. 15, pp. pp. 168-172, 2011.
[14] 魏. a. 韓紹禮, "自動化電話聯繫病友服務系統之先導研究:以脊髓損傷病友為例," 台灣復健醫誌, vol. vol. 36, pp. pp. 61-73, 2008.
[15] J. K. Aggarwal and Q. Cai, "Human motion analysis: a review," in Nonrigid and Articulated Motion Workshop, 1997. Proceedings., IEEE, 1997, pp. 90-102.
[16] R. Burns, R. Hauber, A. Temkin, and S. Vesmarovich, "Telerehabilitation real-world applications: where the rubber meets the road," in [Engineering in Medicine and Biology, 1999. 21st Annual Conf. and the 1999 Annual Fall Meeting of the Biomedical Engineering Soc.] BMES/EMBS Conference, 1999. Proceedings of the First Joint, 1999, p. 672 vol.2.
[17] A. Kinsella, "Current issues in design of home telecare technologies," in [Engineering in Medicine and Biology, 1999. 21st Annual Conf. and the 1999 Annual Fall Meeting of the Biomedical Engineering Soc.] BMES/EMBS Conference, 1999. Proceedings of the First Joint, 1999, p. 690 vol.2.
[18] N. Shapcott, M. Malagodi, T. Pelleschi, J. Sanna, and M. Schmeler, "Telerehabilitation used for wheelchair prescription-video and remote pressure measurement," in [Engineering in Medicine and Biology, 1999. 21st Annual Conf. and the 1999 Annual Fall Meeting of the Biomedical Engineering Soc.] BMES/EMBS Conference, 1999. Proceedings of the First Joint, 1999, p. 679 vol.2.
[19] J. M. Winters and M. J. Rosen, "The Rehabilitation Engineering Research Center on telerehabilitation: mission and approaches," in [Engineering in Medicine and Biology, 1999. 21st Annual Conf. and the 1999 Annual Fall Meeting of the Biomedical Engineering Soc.] BMES/EMBS Conference, 1999. Proceedings of the First Joint, 1999, p. 676 vol.2.
[20] J. M. Winters, "Motion analysis and telerehabilitation: healthcare delivery standards and strategies for the new millennium," in Pediatric Gait, 2000. A new Millennium in Clinical Care and Motion Analysis Technology, 2000, pp. 16-22.
[21] R. A. Cooper, S. G. Fitzgerald, M. L. Boninger, D. M. Brienza, N. Shapcott, R. Cooper, and K. Flood, "Telerehabilitation: Expanding access to rehabilitation expertise," Proceedings of the IEEE, vol. 89, pp. 1174-1193, 2001.
[22] J. Esch, "Prolog to telerehabilitation: expanding access to rehabilitation expertise," Proceedings of the IEEE, vol. 89, pp. 1172-1173, 2001.
[23] D. J. Reinkensmeyer, C. T. Pang, J. A. Nessler, and C. C. Painter, "Web-based telerehabilitation for the upper extremity after stroke," Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 10, pp. 102-108, 2002.
[24] D. Giansanti, Y. Tiberi, and G. Maccioni, "New wearable system for the step counting based on the codivilla-spring for daily activity monitoring in stroke rehabilitation," in Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, 2008, pp. 4720-4723.
[25] M. N. Nyan, F. E. Tay, and M. Z. Mah, "Application of motion analysis system in pre-impact fall detection," J Biomech, vol. 41, pp. 2297-304, Jul 19 2008.
[26] T. Pfau, M. Ferrari, K. Parsons, and A. Wilson, "A hidden Markov model-based stride segmentation technique applied to equine inertial sensor trunk movement data," J Biomech, vol. 41, pp. 216-220, 2008.
[27] W. Durfee, J. Carey, D. Nuckley, and J. Deng, "Design and implementation of a home stroke telerehabilitation system," in Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, 2009, pp. 2422-2425.
[28] E. Guenterberg, A. Y. Yang, H. Ghasemzadeh, R. Jafari, R. Bajcsy, and S. S. Sastry, "A method for extracting temporal parameters based on hidden Markov models in body sensor networks with inertial sensors," Trans. Info. Tech. Biomed., vol. 13, pp. 1019-1030, 2009.
[29] R. C. Wagenaar, I. Sapir, Z. Yuting, S. Markovic, L. M. Vaina, and T. D. C. Little, "Continuous monitoring of functional activities using wearable, wireless gyroscope and accelerometer technology," in Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE, 2011, pp. 4844-4847.
[30] G. Burdea, "Virtual rehabilitation--benefits and challenges," 2003.
[31] K. Aminian and B. Najafi, "Capturing human motion using body-fixed sensors: outdoor measurement and clinical applications," Computer Animation and Virtual Worlds, vol. 15, pp. 79-94, May 2004.
[32] J. P. a. T. Cradduck, "The Telehealth Industry in Canada: Industry
Profile and Capability Analysis," Industry Canada, 2000.
[33] G. Burdea, V. Popescu, V. Hentz, and K. Colbert, "Virtual reality-based orthopedic telerehabilitation," Rehabilitation Engineering, IEEE Transactions on, vol. 8, pp. 430-432, 2000.
[34] V. G. Popescu, G. C. Burdea, M. Bouzit, and V. R. Hentz, "A virtual-reality-based telerehabilitation system with force feedback," Information Technology in Biomedicine, IEEE Transactions on, vol. 4, pp. 45-51, 2000.
[35] D. L. Ines and G. Abdelkader, "Mixed reality serious games: The therapist perspective," in Serious Games and Applications for Health (SeGAH), 2011 IEEE 1st International Conference on, 2011, pp. 1-10.
[36] M. Runge, G. Rehfeld, and E. Resnicek, "Balance training and exercise in geriatric patients," J Musculoskelet Neuronal Interact, vol. 1, pp. 61-5, Sep 2000.
[37] V. Popescu, G. Burdea, and M. Bouzit, "Virtual reality simulation modeling for a haptic glove," in Computer Animation, 1999. Proceedings, 1999, pp. 195-200.
[38] D. Lockery, J. F. Peters, S. Ramanna, B. L. Shay, and T. Szturm, "Store-and-Feedforward Adaptive Gaming System for Hand-Finger Motion Tracking in Telerehabilitation," Information Technology in Biomedicine, IEEE Transactions on, vol. 15, pp. 467-473, 2011.
[39] R. Dickstein, N. Abulaffio, I. Gelernter, and T. Pillar, "An ultrasonic-operated kinematic measurement system for assessment of stance balance in the clinic," Clin Biomech (Bristol, Avon), vol. 11, pp. 173-175, Apr 1996.
[40] R. N. Aguilar, H. M. M. Kerkvliet, and G. C. M. Meijer, "High-Resolution Low-Cost Ultrasonic Tracking System for Human-Interface Systems," in Instrumentation and Measurement Technology Conference, 2005. IMTC 2005. Proceedings of the IEEE, 2005, pp. 878-882.
[41] B. Coley, B. Najafi, A. Paraschiv-Ionescu, and K. Aminian, "Stair climbing detection during daily physical activity using a miniature gyroscope," Gait Posture, vol. 22, pp. 287-94, Dec 2005.
[42] J. Zhao and Y. Wang, "Autonomous Ultrasonic Indoor Tracking System," pp. 532-539, 2008.
[43] Z. Junhui and W. Yongcai, "Autonomous Ultrasonic Indoor Tracking System," in Parallel and Distributed Processing with Applications, 2008. ISPA ’08. International Symposium on, 2008, pp. 532-539.
[44] R. Cheng, W. Heinzelman, M. Sturge-Apple, and Z. Ignjatovic, "A Motion-Tracking Ultrasonic Sensor Array for Behavioral Monitoring," Sensors Journal, IEEE, vol. PP, pp. 1-1, 2011.
[45] A. Gallagher, Y. Matsuoka, and A. Wei-Tech, "An efficient real-time human posture tracking algorithm using low-cost inertial and magnetic sensors," in Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on, 2004, pp. 2967-2972 vol.3.
[46] D. Roetenberg, P. J. Slycke, and P. H. Veltink, "Ambulatory Position and Orientation Tracking Fusing Magnetic and Inertial Sensing," Biomedical Engineering, IEEE Transactions on, vol. 54, pp. 883-890, 2007.
[47] H. Chao, L. Mao, S. Shuang, Y. Wan’an, Z. Rui, and M. Q. H. Meng, "A Cubic 3-Axis Magnetic Sensor Array for Wirelessly Tracking Magnet Position and Orientation," Sensors Journal, IEEE, vol. 10, pp. 903-913, 2010.
[48] F. H. Raab, E. B. Blood, T. O. Steiner, and H. R. Jones, "Magnetic Position and Orientation Tracking System," Aerospace and Electronic Systems, IEEE Transactions on, vol. AES-15, pp. 709-718, 1979.
[49] M. Yinghong, M. Zhi-Hong, J. Wenyan, L. Chengliu, Y. Jiawei, and S. Mingui, "Magnetic Hand Tracking for Human-Computer Interface," Magnetics, IEEE Transactions on, vol. 47, pp. 970-973, 2011.
[50] M. Quwaider and S. Biswas, "Body posture identification using hidden Markov model with a wearable sensor network," presented at the Proceedings of the ICST 3rd international conference on Body area networks, Tempe, Arizona, 2008.
[51] C. Canton-Ferrer, J. R. Casas, and M. Pardas, "Towards a low cost multi-camera marker based human motion capture system," in Image Processing (ICIP), 2009 16th IEEE International Conference on, 2009, pp. 2581-2584.
[52] L. Lee and W. E. L. Grimson, "Gait analysis for recognition and classification," in Automatic Face and Gesture Recognition, 2002. Proceedings. Fifth IEEE International Conference on, 2002, pp. 148-155.
[53] K. Sung-Eun, P. Chang-Joon, and L. In-Ho, "A tracking method of end-effectors in a vision-based marker-free motion capture system," in Cybernetics and Intelligent Systems, 2004 IEEE Conference on, 2004, pp. 129-134 vol.1.
[54] C. Gates, "Attitude control of space vehicles," Automatic Control, IRE Transactions on, vol. 4, pp. 34-34, 1959.
[55] T. Sakaguchi, T. Kanamori, H. Katayose, K. Sato, and S. Inokuchi, "Human motion capture by integrating gyroscopes and accelerometers," in Multisensor Fusion and Integration for Intelligent Systems, 1996. IEEE/SICE/RSJ International Conference on, 1996, pp. 470-475.
[56] S. Miyazaki, "Long-term unrestrained measurement of stride length and walking velocity utilizing a piezoelectric gyroscope," Biomedical Engineering, IEEE Transactions on, vol. 44, pp. 753-759, 1997.
[57] C. C. Monaghan, W. J. van Riel, and P. H. Veltink, "Control of triceps surae stimulation based on shank orientation using a uniaxial gyroscope during gait," Med Biol Eng Comput, vol. 47, pp. 1181-8, Nov 2009.
[58] Z. Chun and S. Weihua, "Recognizing human daily activity using a single inertial sensor," in Intelligent Control and Automation (WCICA), 2010 8th World Congress on, 2010, pp. 282-287.
[59] Z. Yuting, S. Markovic, I. Sapir, R. C. Wagenaar, and T. D. C. Little, "Continuous functional activity monitoring based on wearable tri-axial accelerometer and gyroscope," in Pervasive Computing Technologies for Healthcare (PervasiveHealth), 2011 5th International Conference on, 2011, pp. 370-373.
[60] ST意法半導體, "STEVAL-MKI062V2," 2010.
[61] 王啟華;邱學才;伍思琪;劉玲愛;張文光, "實用人體解剖生理學," 2002.
[62] 黃鐙樂, "膝蓋關節的疾病," 2011.
指導教授 曹嘉文(CHIA-WEN TSAO) 審核日期 2013-9-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明