博碩士論文 100323039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:63 、訪客IP:3.235.223.5
姓名 邱建瑋(Jien-Wei Chiou)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鋯基塊狀金屬玻璃與金屬玻璃鍍膜 手術刀切削耐久度之研究
(The investigation of cutting durability on the Zr-based bulk metallic glass and metallic glass thin film coated surgical blade)
相關論文
★ 鋯基與鋯銅基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質提升之研究★ 非 晶 質 合 金 手 術 刀 與 非 晶 質 合 金 鍍 膜 手 術 刀 之 銳 利 度 研 究
★ 以急冷旋鑄法及機械冶金法製備Zn4Sb3熱電塊材及其熱電性質之研究★ 添加Ti顆粒對MgZnCa非晶質合金之機械性質研究
★ 不同製程對鋯基非晶質合金破裂韌性影響之研究★ 硼碳元素對鐵基非晶質鋼材玻璃形成能力、熱性質及切削性質影響之研究
★ 鋯銅基塊狀金屬玻璃複材和鋯基塊狀金屬 多孔材之製作及其性質分析之研究★ 添加鉭顆粒與球狀鈦合金對鎂鋅鈣非晶質合金機械性質影響之研究
★ 高速火焰熔射製備鐵基非晶質合金塗層及其耐磨耗性與抗腐蝕性之研究★ 不同製程對鋯-銅-鋁非晶質合金內析出ZrCu B2相分布及其機械性質影響之研究
★ 以塊狀金屬玻璃和其複材製作骨科鑽頭及其鑽孔能力之研究★ 利用急冷旋鑄及真空熱壓製備β-Zn4Sb3 奈米/微 米晶塊材之熱電性質探討
★ 無鎳鋯基及鈦基金屬玻璃生物相容性之研究★ 以鐵基金屬玻璃複材或金屬玻璃鍍膜製作手術用取皮刀並進行模擬切削性能之研究
★ 探討不同結晶率對鋯鋁鈷塊狀非晶質合金機械性質之影響★ 中低密度高熵合金之合金設計與其微結構變化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鋯基金屬玻璃具有優良的機械性質、抗蝕性與抗菌性,以塊材或是鍍膜形式應用於手術刀具上對銳利度提升有優異的表現。本研究將針對鋯基塊狀金屬玻璃與鋯基金屬玻璃鍍膜手術刀進行多次切削實驗,並與商用手術刀進行刀具切削耐久度之探討。
本研究針對Zr-Cu-Al-Ag-Si與Zr-Cu-Ni-Al-Si之合金製成之塊狀金屬玻璃手術刀以及不同膜厚(200 nm-500 nm)之金屬玻璃鍍膜手術刀進行測試及分析。系列鋯基塊狀金屬玻璃與金屬玻璃鍍膜之手術刀刀鋒表面形貌與表面粗糙度經觀測皆較商用手術刀平整,其表面粗糙度可分別降低1/10與1/5以下。系列金屬玻璃塊材硬度皆超過540 Hv,其中以鋯基-48硬度最高(580 Hv),雖不及商用手術刀(720 Hv)但仍具優異硬度。金屬玻璃鍍膜手術刀之薄膜附著力皆大於50 N,鋯基-53在膜厚500 nm下甚至高達98 N。
切削實驗選用刀鋒銳利指數(Blade Sharpness Index,BSI)作為銳利度差異之評估,此值越小代表銳利度越高。切削實驗結果顯示,系列鋯基塊狀與金屬玻璃鍍膜手術刀之原始銳利度皆高於商用手術刀,提升率皆超過20%。於20 cm切割長度後,商用手術刀之BSI為0.485,已越過0.45之鈍化標準;而同樣距離下系列鋯基塊狀金屬玻璃手術刀中以鋯基-48材質具最佳銳利度,其BSI為0.419;系列鋯基金屬玻璃鍍膜手術刀中在膜厚300 nm下保有最佳銳利度,以鋯基-48與鋯基-53之BSI分別為0.429與0.416;經切割試驗20 cm後,無論是塊狀或金屬玻璃鍍膜手術刀之銳利度維持在鈍化標準以內,表示具有較商用手術刀更優異之刀鋒耐久度。鋯基金屬玻璃手術刀耐久度提升將使手術過後具有更平整之刀疤與更迅速的復原速度。
摘要(英) Zr-based metallic glass is a promising material for medical tools due to its excellent mechanical properties, good corrosion resistance and anti-bacterial ability. According to previous research results, bulk metallic glass (BMG) blade and metallic glass thin film (MGTF) coated blade possess better blade sharpness index (BSI) than commercial surgical blade.
In this study, the BMG blades and commercial blades coated with 200-500 nm thickness of Zr-Cu-Al-Ag-Si and Zr-Cu-Ni-Al-Si MGTF were fabricated and investigated. The amorphous states of all BMGs and MGTF blades were ascertained by XRD and GIXRD. BMG blades own smoother surface than MGTF blades and commercial one which indicates smaller friction force during cutting process. The mechanical properties of BMG blade and MGTF coatings were characterized by micro-Vickers, nano-indentation and scratch test.
Results of sharpness test in the beginning reveal that both BMG-made and MGTF-coated blades possess smaller BSI value than commercial one. The cutting durability of the BMG-made, MGTF-coated, and commercial blades was evaluated by the value variation of BSI by 25 cm cutting test. The commercial blade was blunted (BSI=0.485) after 20 cm cutting path. Conversely, the smallest BSI value of 0.419 occurs at Zr48-based BMG-made blade after 20 cm cutting path. In addition, The 300 nm-thicknesses MGTF-coated blade presents the smallest BSI value after 20 cm cutting path in comparison with other thicknesses MGTF-coated blades and commercial blade. The blade cutting durability can be significant improved by BMG-made and MGTF-coated blades, both of these two kinds of blade can keep the BSI value less than 0.45 after 20 cm cutting test.
關鍵字(中) ★ 金屬玻璃
★ 醫療器械
★ 手術刀
★ 切削耐久度
關鍵字(英) ★ Metallic glass
★ Medical tools
★ Surgical blade
★ Cutting durability
論文目次 摘要 i
Abstract ii
致謝 iii
總目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
第二章 理論基礎 6
2-1 金屬玻璃發展之歷程 6
2-2 金屬玻璃之分類 9
2-3 實驗歸納法則 10
2-4 金屬玻璃之製備 12
2-4-1 氣態轉固態 12
2-4-2 液態轉固態 12
2-4-3 固態轉固態 13
2-5 金屬玻璃之特性 13
2-5-1 機械性質 14
2-5-2 磁性質 16
2-5-3 耐腐蝕性 16
2-5-4 金屬玻璃應用於醫療器材 17
2-5-5 熱塑成型性 19
2-6 金屬玻璃薄膜 20
2-6-1 直流磁控濺鍍理論 20
2-6-2 薄膜沉積原理[81] 22
2-6-3 金屬玻璃薄膜特性 23
2-7 刀鋒銳利度指數 24
2-7-1 銳利度測試之沿革 24
2-7-2 刀鋒銳利指數[27] 25
第三章 實驗方法 37
3-1 實驗流程 37
3-2 金屬玻璃製備 38
3-2-1 合金原料配置 38
3-2-2 電弧融煉與真空吸鑄 38
3-3 塊狀非晶質手術刀具之製備 39
3-3-1 線切割刀具成型 39
3-3-2 研磨加工與開鋒 39
3-4 鍍膜非晶質手術刀具之製備 40
3-4-1 靶材製作 40
3-4-2 直流磁控濺鍍 40
3-5 熱性質分析 41
3-6 微觀結構分析與觀察 41
3-6-1能量分散質譜儀分析 41
3-6-2 X光繞射與低掠角X光繞射分析 42
3-6-3 表面粗糙度分析 42
3-6-4 掃描式電子顯微鏡觀察 43
3-7 機械性質分析 43
3-7-1 微小維氏硬度儀量測 44
3-7-2 奈米壓痕儀量測 44
3-7-3 薄膜附著力分析 45
3-7-4 刀具耐久度測試 46
第四章 結果與討論 63
4-1成分分析 63
4-2熱性質分析 64
4-3 晶體結構分析 64
4-4 表面粗糙度分析 64
4-5 硬度分析 66
4-6 薄膜附著力分析 66
4-7 刀具耐久度分析 67
4-8 表面形貌觀察 69
第五章 結論 101
第六章 參考文獻 103
參考文獻 [1] A. C. Lund, "Topological and chemical arrangement of binary alloys during severe deformation," Journal of Applied Physics, vol. 95, p. 4815, 2004.
[2] 吳學陞, 工業材料 vol. 149, 1999.
[3] W. L. Johnson, "Metastable, Mechanically Alloyed and Nanocrystalline Materials," Materials Science Forum, vol. 225-227, p. 35, 1996.
[4] A. Inoue, H. Koshiba, T. Zhang, and A. Makino, "Wide supercooled liquid region and soft magnetic properties of Fe56Co7Ni7Zr0-10Nb (or Ta)0-10B20 amorphous alloys," Journal of Applied Physics, vol. 83, p. 1967, 1998.
[5] A. Inoue and K. Hashimoto, Amorphous and Nanocrystalline materials, 2001.
[6] T. C. Chieh, J. Chu, C. T. Liu, and J. K. Wu, "Corrosion of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glasses in aqueous solutions," Materials Letters, vol. 57, pp. 3022-3025, 2003.
[7] A. Inoue, "Bulk amorphous and nanocrystalline alloys with high functional properties," Materials Science and Engineering: A, vol. 304-306, pp. 1-10, 2001.
[8] M. Telford, "The case for bulk metallic glass," Materials Today, vol. 7, pp. 36-43, 2004.
[9] W. L. Johnson, "Bulk Amorphous Metal-An Emerging Engineering Material," JOM, vol. 54, pp. 40-43, 2002.
[10] J. Schroers and N. Paton, "Amorphous metal alloys form like plastics," Advanced Materials and Processes, pp. 61-63, 2006.
[11] A. Inoue, B. Shen, and A. Takeuchi, "Developments and Applications of Bulk Glassy Alloys in Late Transition Metal Base System," Materials Transactions, vol. 47, pp. 1275-1285, 2006.
[12] F. X. Liu, P. K. Liaw, W. H. Jiang, C. L. Chiang, Y. F. Gao, Y. F. Guan, et al., "Fatigue-resistance enhancements by glass-forming metallic films," Materials Science and Engineering: A, vol. 468-470, pp. 246-252, 2007.
[13] LIQUIDMETAL. (2013). Defense and Tactical Applications. Available: http://www.liquidmetal.com/applications/defense-applications/
[14] J. S. C. Jang, Y. W. Chen, L. J. Chang, H. Z. Cheng, C. C. Huang, and C. Y. Tsau, "Crystallization and fracture behavior of the Zr65-xAl7.5Cu17.5Ni10Six bulk amorphous alloys," Materials Chemistry and Physics, vol. 89, pp. 122-129, 2005.
[15] Y. H. Lai, C. J. Lee, Y. T. Cheng, H. S. Chou, H. M. Chen, X. H. Du, et al., "Bulk and microscale compressive behavior of a Zr-based metallic glass," Scripta Materialia, vol. 58, pp. 890-893, 2008.
[16] J. S. C. Jang, S. R. Jian, C. F. Chang, L. J. Chang, Y. C. Huang, T. H. Li, et al., "Thermal and mechanical properties of the Zr53Cu30Ni9Al8 based bulk metallic glass microalloyed with silicon," Journal of Alloys and Compounds, vol. 478, pp. 215-219, 2009.
[17] G. Q. Zhang, X. J. Li, M. Shao, L. N. Wang, J. L. Yang, L. P. Gao, et al., "Wear behavior of a series of Zr-based bulk metallic glasses," Materials Science and Engineering: A, vol. 475, pp. 124-127, 2008.
[18] L. Liu, C. L. Qiu, Q. Chen, K. C. Chan, and S. M. Zhang, "Deformation behavior, corrosion resistance, and cytotoxicity of Ni-free Zr-based bulk metallic glasses," J Biomed Mater Res A, vol. 86, pp. 160-9, 2008.
[19] H. C. Kou, Y. Li, T. B. Zhang, J. Li, and J. S. Li, "Electrochemical corrosion properties of Zr-and Ti-based bulk metallic glasses," Transactions of Nonferrous Metals Society of China, vol. 21, pp. 552-557, 2011.
[20] P. T. Chiang, G. J. Chen, S. R. Jian, Y. H. Shih, J. S. C. Jang, and C. H. Lai, "Surface Antimicrobial Effects of Zr61Al7.5Ni10Cu17.5Si4 Thin Film Metallic Glasses on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and Candida albicans," Fooyin Journal of Health Sciences, vol. 2, pp. 12-20, 2010.
[21] S. F. Guo, Z. Liu, K. C. Chan, W. Chen, H. J. Zhang, J. F. Wang, et al., "A plastic Ni-free Zr-based bulk metallic glass with high specific strength and good corrosion properties in simulated body fluid," Materials Letters, vol. 84, pp. 81-84, 2012.
[22] H. H. Huang, Y. S. Sun, C. P. Wu, C. F. Liu, P. K. Liaw, and W. Kai, "Corrosion resistance and biocompatibility of Ni-free Zr-based bulk metallic glass for biomedical applications," Intermetallics, vol. 30, pp. 139-143, 2012.
[23] P. H. Tsai, Y. Z. Lin, J. B. Li, S. R. Jian, J. S. C. Jang, C. Li, et al., "Sharpness improvement of surgical blade by means of ZrCuAlAgSi metallic glass and metallic glass thin film coating," Intermetallics, vol. 31, pp. 127-131, 2012.
[24] W. He, A. Chuang, Z. Cao, and P. K. Liaw, "Biocompatibility Study of Zirconium-Based Bulk Metallic Glasses for Orthopedic Applications," Metallurgical and Materials Transactions A, vol. 41, pp. 1726-1734, 2010.
[25] G. K. Jan Schroers, Thomas M. Hodges, Stephen Chan, and Themis R. Kyriakides, "Bulk metallic glasses for biomedical application," JOM, vol. 61, pp. 21-29, 2009.
[26] P. Stępień, "Micro-geometrical characteristics of the cutting edge as the intersection of two rough surfaces," Wear, vol. 269, pp. 249-261, 2010.
[27] C. T. McCarthy, M. Hussey, and M. D. Gilchrist, "On the sharpness of straight edge blades in cutting soft solids: Part I – indentation experiments," Engineering Fracture Mechanics, vol. 74, pp. 2205-2224, 2007.
[28] W. H. Zachariasen, "The atomic arrangement in glass," Journal of the American Chemical Society, vol. 54, pp. 3841-3851, 1932.
[29] J. Kramer, "Produced the first amorphous metals through vapor deposition," Annals of Physics, vol. 19, p. 37, 1934.
[30] T. Fukuroi, "The so-called transition temperature of metallic films," Nature vol. 139, p. 884, 1937.
[31] A. Brenner, D. E. Couch, and E. K. Williams, "Electrodeposition of Alloys of Phosphorus with Nickel or Cobalt," Journal of Research of the National Bureau of Standards, vol. 44, pp. 109-122, 1950.
[32] D. A. Wright, "Structure and Resistance of Thin Metal Films," Nature vol. 140, pp. 107-108, 1937.
[33] W. Klement, R. H. Willens, and P. Duwez, "Non-crystalline Structure in solidified Gold-Silicon alloys," Nature, vol. 187, pp. 869-870, 1960.
[34] P. Duwez, R. H. Willens, and W. Klement, "Continuous Series of Metastable Solid Solutions in Silver-Copper Alloys," Journal of Applied Physics, vol. 31, p. 1136, 1960.
[35] D. Turnbull, "Phase Changes," in Solid State Physics. vol. 3, S. Frederick and T. David, Eds., ed: Academic Press, 1956, pp. 225-306.
[36] D. R. Uhlmann, J. F. Hays, and D. Turnbull, "The effect of high pressure on crystallization kinetics with special reference to fused silica," Phys. Chem. Glasses, vol. 7, p. 159, 1966.
[37] D. Turnbull, "Under what conditions can a glass be formed?," Contemporary Physics, vol. 10, pp. 473-488, 1969.
[38] D. Turnbull, "Amorphous Solid Formation and Interstitial Solution Behavior in Metallic Alloy Systems," Le Journal de Physique Colloques, vol. 35, pp. C4-1-C4-10, 1974.
[39] H. S. Chen and C. E. Miller, "A Rapid Quenching Technique for the Preparation of Thin Uniform Films of Amorphous Solids," Review of Scientific Instruments, vol. 41, p. 1237, 1970.
[40] H. S. Chen, H. J. Leamy, and C. E. Miller, "Preparation of glassy metals," Annual Review of Materials Research, vol. 10, pp. 363-391, 1980.
[41] H. S. Chen, "Glassy metals," Rep. Prog. Phys, vol. 43, p. 364, 1980.
[42] H. Liebermann and C. J. Graham, "Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions," IEEE Transactions on Magnetics, vol. 12, pp. 921-923, 1976.
[43] A. C. Narasimhan, "Continuous casting method for metallic amorphous strips," U.S. Patent 4221257, 1980.
[44] A. J. Drehman, A. L. Greer, and D. Turnbull, "Bulk formation of a metallic glass: Pd40Ni40P20," Applied Physics Letters, vol. 41, pp. 716-717, 1982.
[45] H. W. Kui, A. L. Greer, and D. Turnbull, "Formation of bulk metallic glass by fluxing," Applied Physics Letters vol. 45, pp. 615-616, 1984.
[46] C. C. Koch, O. B. Cavin, C. G. McKamey, and J. O. Scarbrough, "Preparation of amorphous Ni6Nb4 by mechanical alloying," Applied Physics Letters, vol. 43, pp. 1017-1019, 1983.
[47] A. Inoue, "High strength bulk amorphous alloys with low critical cooling rates," Materials Transactions, JIM, vol. 36, pp. 866-875, 1995.
[48] A. Inoue, T. Zhang, and T. Masumoto, "Production of Amorphous Cylinder and Sheet of La55Al25Ni20 Alloy bu a Mettallic Mold Casting Method," JIM, vol. 31, pp. 425-428, 1990.
[49] A. Inoue, A. Kato, T. Zhang, and S. G. Kim, "Mg-Cu-Y Amorphous Alloys With High Mechanical Strengths Produced by a Metallic Mold Casting Method," Materials Transactions, JIM, vol. 32, pp. 609-616, 1991.
[50] A. Inoue, T. Nakamurat, N. Nishiyamatt, and T. Masumoto, "Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method," Materials transactions, JIM, vol. 33, pp. 937-945, 1992.
[51] A. Peker and W. L. Johnson, "A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10Be22.5," Applied Physics Letters, vol. 63, pp. 2342-2344, 1993.
[52] A. Inoue, "Stabilization of metallic supercooled liquid and bulk amorphous alloys," Acta Materialia, vol. 48, pp. 279-306, 2000.
[53] A. Inoue, N. Nishiyama, and H. Kimura, "Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter," Materials transactions JIM, vol. 38, pp. 179-183, 1997.
[54] A. Inoue, Y. Shinohara, and J. S. Gook, "Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting," Material Transaction, JIM, vol. 36, pp. 1427-1433, 1995.
[55] W. H. Wang, C. Dong, and C. H. Shek, "Bulk metallic glasses," Materials Science and Engineering: R: Reports, vol. 44, pp. 45-89, 2004.
[56] A. Inoue and K. Hashimoto, Amorphous and Nanocrystalline Material: Springer, 1995.
[57] H. Reed, E.Robert, and R. Abbaschian, "Principles of physical metallurgy," ed: PWS Publishing Co, 1994.
[58] J. S. C. Jang, L. J. Chang, T. H. Hung, J. C. Huang, and C. T. Liu, "Thermal stability and crystallization of Zr-Al-Cu-Ni based amorphous alloy added with boron and silicon," Intermetallics, vol. 14, pp. 951-956, 2006.
[59] J. Eckert, M. Seidel, and L. Schultz, "Formation of amorphous alloys with significant supercooled liquid region by mechanical alloying," Journal of Non-Crystalline Solids, vol. 205-207, pp. 500-503, 1996.
[60] A. Inoue and A. Takeuchi, "Recent development and application products of bulk glassy alloys," Acta Materialia, vol. 59, pp. 2243-2267, 2011.
[61] A. S. Argon, "Plastic deformation in metallic glasses," Acta Metallurgica, vol. 27, pp. 47-58, 1979.
[62] M. K. Miller and P. K. Liaw, Bulk Metallic Glasses, 2007.
[63] D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M. L. Lind, M. D. Demetriou, et al., "Designing metallic glass matrix composites with high toughness and tensile ductility," Nature, vol. 451, pp. 1085-9, 2008.
[64] J. S. C. Jang, J. Y. Ciou, T. H. Li, J. C. Huang, and T. G. Nieh, "Dispersion toughening of Mg-based bulk metallic glass reinforced with porous Mo particles," Intermetallics, vol. 18, pp. 451-458, 2010.
[65] J. S. C. Jang, Y. S. Chang, T. H. Li, P. J. Hsieh, J. C. Huang, and C. Y. A. Tsao, "Plasticity enhancement of Mg58Cu28.5Gd11Ag2.5 based bulk metallic glass composites dispersion strengthened by Ti particles," Journal of Alloys and Compounds, vol. 504, pp. S102-S105, 2010.
[66] J. S. C. Jang, S. R. Jian, D. J. Pan, Y. H. Wu, J. C. Huang, and T. G. Nieh, "Thermal and mechanical characterizations of a Zr-based bulk metallic glass composite toughened by in-situ precipitated Ta-rich particles," Intermetallics, vol. 18, pp. 560-564, 2010.
[67] J. S. C. Jang, K. C. Wu, S. R. Jian, P. J. Hsieh, J. C. Huang, and C. T. Liu, "A Ni-free Zr-based bulk metallic glass with remarkable plasticity," Journal of Alloys and Compounds, vol. 509, pp. S109-S114, 2011.
[68] J. P. Chu, J. E. Greene, J. S. C. Jang, J. C. Huang, Y.-L. Shen, P. K. Liaw, et al., "Bendable bulk metallic glass: Effects of a thin, adhesive, strong, and ductile coating," Acta Materialia, vol. 60, pp. 3226-3238, 2012.
[69] C. C. Fu, Y. C. Huang, I. S. Lee, P. H. Tsai, J. S. C. Jang, and L. J. Chang, "Mechanical Properties of A Cu-Based Bulk Metallic Glass," presented at the BMG VI, Xi’an, China, 2008.
[70] Q. Zhang, W. Zhang, and A. Inoue, "Preparation of Cu36Zr48Ag8Al8 Bulk Metallic Glass with a Diameter of 25 mm by Copper Mold Casting," Materials Transactions, vol. 48, pp. 629-631, 2007.
[71] A. Inoue, A. Takeuchi, and T. Zhang, "Ferromagnetic bulk amorphous alloys," Metallurgical and Materials Transactions A, vol. 29, pp. 1779-1793, 1998.
[72] M. E. McHenry, M. A. Willard, and D. E. Laughlin, "Amorphous and nanocrystalline materials for applications as soft magnets," Progress in Materials Science, vol. 44, pp. 291-433, 1999.
[73] L. Huang, Z. Cao, H. M. Meyer, P. K. Liaw, E. Garlea, J. R. Dunlap, et al., "Responses of bone-forming cells on pre-i mmersed Zr-based bulk metallic glasses: Effects of composition and roughness," Acta Biomater, vol. 7, pp. 395-405, 2011.
[74] J. P. Chu, J. S. C. Jang, J. C. Huang, H. S. Chou, Y. Yang, J. C. Ye, et al., "Thin film metallic glasses: Unique properties and potential applications," Thin Solid Films, vol. 520, pp. 5097-5122, 2012.
[75] 吳南儀, "添加微量矽元素對Cu36Zr48Al8Ag8塊狀玻璃金屬熱性質與機械性質影響之研究," 碩士論文, 材料系, 義守大學, 2010.
[76] J. S. C. Jang, C. F. Chang, Y. C. Huang, J. C. Huang, W. J. Chiang, and C. T. Liu, "Viscous flow and microforming of a Zr-base bulk metallic glass," Intermetallics, vol. 17, pp. 200-204, 2009.
[77] J. S. C. Jang, W. J. Li, T. H. Li, S. R. Jian, J. C. Huang, and T. G. Nieh, "Thermoplastic forming ability of a Mg-base bulk metallic glass composites reinforced with porous Mo particles," Intermetallics, vol. 18, pp. 1964-1968, 2010.
[78] J. Schroers, Q. Pham, and A. Desai, "Thermoplastic forming of bulk metallic glass_a technology for MEMS and microstructure fabrication," Microelectromechanical Systems, vol. 16, pp. 240-247, 2007.
[79] A. J. Krejcie, S. G. Kapoor, and R. E. DeVor, "A hybrid process for manufacturing surgical-grade knife blade cutting edges from bulk metallic glass," Journal of Manufacturing Processes, vol. 14, pp. 26-34, 2012.
[80] S. Karthikeyan, A. E. Hill, J. S. Cowpe, and R. D. Pilkington, "The influence of operating parameters on pulsed D.C. magnetron sputtering plasma," Vacuum, vol. 85, pp. 634-638, 2010.
[81] B. Chapman. (1992). Glow discharge processes : sputtering and plasma etching.
[82] Y. Z. Chang, P. H. Tsai, J. B. Li, H. C. Lin, J. S. C. Jang, C. Li, et al., "Zr-based metallic glass thin film coating for fatigue-properties improvement of 7075-T6 aluminum alloy," Thin Solid Films, 2013.
[83] R. W. McGorry, P. C. Dowd, and P. G. Dempsey, "Cutting moments and grip forces in meat cutting operations and the effect of knife sharpness," Applied Ergonomics, vol. 34, pp. 375-382, 2003.
[84] R. W. McGorry, P. C. Dowd, and P. G. Dempsey, "A technique for field measurement of knife sharpness," Appl Ergon, vol. 36, pp. 635-40, Sep 2005.
[85] R. W. McGorry, P. C. Dowd, and P. G. Dempsey, "The effect of blade finish and blade edge angle on forces used in meat cutting operations," Applied Ergonomics, vol. 36, pp. 71-77, 2005.
[86] T. E. Popowics and M. Fortelius, "On the cutting edge: tooth blade sharpness in herbivorous and faunivorous ma mmals," in Annales Zoologici Fennici, 1997, pp. 73-88.
[87] A. R. Evans, "Connecting morphology, function and tooth wear in microchiropterans," Biological Journal of the Linnean Society, vol. 85, pp. 81-96, 2005.
[88] O. A. Shergold and N. A. Fleck, "Experimental Investigation Into the Deep Penetration of Soft Solids by Sharp and Blunt Punches, With Application to the Piercing of Skin," Journal of Biomechanical Engineering, vol. 127, p. 838, 2005.
[89] J. Marsot, L. Claudon, and M. Jacqmin, "Assessment of knife sharpness by means of a cutting force measuring system," Appl Ergon, vol. 38, pp. 83-9, Jan 2007.
[90] C. T. McCarthy, A. N. Annaidh, and M. D. Gilchrist, "On the sharpness of straight edge blades in cutting soft solids: Part II – Analysis of blade geometry," Engineering Fracture Mechanics, vol. 77, pp. 437-451, 2010.
[91] W. C. Oliver and G. M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments," JOM, vol. 7, pp. 1564-1583, 1992.
[92] M. D. Gilchrist, S. Keenan, M. Curtis, M. Cassidy, G. Byrne, and M. Destrade, "Measuring knife stab penetration into skin simulant using a novel biaxial tension device," Forensic Sci Int, vol. 177, pp. 52-65, May 2 2008.
指導教授 鄭憲清(Jason Shian-Ching Jang) 審核日期 2013-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明