博碩士論文 100323041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.143.244.83
姓名 林義鈞(LIN, YI-JIUN)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 最佳化設計金屬有機化學氣相沉積高溫加熱系統數值分析研究
(Optimal Design of Metal-Organic Chemical Vapor Deposition High Temperature Heating System Using Numerical Analysis)
相關論文
★ 以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力★ 高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析
★ 局域性表面電漿效應應用於增益有機發光二極體發光強度之參數優化研究★ 以濺鍍CIG三元靶調變硒化製程壓力製作CIGS太陽能電池之特性分析
★ 最佳化OLED面型蒸鍍加熱器設計與腔體流場數值分析★ 以電漿診斷探討電漿輔助化學氣相沉積系統之製程環境優化對氫化非晶矽鈍化品質之影響
★ 電漿診斷系統輔助化學氣相沉積之鈍化層薄膜製程區間研究★ 以數值分析法分析氮化鎵薄膜沉膜機制之探討暨實作驗證
★ 電弧噴塗積層製造:Ta/TaN 薄膜物理氣相沉積中腔體襯套翻新與顆粒缺陷減少相關性研究★ 以RTP硒化法探討CIS薄膜及元件特性之研究
★ 局域性表面電漿共振效應應用於OLED出光增益之研究★ TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究
★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究★ 自製蘭牟爾探針診斷TE微波模式電子迴旋共振電漿
★ 以噴塗技術在不銹鋼基板上沉積氧化矽阻隔層應用於可撓式CIGS太陽電池之研究★ 使用電子迴旋共振化學氣相沉積製備異質接面太陽能電池表面鈍化氫化非晶矽薄膜之製程參數研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 加熱器為MOCVD設備中的關鍵零組件,本論文以Veeco D-180內部加熱系統作為研究目標,為了使加熱後載台表面溫度分佈均勻,總共進行八項數值分析,分別是二區段加熱片陣列形狀分析、載台材料分析、間距分析(加熱片與載台之間距離)、均溫板分析、三區段加熱片分析、載台轉速及氫氣流量分析、保護板分析、最佳化加熱器分析。整合以上實驗結果發現顯著影響載台表面溫度分佈的有:載台材料分析、均溫板分析及三區段加熱片分析。
藉由以上分析,最佳化加熱器設定參數條件有:(1) 載台材質選用碳化矽(2) 間距為4 mm(3) 加入鉬均溫板(4) 以原本D-180加熱片為基礎改良成三區段加熱片(5) 載台轉速200 rpm(6) 氫氣流量30 slm(7) 加入保護板(8)功率設定。最後,從加熱器模擬分析結果可得到,加熱器載台表面溫差4.1 ℃,載台上單一晶圓表面溫差只有2.4 ℃,載台表面溫度均勻度更只有0.09 %,成功模擬設計出最佳化MOCVD 高溫加熱系統。
摘要(英) The heater is a key component in MOCVD reaction chamber. The goal of the simulation results can be applied to inside heating system of Veeco D-180. In order to keep the susceptor surface temperature to be unformed, this study has completed eight analyses: two-heating zones analysis, susceptor material analysis, distance analysis (between the filament and the susceptor), vapor chamber analysis, three-heating zones analysis, susceptor rotation and hydrogen inlet flow analysis, shield board analysis, and optimal heater design analysis. It is found that susceptor surface temperature is influenced mostly by the results from susceptor material analysis, vapor chamber analysis, and three-heating zones analysis.
From these analyses, the optimal conditions of heater design can be obtained from the results based on susceptor material (SiC), distance (4 mm), vapor chamber (molybdenum), three heating zones, susceptor rotation (200 rpm), hydrogen inlet flow (30 slm), adding shield board and power inputs settings for this key component. Finally, the best results from these analyses are the temperature difference of susceptor surface 4.1℃, the temperature difference of wafer surface 2.4℃, and the susceptor surface temperature uniformity 0.09%. The study can demonstrate successfully that the simulated and optimal design of MOCVD high temperature heating system can be received by using numerical analysis.
關鍵字(中) ★ 金屬有機化學氣相沉積
★ 加熱器
★ 加熱系統
★ 數值分析
關鍵字(英) ★ MOCVD
★ heater
★ heating system
★ Numerical Analysis
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 研究背景及動機 3
1-3 參考文獻 10
1-4 研究內容 15
第二章MOCVD磊晶系統 18
2-1 加熱系統 19
2-2 反應腔體 23
2-3 溫度量測 26
第三章 相關理論 33
3-1 電流熱效應 33
3-2 熱傳導 34
3-3 熱對流 36
3-4 熱輻射 38
3-5 熱流耦合效應 40
3-6熱質傳耦合效應 42
3-7溫度對反應速率之影響 43
3-8 距離平方反比定律 45
第四章 電腦輔助工程數值分析 46
4-1 Ansys steady-state thermal 基本架構 46
4-1-1 前處理 47
4-1-2 分析器 49
4-1-3 後處理 52
4-2 Ansys fluent 基本架構 54
4-2-1 理論分析與基本假設 58
4-2-2 統御方程式 61
4-2-3 分析器 62
第五章 結果與討論 66
5-1 研究架構 66
5-2 利用Ansys steady-state thermal 進行模擬分析 71
5-2-1 二區段加熱片陣列形狀分析 71
5-2-2 載台材料分析 78
5-2-3 間距分析(加熱片與載台之間距離) 87
5-2-4 均溫板分析 94
5-2-5 三區段加熱片分析 100
5-2-6 結論 106
5-3 利用Ansys Fluent 進行模擬分析 107
5-3-1 載台轉速及氫氣流量分析 107
5-3-2 保護板分析 112
5-3-3 最佳化加熱器設計分析 115
第六章 結論 118
參考文獻 119
參考文獻 [1] 郭子菱, “MOCVD 設備發展現況與趨勢,” Industrial Economics & Knowledge Center,” pp. 1-7, 2012.
[2] G. Evans and R. Greif, “Effect of Boundary Conditions on the Flow and Heat Transfer in a Rotating Disk Chemical Vapor Deposition Reactor, "Numerical Heat Transfer, Vol. 12, pp. 243-252, 1987.
[3] G. Evans and R. Greif, “A Numerical Model of the Flow and Heat Transfer in a Rotating Disk Chemical Vapor Deposition Reactor,"Transactions of the ASME, Journal of heat transfer, Vol. 109, pp. 928-935, 1987.
[4] I. FOTIADIS, Anthony MKREMER, Donald R. McKENNA and Klavs F. JENSEN, “Complex flow phenomena in vertical MOCVD reactors : effect on deposition uniformity and interface abruptness.", Journal of Crystal. Growth, Vol.85, pp. 154-164, 1987.
[5] A. H. Dilawari and J. SZEKELY, “Computed results for the deposition rates and transport phenomena for an MOCVD system with a conical rotating substrate.", Journal of Crystal Growth, Vol.97, pp. 777-791, 1987.
[6] S. Patnaik and R. A. Brown, “Hydrodynamic dispersion in rotating-disk OMVPE reactors : Numerical simulation and experimental measurements.", Journal of Crystal Growth, Vol. 108, pp. 491-498, 1988.
[7] F. Durst, L. Kadinskii, “Numerical study of transport phenomena in MOCVD reactors using a finite volume multigrid solver. ", Journal of Crystal Growth, Vol. 125, pp. 612-626, 1991.
[8] G. W. Young, S. I. Hariharan, and R. Carnahan, “Flow effects in a vertical CVD Reactor," SIAM Journal on Applied Mathematics, Vol. 52, pp. 1509-1532, 1992.
[9] W. Y. Chung, D. H. Kim, and Y. S. Cho, “Modeling of Cu Thin Film Growth by MOCVD Process in a Vertical Reactor," Journal of Crystal Growth, Vol. 180, pp. 691-697, 1997.
[10] S. Joh and G. H. Evans, “Heat Transfer and Flow Stability in a Rotating Disk/Stagnation Flow Chemical Vapor Deposition Reactor," Numerical Heat Transfer, Part A: Applications, Vol. 31, pp. 867-879, 1997.
[11] D. W. Weyburne and B. S. Ahem, “Design and operating considerations for a water-cooled close-spaced reactant injector in a production scale MOCVD reactor,"Journal of Crystal Growth, Vol. 170, pp. 77-82, 1997.
[12] Theodoros G. Mihopoulos, “Simulation of flow and growth phenomena in a close-spaced reactor"Journal of Crystal Growth, Vol. 195, pp. 725-732, 2000.
[13] A. G. Mathews and J. E. Peterson, “Flow Visualizations And Transient Temperature Measurements In An Axisymmetric Impinging Jet Rapid Thermal Chemical Vapor Deposition Reactor,"Journal of Heat Transfer, Vol. 124, pp. 564-570, 2002.
[14] C. Park, J. Y. Hwang, M. Huang and T. J. Anderson, “Investigation Of An Up Flow Cold-Wall CVD Reactor By Gas Phase Raman Spectroscopy,"Thin Solid Films, Vol. 409, pp. 88-97, 2002.
[15] H. V. Santen, C. R. Kleijn, E. A. Harry and V. D. Akker, “On Turbulent Flow In Cold-Wall CVD Reactor,” Journal of Crystal Growth, Vol. 212, pp. 299-310, 2000.
[16] G. Luo, S. P. Vanka and N. Glumac, “Fluid Flow And Transport Processes In A Large Area Atmospheric Pressure Stagnation Flow CVD Reactor For Deposition Of Thin Films,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 4979-4994, 2004.
[17] B. Mitrovic, A. Gurary, L. Kadinski, “On the flow stability in vertical rotating disc MOCVD reactors under awide range of process parameters,” Journal of Crystal Growth, Vol. 287, pp. 656–663, 2005.
[18] B. Mitrovic, ”A. Parekh, J. Ramer, “Reactor design optimization based on 3D modeling of nitrides deposition in MOCVD vertical rotating disc reactors,” Journal of Crystal Growth, Vol. 289, pp. 708-714, 2006.
[19] B. Mitrovic, Alex Gurary, William Quinn, “Process conditions optimization for maximum deposition rate and uniformity in vertical rotating disc MOCVD reactors based on CFD modeling,” Journal of Crystal, Vol. 303, pp. 323-329, 2007.
[20] ZHONG ShuQuan, “Numerical studies on flow and thermal fields in MOCVD reactor,” Chinese Science Bulletin, Vol. 55, pp. 560-566, 2009.
[21] C. H. Lin, W. T. Cheng, “Effect of embedding a porous medium on the deposition rate in a vertical rotating MOCVD reactor based on CFD modeling,” International Communications in Heat and Mass Transfer, Vol. 36, pp. 680-685, 2009.
[22] 詹少彬, “MOCVD加熱系統研究,” 華中科技大學, 2008.
[23] M. Dauelsberg, C. Martin, H. Protzmann, “Modeling and process design of III-nitride MOVPE at near-atmospheric pressure in close coupled showerhead and planetary reactors,” Journal of Crystal Growth, vol. 298, pp. 418-424, 2007.
[24] D. G. Zhao, J. J. Zhu, D. S. Jiang, “Parasitic reaction and its effect on the growth rate of AlN by metal organic chemical vapor deposition,” Journal of Crystal Growth, vol. 289, pp. 72-75, 2006.
[25] B. Mitrovica, A. Gurarya, L. Kadinski, “On the flow stability in vertical rotating disc MOCVD reactors under a wide range of process parameters,” Journal of Crystal Growth, vol. 287, pp. 656-663, 2006.
[26] Ziba Nami, Ahmet Erbil, Gary S., “Reactor Design Considerations for MOCVD Growth of Thin Films,” Transations on Semiconductor Manufacturing, vol. 10(2), pp. 295-306, 1997.
[27] L. Kadinski, V. Merai and A. Parekh et al. “Computational annlysis of GaN/InGaN deposition in MOCVD vertical rotating disk ractors,” Journal of Crystal Growth,” vol. 261, pp. 175-181, 2004.
[28] B. Mitrovic, A. Parekh, J. Ramer et al. “Reactor design optimization based on 3D modeling of nitrides deposition in MOCVD vertical rotating disc reactors,” Journal of Crystal Growth, vol. 289, pp.708-714, 2006.
[29] H. Tokunaga, H. Tan and Y. Inaishi et al. “Performance of multiwafer reactor GaN MOCVD system,” Journal of Crystal Growth, vol. 221, pp. 616-621, 2000.
[30] H. W. Jackson, J. L. Watkins, S. Chung et al. "Conductive sphere in a radio frequency field: Theory and applications topositioners, heating, and noncontact measurements,” J. Appl. Phys., vol. 79(7), pp. 3370-3384, 1996.
[31] Tomoyuki Murakami, Yoshihiro Okuno, and Hiroyuki Yamasaki., “Performance of rf-assisted magnetohydrodynamics power generator,” Physics of Plasmas, vol. 12, pp. 113503-1~113503-8, 2005.
[32] 熱大成, 金屬有機化合物氣相磊晶基礎及應用, 科學出版社, 2008.
[33] Sampson, R K., Conrad, K A., and Irene, E A., “Simultaneous silicon wafer temperature and oxide film thickness measurement in rapid-thermal processing using ellipsometry,” Journal of the Electrochemical Society, vol. 140, pp. 1734-43, 1993.
[34] Sampson, R.K. and Massoud, H.Z., "Resolution of silicon wafer temperature measurement by in situ ellipsometry in a rapid thermal processor," Journal of the Electrochemical Society, vol. 140, pp. 2673-2678, 1993.
[35] Degertekin, F.L., Pei, J., Khuri-Yakub, B.T. and Saraswat, K.C., “In situ acoustic temperature tomography of semiconductor wafers,” Appl. Phys. Lett., vol. 64(11), pp. 1338-1340, 1994.
[36] Peters, Laura, "The Hottest Topic in RTP," Semiconductor International, pp. 56-62, 1991.
[37] 王鎮雄,朱朝煌,李世榮,劉傳仁,蔡豐欽譯, “ 熱傳遞學,” 高立圖書出版社, 1995.
[38] D. K. Kim, “Particle behavior in a vertical channel with thermal convection in the low Grashof number regime,” Computers & Fluids, vol. 48, pp. 183-191.
[39] 方志烈, “導體照明技術,” 電子工業出版社, 2009.
[40] Zemansky, “Heat and Thermodynamics”, 7th ed., chap 4.
[41] 陳信吉,康淵, " Ansys入門," 金華科技圖書股份有限公司, 2002.
[42] 賴美惠, “快速模面加熱系統設計,” 國立成功大學航空太空工程碩士論文, 2010.
[43] 王勣成, 有限元素法, 清華大學出版社, 2003.
[44] Ran Zuo, “Transport phenomena in radial flow MOCVD reactor with three concentric vertical inlets,” Journal of Crystal Growth, Vol. 293, pp. 498-508, 2006.
[45] H. Schlichting, Boundary-Layer Theory, McGraw Hill, 1979.
[46] ANSYS FLUENT 12.0, user ’ s Guide, 2009.
[47] G. Golan, “Integrated thin film heater-thermocouple systems,” Microelectronics Reliability, Vol. 43, pp. 509-512, 2003.
[48] G. A. Slack, “Non-metallic Crystals With High Thermal Conductivity,” J. Phys. Chem. Solids, vol. 34, pp. 321, 1973.
[49] 汪建民等, 陶瓷技術手冊, 經濟部技術部, 中華民國粉末冶金學會, 中華民國產業發展協進會出版, pp. 781-784, 1994.
[50] S. Bloom, “Band Structures of GaN and AlN,” J. Phys. Chem. Solids, vol. 32, pp. 2027, 1971.
[51] Willian D. Callister, Jr., Materials Science and Engineering An Introduction, 1999.
[52] 李文鴻, “電子迴旋共振化學氣相沉積碳化矽薄膜之低溫成長的研究,” 國立台灣科技大學化學工程技術研究所博士論文, 1994.
[53] Y.-M. Li, B. F. Fieselmann, A. Catalano, Amorphous and crystalline silicon carbide IV, Springer-Verlag, 1992.
[54] 黃振倉, “碳化矽奈米針製備及其形成機制之研究,” 國立清華大學材料科學工程研究所博士論文, 1997.
[55] 林博文, 碳化矽及其他碳化物, 陶瓷技術手冊, pp. 745-776, 1994.
[56] T. Takeuchi, H. Amano, K. Hiramatsu, N. Sawaki, I. Akasaki, J., Crystal Growth, vol. 115, 1991.
[57] Soong C Y, “Thermo-flow structure and epitaxial uniformity in large-scale metalorganic chemical vapor deposition reactors with rotating susceptor and inlet flow control,” JJAP, vol. 37, pp. 5823-5834, 1998.
指導教授 利定東 審核日期 2013-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明