博碩士論文 100323042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:107 、訪客IP:18.118.0.240
姓名 張益綸(Yi-lun Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 顆粒床過濾連續化整合系統開發研究
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 過去研究針對中高溫除塵技術-移動式顆粒床過濾器成功利用流動校正單元有效解決靜止區及實際進行冷性能過濾實驗。而在顆粒床過濾器周邊子系統 (如:進風口、濾材/粉塵篩分及濾材循環再生系統等),也都成功開發並均有相當成果。但就未來商業化系統而言,目前系統的開發仍稍嫌不足。因此論文中將依據先前成功開發顆粒床及周邊子系統,進行系統動態連續化整合系統開發與測試,並實際進行長時間連續化過濾運轉,提供未來高溫熱模系統建置依據。
首先,依據先前進風口系統為減少幾何外型產生渦流效應對於顆粒床氣體流場的影響,將使用ANSYS FLUENT數值模擬進行進風口系統幾何外型改善設計,由氣體流場分佈模擬結果可知,改善設計之進風口系統將使粉塵微粒能平順地進入顆粒床體。
其二,依據進風口改善前後設計,對於實驗測試分佈範圍廣泛的粉塵微粒進行管路沉降行為探討。而粉塵沉降將導致粉塵沉積於管路中造成堵塞,就一整合連續化系統而言,將影響系統過濾性能及長時間運轉的連續性,造成停機維修問題。研究中將探討不同粉塵粒徑大小對於系統管路沉積現象,而由實驗結果可知,粉塵沉降效應大都發生在粒徑100 μm以上,而當顆粒床轉變為移動床時,會因床體濾材孔隙率變大而使粉塵微粒具有吸引功用,而減少粉塵沉降量問題。
其三,依據先前濾材/粉塵滾筒篩分系統,進行氣密式系統改善設計,將篩分後粉塵集中蒐集與粉塵不外洩於大氣環境之雙重目的。而顆粒床與滾筒篩分系統間的濾材連續流動性能也將被進行實驗測試,以供濾材循環再生系統設計之依據。
其四,根據濾材連續流動性能實驗結果,實際進行濾材循環再生系統設計與測試,並完全將濾材循環再生回顆粒床體中反覆進行過濾。而由前面所得之成果,將初步進行整合除塵系統動態運轉連續化實驗測試,最後,提出線上即時過濾性能量測與控制系統設計,達成顆粒床合成氣除塵過濾動態連續化運轉最終目標,並提供未來系統商轉化依據。
摘要(英) The technology of moving granular bed filter for high temperature dust removal was studied successfully by using flow corrective element to solve the stagnant zone problems and establishment of cold filtration performance database. In subsystems of granular bed filter (such as gas and dust supply systems, gas inlet system, filter media/dust trommel screening system and filter media recycling system) also have developed successfully. But in terms of future commercial system, dust collection system is still currently slightly inadequate. But in terms of commercialization system remains somewhat inadequate. The thesis will develop a continuous integration system and long time filtration operations based on a previous granular bed filter and subsystems. The results can give some information for establishment of hot gas system in the future.
First of all, the vortex of gas flow distribution was decreased for improved design of gas inlet system by using numerical simulation of ANSYS FLUENT. The simulation results indicate that improving the design of gas inlet system will allow dust particles to smooth into granular bed.
Secondly, the settlement behavior of dust particles was studied according the before and after improvement design of gas inlet system. Settlement of dust particles will cause deposits in the pipeline clogging. For consideration of a continuous integration system, will affect filtration performance and continuity of the operation for a long time, downtime maintenance problems. The different dust particle sizes were studied with deposition phenomenon of dust particle in the system. The experimental results showed that dust deposition effects occurring more than 100 μm in diameter. In addition, granular bed change into moving bed, the bed porosity is larger causing the attracting characteristics of dust particles. It can reduce settling problem the amount of dust particles.
Thirdly, the airtight system was designed according to filter media/dust trommel screening system. The dual purposes of dust collection and discharge were obtained after screening procedure. The continuous flow property of filter medium was studied in order to provide the designing information of filter media recycling system.
Fourthly, the filter media recycling system was designed according to the results of flow property of filter medium. For the filter media recycling system, the repeated filtration process was obtained by filter media recycling back to granular bed. According to the thesis results, the preliminary dynamic integrated dust removal system will be test by continuous filtration operation.
Finally, the filtration performance of measurement and control online system will be proposed and to reach the targets of a continuous integration system and longtime filtration operations form the above research results. The results could be provided information of commercialization system in the future.
關鍵字(中) ★ 移動式顆粒床過濾器
★ 粉塵沉降效應
★ 氣體流場
★ 濾材連續流動性能
★ 濾材循環再生
關鍵字(英) ★ moving granular bed filter
★ dust settling effect
★ gas flow distribution
★ filter media recycling
論文目次 摘要 I
ABSTRACT III
目錄 V
附圖目錄 VII
附表目錄 X
符號說明 XI
第一章簡介 1
1.1 前言 1
1.2 文獻回顧 11
1.3 研究目的 16
1.4 論文章節架構 17
第二章 實驗設備與方法 19
2.1 獨立子系統改善設計實驗裝置 20
2.2 進風口設計對於顆粒床氣體流場分佈的影響 26
2.2.1 模擬軟體與架構 27
2.2.2 模型幾何結構與網格設定 28
2.3.3 多相流模型(multi-phase model) 30
2.2.4 統御方程式(Governing equation) 31
2.2.4.1 連續方程式(Continuity equation) 31
2.2.4.2 動量方程式(Momentum equation) 32
2.2.5 模擬參數設定 32
2.2.6 邊界與初始條件設定 33
2.2.7 數值求解方法 34
2.2.8 氣體流場均勻性分析 35
2.3 系統管路設計對粉塵沉積效應影響實驗設備與方法 38
2.3.1 實驗粉塵與濾材 38
2.3.2 實驗設備 38
2.3.3 實驗量測與觀測設備 40
2.3.4 過濾行為與機制 41
2.3.4.1 分離過濾行為 42
2.3.4.2 分離過濾機制 43
2.3.5 操作參數 47
2.3.6 實驗步驟 51
2.3.7 粉塵沉積比率分析 53
2.4 濾材流動性能測試設備與方法 54
2.4.1 實驗濾材 55
2.4.2 實驗設備 55
2.4.3 量測與觀測設備 55
2.4.4 操作參數 56
2.4.5 實驗步驟 58
2.4.6 滾筒出口濾材質量流率分析 59
2.5 濾材氣送循環再生性能實驗測試設備與方法 60
2.5.1 實驗濾材 61
2.5.2 實驗設備 61
2.5.3 量測與觀測設備 62
2.5.4 操作參數 62
2.5.5 實驗步驟 64
2.5.6 濾材氣送循環再生效率分析 65
2.6 顆粒床過濾連續化運轉測試設備與方法 67
2.6.1 實驗設備 67
2.6.2 量測與觀測設備 68
2.6.3 操作參數 68
2.6.4 實驗步驟 70
第三章 系統改善設計與測試結果 72
3.1 顆粒床過濾器及周邊子系統改善設計 72
3.2 進風口設計對氣體流場分佈影響結果與討論 80
3.2.1 氣體流場行為 81
3.2.2 進風口氣體速度分佈 84
3.2.3 過濾自由面氣體速度分佈與入射角度分析 88
3.3 粉塵沉積效應實驗結果與討論 96
3.3.1 不同床體模式之粉塵沉積效應 97
3.3.1.1 固定床模式 97
3.3.1.2 移動床模式 99
3.3.2 不同濾材種類之粉塵沉積效應 101
3.2.3 系統管路改善後之粉塵沉積效應 102
3.3.3.1 固定床模式 103
3.3.3.2 移動床模式 104
3.3.4 粉塵沉積效應影響評估討論 105
第四章 系統連續化運轉實驗測試結果與討論 109
4.1 濾材流動性能測試實驗結果與討論 109
4.1.1 滾筒濾材殘留量 109
4.1.2 滾筒出口濾材質量流率變化 114
4.1.3 單位時間質量流率比 118
4.2 濾材氣送循環再生性能測試實驗結果與討論 121
4.2.1 濾材氣送循環再生效率 122
4.2.2 濾材負荷比 126
4.2.3 臨界風速比 129
4.3 顆粒床連續化過濾運轉實驗結果與討論 132
第五章 結論 136
第六章 未來工作與建議 141
參考文獻 143
附錄 147
參考文獻 1. 經濟部能源局能源報導,2012/10,http://web3.moeaboe.gov.tw/
2. 經濟部能源局能源統計月報,2012,http://web3.moeaboe.gov.tw/ECW/populace/web_book/WebReports.aspx?book=M_CH&menu_id=142#C
3. Wright, I. G., 1987, High Temperature Erosion in Coal Combustion and Conversion Processes:A Review*, Materials Science and Engineering, pp. 261-271.
4. Seville (Ed.), j. p. k., 1997, Gas Cleaning in Demanding Applications, Blackie Academic & Professional, London, pp. 96-127.
5. U.S. EPA, October, 1998, Office of Air Quality Planning and Standards, Stationary Source Control Techniques Document for Fine Particulate Matter, PA-452/R-97-001, Research Triangle Park, NC.
6. Hoffmann, A.C. and Stein, L.E., 2008, Gas Cyclones and Swirl Tubes:Principles, Design and Operation, Second Edition, pp.45-56.
7. Reed, T. and Das, A., 1988, Handbook of Biomass Downdraft Gasifier Engine Systems, Biomass Energy Foundation,pp.71-92
8. 魏維新,1997,「環境汙染學」,合記圖書出版社,pp. 181~236。
9. 張益國等,2009,「環境保護概念」,中臺科技大學
10. Ahmadi, G. and Smith, D. H., Gas Flow and Particle Deposition in the Hot-Gas Filter Vessel of the Pinon Pine Project, Powder technology, 128, pp. 1-10.
11. Cicero, D. C., Dennis, R. A., Geiling D. W. and Schmidt, D. K., 1994, Hot-Gas Cleanup for Coal-Based Gas Turbines, ASME Mechanical Engineering, Vol. 116, pp. 70-75.
12. Ishikawa, K., Kawamata N. and Kamei K., 1993, Development of a Simultaneous Sulfur and Dust Removel Process for IGCC Power Generation System, in Gas Cleaning at High Temperatures, edited by R. Clift and J.P.K. Seville, Blackie Academic & Professional, pp. 419-435.
13. Andries, J., Scarlett, B., Bernard, J. G., Zevenhoven, C. A. P., van de Leur, R. H. M., Ennis, B., de Hann, P. H., Hogervorst, A. C. R., and Nikolic, M., 1987, Closed Loop Controlled Integrated Hot Gas Clean Up, Final Report EC Contract EN3F-0028-NL(GDF), Delft University of Technology.
14. 古政芳,2000,「流動式顆粒床過濾器阻礙物配置之設計」,國立中央大學機械工程研究所。
15. 許嘉仁,2011,「The Study of Gas Flow Behaviors and Filtration Performance of Moving Granular Bed Filter」,國立中央大學機械工程研究所。
16. Hsiau, S. S., Smid, J., Tsai, F. H., Kuo, J. T. and Chou, C. S, 2004, Placement of Flow-Corrective Elements in a Moving Granular Bed with Louver-Walls, Chemical Engineering and processing, 43, pp.1037-1045.
17. 李宣億,2008,「流動式顆粒床過濾器之滾筒式粉塵分離系筒與冷性能過濾及破碎效應研究」,國立中央大學機械工程研究所。
18. Kuo, J. T., Smid, J., Hsiau, S. S., Wang, C. Y. and Chou, C. S., 1998, Stagnant Zones in Granular Moving Bed Filter for Flue Gas Cleanup, Filtration and Separation, Vol. 35, No. 6, pp. 529-534.
19. Hsiau, S. S., Smid, J., Wang, C. Y., Kuo, J. T. and Chou, C. S., 1999, Velocity Profiles of Granules in Moving Bed Filters, Chemical Engineering Science, Vol. 54, No. 3, pp. 293-301.
20. Hsiau, S.S., Smid, J., Tsai, F.H., Kuo, J.T. and Chou, C. S., 2001, Velocities in Moving Bed Filters, Powder Technol., 114, pp. 205-212.
21. Newton, R.H., Dunham, G.S., and Simpson, T. P., 1945, The TCC Catalytic Cracking Process for Motor Gasoline Production, Trans. A. I. ChE., 41, pp. 215-218.
22. Morse, H. H., May 29, 1951, Method of Effecting Contact in a Pebble Heater, Patent, U. S. 2,255,052.
23. Johanson, J. R., 1966, The Use of Flow Corrective Inserts in Bins, Trans. ASMEJ. Eng. Ind., 88, pp. 224-230.
24. Johanson, J. R., and Kleysteuber, W. K., 1966, Flow Corrective Inserts in Bins, Chem. Eng. Prog., 62, No. 11, pp. 79-83.
25. Johanson, J. R., 1967/68, The Placement of Insert to Correct Flow Problems, Powder Technol., 1, pp. 328-333.
26. 林政煌,2004,「流動式顆粒床過濾器之流場型態設計與研究」,國立中央大學機械工程研究所。
27. 高偉智,2005,「流動式顆粒床過濾器之流動校正單元設計與分析究」,國立中央大學機械工程研究所。
28. 陳一順,2001,「流動式顆粒床過濾器三維流場觀察與冷性能測試」,國立中央大學機械工程研究所。
29. 馬家駒,2002,「流動式顆粒床過濾器冷性能測試」,國立中央大學機械工程研究所。
30. 賴信璋,2003,「流動式顆粒床過濾器過濾機制研究」,國立中央大學機械工程研究所。
31. 蔡信安,2006,「流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究」,國立中央大學機械工程研究所。
32. 王超,2005,「垃圾中轉站滾筒篩的設計及動態仿真研究」,北京機械工業學院。
33. Bai, J. H., Wu, S. Y., Lee, A. S. and Chu, C. Y., 2007 , Filtration of Dust in a Circulating Granular Bed Flter with Conical Louver Plates (CGBF-CLPs), Hazardous Materials, Vol. 142, pp. 324-331.
34. Kirsh, A. A. and Stechkina, I. B., 1978, The Theory of Aerosol Filtration with Fibrous Filter, in Fundamentals of Aerosol Science, D. T. Shaw(ED.), Wiley, New York.
35. Kalman, H., 1999, Attrition Control by Pneumatic Conveying, Powder Technol., 104, pp. 214-220.
36. Hoffmann, A.C., Stein, L.E., 2008, Gas Cyclones and Swirl Tubes:Principles, Design and Operation, Second Edition, pp.111-133.
37. Toomey R.D. and Johnstone H.F., 1952, Gaseous Fluidization of Solid Particles, Chern. Eng. Prog. 48, 220.
38. Gidaspow, D., Bahary, M. and Jayaswal, U. K., 1994, Hydrodynamic Models for Gas-Liquid-Solid Fluidization, American Society of Mechanical Engineers, FED., 185, pp.117-124.
39. Lee, K. W., 1981, Maximum Penetration Ofaerosol Particles in Granular Bed Filters, J. Aerosol Sci. Vol. 12, pp. 79 to 87.
40. Lee, K. W., and Gieseke, J. A., 1979, Envir. Sci. Technol. 13, 466.
41. Lee, K. W., and Gieseke, J. A., 1980, J. Aerosol Sci. 11, 335.
42. Coury, J. R., Thambimuthu, K. V. and Clift, R., 1987, Capture and Rebound of Dust in Granular Bed Filters. Powder Technol. 50, 253-265.
43. Huang, C. H., 2002, The Particle Collection Efficiency Curves by the Porous Substrate of an Inertial Impactor, Huang and Tsai., Aerosol and Air Quality Research, Vol. 2, No. 1,PP.01-08.
44. Brown, R. C., Shi, Huawei, et al., 2003, Similitude Study of a Moving Bed Granular Filter, Powder technology, 138, pp.201-210.
45. Chen, Y. S., Hsiau, S. S., Lee, H. Y., Chyou, Y. P. and Hsu, C. J., 2010, Size Separation of Particulates in a Trommel Screen System, Chemical Engineering and Processing: Process Intensification, Vol. 49, No. 11, pp. 1214-1221.
指導教授 蕭述三(Shu-san Hsiau) 審核日期 2013-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明