博碩士論文 100323050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:54.152.38.154
姓名 顏宸禹(Chen-yu Yen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用暫態熱線法之微型熱傳導係數量測元件之設計與製備
(Design and Fabrication of a Micro-THW Device for Thermal Conductivity Measurements)
相關論文
★ 以流體式數值模擬直流磁控電漿濺鍍系統之磁場影響★ 利用鉻薄膜為濕蝕刻遮罩製備石英奈米針狀結構之研究
★ 石英蝕刻微結構之非等向性研究★ 具有微結構之石英表面聲波感測器之共振頻率數值模擬與分析
★ 以數值模擬方法探討電感耦合式電漿輔助製程之氣體溫度與腔體熱分析★ 石英柱狀微結構濕蝕刻製程之研究
★ 利用暫態熱微影技術製備高分子微結構★ 石英柱狀微結構之表面聲波感測器之研製與特性分析
★ 利用電子束微影製作高密度石英柱狀結構★ 石英微結構對表面接觸角與潤濕性影響之研究
★ 石英奈米針狀結構表面之潤濕性及遲滯性研究★ 利用示差掃描熱量分析與雷射閃光熱擴散法 研究牛血清蛋白之熱變性
★ MOCVD噴淋式腔體沉積模擬與進氣系統分析★ The Deposition and Microstructure of Tungsten Oxide Films by Physical Vapor Deposition
★ 利用聲子波茲曼方程式分析非對稱多孔矽之熱傳性質★ 柱狀微結構對液珠熱毛細運動之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 暫態熱線法由於量測速度快、不受熱對流影響、設備架設容易等優勢,因此在流體之熱傳導係數的量測上應用相當廣泛。近年來由於奈米流體與生醫產業發展的需求,針對局部生物組織以及微量樣品的研究逐漸增加,而相關樣品之價位大多偏高且生產不易,如今隨著微製程技術的進步,發展以微量樣品進行量測的元件與技術也將逐漸起步。本文將利用微機電系統(MEMS)的製程技術配合數值模擬,設計並製作微型的熱線法量測元件。
在暫態熱線法的量測中,需由加熱的時間配合熱源的溫度以求得樣品之熱傳導係數,而系統的邊界將對其結果產生影響,該現象在微量樣品的量測中更為明顯。因此本文首先利用數值模擬針對熱源幾何外型進行探討,發現熱源截面的長寬比將影響資料選取的時間規劃,而配合適當的外邊界設定,可以精確的規劃出量測合適的資料選取範圍。此外,線熱源的長度與端部效應之間有著密切的關係,藉由增加線熱源的長度可以有效的減少端部效應的影響。在計算樣品之熱傳導係數的研究上,當熱源介於兩樣品的交界面,所測得的熱傳導係數為兩樣品熱傳導係數之算術平均數,而量測過程中端部效應的影響程度將由熱擴散係數較低的一方主導。在針對以不同電流對樣品的量測實驗中,發現所得之熱傳導係數隨著電流增加而上升,若當樣品熱傳導係數與溫度關係越密切,則使用越大的電流將導致越大誤差。本研究針對空氣、水與不同濃度的甘油進行量測,藉由比較發現其結果與文獻之間差異約5 %,可以準確地進行量測,未來該元件將應用於微量奈米流體的量測與相關研究上。元件之後的量測中發現,本研究所設計的元件其量測結果與文獻比較約低了4 ~ 6 %。
摘要(英) The transient hot-wire method (THW) is widely used for measuring the thermal conductivity of fluids, due to its fast measurement, less convectioneffect, and relatively simple set up. In recent years, nanofluids and biological fluids have drawn attention in thermal transport applications. The high-cost or diffcult-to-produce samples draw the need of defeloping miniaturized devices to measure fluid samples in small quantity. In this study, we develop a micro-THW device to measure the thermal conductivity of fluid with micro-litter volume using MEMS (micro-electromechanical system) fabrication techniques. Numerical simulations are performed to assist the geometric design and evaluation of the measuremnt errors.
First, we study the effect of the heating line geometry, and find the length-to-width ratio of the heating-line cross-section affects the measurung time interval selection. With the appropriate design of the outer boundary of the testing domain, we can obtain the right data selection of the measurements. Furthermore, the end effect has a close relation to the length of the heating-line, which can be alleviated by increasing the length of the heating-line. In the case when two media are present in the measurement, we find that the measured thermal conductivity is the arithmetic mean of the meadia and the influence of end effects is dominated by the one with lower thermal diffusivity. Different current measurements are tested, and it is found that the error increases as the current increas, which should be taken into account for high-accuracy measurements. Finally, we measure the thermal conductivity of water and glycerin with different concentration. The measured results are around 5% deiated from the literature value.
關鍵字(中) ★ 暫態熱線法
★ 微機電系統製程
★ 熱傳導係數
關鍵字(英) ★ THW
★ transient hot wire method
★ MEMS
★ thermal conductivity
論文目次 摘要 i
Abstract ii
謝誌 iv
目錄 v
圖目錄 vii
表目錄 xv
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 4
1-3 文獻回顧 5
論文架構 8
第二章 理論基礎 9
2-1 基本熱傳理論 9
2-1-1 熱傳遞的型式 9
2-1-2 熱傳導係數 10
2-1-3 熱擴散方程式 11
2-2 熱傳導係數量測方法分類 14
2-3 暫態熱線法 17
2-3-1 暫態熱線法的發展 17
2-3-2 熱線法理想數學模型的基本假設 25
2-3-3 熱線法理想數學模型 26
2-3-4 端部效應 36
第三章 研究方法 38
3-1 研究架構 38
3-2 模擬方法 40
3-2-1 模擬軟體 41
3-2-2 二維徑向模擬 42
3-2-3 二維軸向模擬 49
3-2-4 三維模擬 55
3-3 元件製程 59
3-4 溫度電阻關係量測 66
第四章 結果與討論 70
4-1 熱線法的模擬研究 70
4-1-1 熱源徑向截面幾何外型的模擬 70
4-1-2 氮化矽薄膜對於熱源的影響 78
4-1-3 兩相異介質的模擬與應用 83
4-1-4 熱線元件的外邊界影響與量測時間的評估 89
4-1-5 由二維軸向模擬探討端部效應的影響 98
4-1-6 端部效應對於相異介質量測的影響 109
4-2 暫態熱線法元件設計與製作 112
4-2-1 元件設計 112
4-2-2 熱線元件完成品 117
4-3 熱線法的實驗量測結果整理 121
4-3-1 空氣的實驗量測分析 121
4-3-2 水與甘油的實驗量測分析 128
4-3-3 不同濃度之甘油熱傳導係數驗證 136
4-3-4 不同加熱電流對於熱傳導係數估算的影響 140
第五章 結論與展望 149
5-1 結論 149
5-2 未來展望 151
參考文獻 152
附錄一 不同濃度之甘油熱傳導係數 156
參考文獻 [1] 鄧敦平,「奈米流體在能源領域的應用」,能源報導,23 - 26頁,經濟部能源局,2011年07月。
[2] J. C. Maxwell, A Treatise on Electricity and Magnetism., Vol. 1, 2nd ed., Oxford: Clarendon Press, 1904.
[3] G. Paul, M. Chopkar, I. Manna, P. K. Das, “Techniques for measuring the thermal conductivity of nanofluids: A review,” Renewable and Sustainable Energy Reviews, Vol. 14, pp. 1913-1924, 2010.
[4] D.J. Nagel and M.E. Zaghloul, “MEMS: Micro Techanology: Mega Impact,” IEEE Circuit Devices Magazine, Vol. 28, pp. 14-25, 2001.
[5] S. Lee, S. Choi, S. Li, and J. A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles,” ASME Journal of Heat Transfer, Vol. 121, pp. 280-289, 1999.
[6] Y. Nagasaka , A. Nagashima, “Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method,” Journal of physics, Vol.14, pp. 1435-1440, 1981.
[7] H. S. Carslaw, & J. C. Jaeger (Eds), Conduction of heat in solids., 2nd ed., Oxford University Press, London, 1959.
[8] J. de Boer, J. Butter, B. Grosskopf, P. Jeschke, “Hot wire technique for determining high thermal conductivities,” Refractories Journal, pp. 22-28, 1980.
[9] F. Oberhettinger, & L. Badii (Eds.), Tables of Laplace Transforms., 1st ed., Springer-Verlag, Berlin, Germany, pp. 338, 1973.
[10] S. W. Hong, Y. T. Kang, C. Kleinstreuer, J. Koo, “Impact analysis of natural convection on thermal conductivity measurements of nanofluids using the transient hot-wire method,” International Journal of Heat and Mass Transfer, Vol. 54, pp. 3448-3456, 2011.
[11] U. Gross, L.-T.-S. Tran, “Radiation effects on transient hot-wire measurements in absorbing and emitting porous media,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 3279-3290, 2004.
[12] M. Yi, H.V. Panchawagh, R. J. Podhajsky, R. L. Mahajan, “Micromachined Hot-Wire Thermal Conductivity Probe for Biomedical Applications,” Transaction on Biomedical Engineering, Vol. 56, pp. 2477-2484, 2009.
[13] A. Franco, “An apparatus for the routine measurement of thermal conductivity of materials for building application based on a transient hot-wire method,” Applied Thermal Engineering, vol. 27, pp. 2495-2504, 2007.
[14] D. Huzel, H. Reith, M.C. Schmitt, O. Picht, S. Muller, M. E. Toimil-Molares, F. Volkein, “Characterization and Application of Thermoelectric Nanowires,” Nanowires-Implementations andApplictions, pp. 289-316, 2011.
[15] J. Priestley, Experiments and Observations Relating to Various Branches of Natural Philosophy: with a continuation of the Observations on Air., Vol. 2, Nabu Press, London, 1781.
[16] M. J. Assael, K. D. Antoniadis, W. A. Wakeham, “Historical Evolution of the Transient Hot-Wire Technique,” International journal of thermophysics, pp. 1501-1072, 2010.
[17] J. C. Maxwell, Illustrations of the dynamical theory of gases., The London Edinburgh and Dublin Philosophical Magazine and Journal of Science, Vol. XIX, 4th ed., pp.19-32, 1860.
[18] R. J. E. Clausius, “On the Conduction of Heat by Gases,” Philosophical Magazine, pp.417-512, 1862.
[19] J. H. Blackwell, “The axial-flow error in the thermal conductivity probe,” Canadian Journal of Physics, Vol. 34, pp. 412-417, 1955.
[20] Y. Nagasaka, A. Nagashima, “Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method,” The Institute of Physics, Vol.14, pp. 1435-1440, 1981.
[21] 徐強,「液體導熱係數的瞬態雙熱線測量」,重慶大學製冷極低溫工程,碩士論文,2006年4月。
[22] J. Kestin, W. A. Wakeham, “A contribution to the theory of the transient hot-wire technique for thermal conductivity measurements,” Physica, pp. 102-116, 1978.
[23] Y. Nagasaka, A. Nagashima, “Simultaneous measurement of the thermal conductivity and the thermal diffusivity of liquids by the transient hot-wire method,” American Institute of Physics, pp. 229-232, 1981.
[24] M. Fujii, X. Zhang, N. Imaishi, S. Fujiwara, T. Sakamoto, “Simultaneous measurement of thermal conductivity and thermal diffusivity of liquids under microgravity conditions,” International Journal of Thermophysics, Vol. 18, No. 2, pp. 327-339, 1997.
[25] M. Yi, H. V. Panchchawagh, R. J. Podhajsky, R, L. Mahajan, “Micromachined hot-wire thermal conductivity probe biomedical applications,” IEEE Transactions on Biomedical Engineering, Vol. 56, No. 10, pp. 2477-2484, 2009.
[26] G. V. Casquillas, M. L. Berre, C. Peroz, Y. Chen, J. J. Greffet, “Microlitre hot strip devices for thermal characterization of nanofluids,” Microelectronic Engineering, pp. 1194-1197, 2007.
[27] M. J. Asseal, K. D. Antoniadis, D. Teztzis, “The use the transient hot-wire technique for measurement of the thermal conductivity of an epoxy-resin reinforced with glass fibres and/or carbon multi-walled nanotubes,” Composites Science and Technology, pp. 3178-3183, 2008.
[28] P. L. Woodfield, S. Moroe, J. Fukai, M. Fujii, M. Kohno, Y. Takata, K. Shinzato, “Numerical simulation for design of measure Hydrogen thermal conductivity at high pressure by transient hot-wire method,” Memoirs of the Faculty of Engineering, Vol. 67, pp. 209-220, 2007.
[29] F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine (Eds.), Fundamentals of heat and mass transfer, 6th ed., John Wiley & Sons Incorporated, Asia, 2007.
[30] H. Seidel, L. Csepregi, A. Heuberger, H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solutions,” Journal of The Electrochemical Society, Vol. 137, No. 11, pp. 3612-3632, 1990.
[31] P. G. Knibbe, “The end-effect error in the determination of thermal conductivity using a hot-wire apparatus,” International Joutnal of Heat and Mass Transfer, Vol. 29, No. 3, pp. 463-473, 1986.
[32] M. von Arx, O. Paul, H. Baltes, “Process-dependent thin-film thermal conductivities for thermal CMOS MEMS,” Journal of Microelecreomechanical systems, Vol. 9, No. 1, pp. 136-145, 2000.
[33] Physical properties of glycerine and its solution, Glycerine Producer’s Association, 1963.
[34] H. Xie, H. Gu, M. Fujii, X. Zhang, “Short hot wire technique for measuring thermal conductivity amd thermal diffusivity of various materials,” Measurement Science and Technology, pp. 208-214, 2006.
[35] K. Stephan, A. Laesecke, “The thermal conductivity of fluid air,” Journal of Physical and Chemical Reference Data, Vol. 14, No. 1, pp. 227-234, 1985.
[36] 邱冠勳,「白金薄膜轉接可銲接金屬之研究」,國立清華大學電子工程研究所,碩士論文,1999年。
[37] 張青蓮,顧學民,無機化學叢書,第二卷 鈹鹼土金屬硼鋁鎵分族,科學出版社,1990年。
[38] B. Pignataro, G. Grasso, L. Renna, G. Marletta, “Adhesion properties on nanometric scale of silicon oxide and silicon nitride surfaces modified by 1-octadecen,” Surface and Interface Analysis, Vol. 33, pp. 54-58, 2002.
[39] Hydrophobicity, Hydrophilicity and Silanes, Paint & Coatingd industry, 2006.
[40] M. M. Sung, G. J. Kluth, R. Maboudian, “Formation of alkylsiloxane self-assembled monolayers on Si3N4,” Journal of Vacuum Science & Technology A, Vol. 17, pp. 540-544, 1999.
指導教授 洪銘聰(Ming-tsung Hung) 審核日期 2013-11-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明