參考文獻 |
[1] W. Y. Hsu, C. S. Lee, P. J. Chen, N. T. Chen, F. Z. Chen, Z. R. Yu, C. H. Kuo, and C. H. Hwang,“Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol., vol. 20, pp.045902-1-045902-9, 2009.
[2] K. Campbell, Y. Fainman, and A. Groisman, “Pneumatically actuated adaptive lenses with millisecond response time,” Appl. Phys. Lett., vol. 91, pp. 171111-1-171111-3, 2007.
[3] C. S. Liu, S. S. Ko, and P. D. Lin, “Experimental characterization of high-performance miniature auto-focusing VCM actuator,” IEEE Trans. Magn., vol. 47, no. 4, pp. 738-745, 2011.
[4] C. S. Liu, P. D. Lin, P. H. Lin, S. S. Ke, Y. H. Chang, and J. B. Horng, “Design and characterization of miniature auto-focusing VCM actuator for cell phone camera applications,” IEEE Trans. Magn., vol. 45, no. 1, pp. 155-159, 2009.
[5] Y. Liron, Y. Paran, N. G. Zatorsky, B. Geiger, and Z. Kam, “Laser autofocusing system for high-resolution cell biological imaging,” J. Microsc.-Oxf., vol. 221, pp. 145-151, 2006.
[6] J. H. Lee, Y. S. Kim, S. R. Kim, I. H. Lee, and H. J. Pahk, “Real-time application of critical dimension measurement of TFT-LCD pattern using a newly proposed 2D image-processing algorithm,” Opt. Lasers Eng., vol. 46, pp. 558-569, 2008.
[7] S. L. Brazdilova and M. Kozubek, “Information content analysis in automated microscopy imaging using an adaptive autofocus algorithm for multimodal functions,” J. Microsc.-Oxf., vol. 236, pp. 194-202, 2009.
[8] S. Yazdanfar, K. B. Kenny, K. Tasimi, A. D. Corwin, E. L. Dixon, and R. J. Filkins, “Simple and robust image-based autofocusing for digital microscopy,” Opt. Express, vol. 16, pp. 8670-8677, 2008.
[9] C. H. Chen and T. L. Feng, “Fast 3D shape recovery of a rough mechanical component from real time passive autofocus system,” Int. J. Adv. Manuf. Technol., vol. 34, pp. 944–957, 2007.
[10] E. F. Wright, D. M. Wells, A. P. French, C Howells, and N. M Everitt, “A low-cost automated focusing system for time-lapse microscopy,” Meas. Sci. Technol. vol. 20, 027003-1- 027003-4, 2009.
[11] C. W. Chiu, P. C. P. Chao, and D.Y. Wu, “Optimal design of magnetically actuated optical image stabilizer mechanism for cameras in mobile phones via genetic algorithm,” IEEE Trans. Magn., vol. 43, pp. 2582-2584, 2007.
[12] H. Oku and M. Ishikawa, “High-speed autofocusing of a cell using diffraction patterns,” Opt. Express, vol. 14, pp. 3952-3960, 2006.
[13] P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt., vol. 47, pp. D176-D182, 2008.
[14] T. Kim and T. C. Poon, “Autofocusing in optical scanning holography,” Appl. Opt., vol. 48, pp. H153-H159, 2009.
[15] S. Lee, J. Y. Lee, W. Yang, and D. Y. Kim, “Autofocusing and edge detection schemes in cell volume measurements with quantitative phase microscopy,” Opt. Express, vol. 17, pp. 6476-6486, 2009.
[16] M. Moscaritolo, H. Jampel, F. Knezevich, and R. Zeimer, “An image based auto-focusing algorithm for digital fundus photography,” IEEE Trans. Med. Imag., vol. 28, pp. 1703-1707, 2009.
[17] K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nat. Photonics, vol. 2, pp. 311-314, 2008.
[18] C. Kwan, A. P. Snyder, R. P. Erickson, P. A. Smith, W. M. Maswadeh, B. Ayhan, J. L. Jensen, J. O. Jensen, and A. Tripathi, “Chemical agent detection using GC-IMS: a comparative study,” IEEE Sens. J., vol. 10, pp. 451-460, 2010.
[19] S. J. Abdullah, M. M. Ratnam, and Z. Samad, “Error-based autofocus system using image feedback in a liquid-filled diaphragm lens,” Opt. Eng., vol. 48, pp. 123602-1-123602-9, 2009.
[20] R. M. Wasserman, P. G. Gladnick, and K. W. Atherton, “Systems and methods for rapidly automatically focusing a machine vision inspection system,” U.S. Patent 7030351 B2, 2006.
[21] J. Jeon, I. Yoon, D. Kim, J. Lee, and J. Paik, “Fully digital auto-focusing system with automatic focusing region selection and point spread function estimation,” IEEE Trans. Magn., vol. 56, pp. 1204-1210, 2010.
[22] K. Koh, J. G. Kuk, B. Jin, W. Choiand, and N. I. Cho, “Autofocus method using dual aperture and color filters,” J. Electron. Imaging, vol. 20, pp. 033002-1-033002-6, 2011.
[23] M. Yamana, “Automatic focal-point sensing apparatus sensing high and low magnification,” U.S. Patent 5245173, 1993.
[24] D. K. Cohen, W. H. Gee, M. Ludeke, and J. Lewkowicz, “Automatic focus control: the astigmatic lens approach,” Appl. Opt., vol. 23, pp. 565-570, 1984.
[25] K. C. Fan, C. L. Chu, and J. I. Mou, “Development of a low-cost autofocusing probe for profile measurement,” Meas. Sci. Technol., vol. 12, pp. 2137-2146, 2001.
[26] Q. P. Li, F. Ding and P. Fang, “Flash CCD laser displacement sensor,” Electron. Lett., vol. 42, pp. 910-912, 2006.
[27] Y. Tanaka, T. Watanabe, K. Hamamoto, and H. Kinoshita, “Development of nanometer resolution focus detector in vacuum for extreme ultraviolet microscope,” Jpn. J. Appl. Phys., vol. 45, no. 9A, pp. 7163-7166, 2006.
[28] S. J. Lee and D. Y. Chang, “A laser sensor with multiple detectors for freeform surface digitization,” Int. J. Adv. Manuf. Technol., vol. 31, pp.1181-1190, 2007.
[29] Z. Li and K. Wu, “Autofocus system for space cameras,” Opt. Eng., vol. 44, pp. 053001-1-053001-5, 2005.
[30] H. G. Rhee, D. I. Kim, and Y. W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum., vol. 80, pp. 073103-1-073103-5, 2009.
[31] Y. Nishio, “Optical displacement meter, optical displacement measuring method, optical displacement measuring program, computer-readable recording medium, and device that records the program,” U.S. Patent 7489410 B2, 2009.
[32] M. Kataoka and K. Nemoto, “Focusing servo device and focusing servo method,” U.S. Patent 7187630 B2, 2007.
[33] M. He, W. Zhang, and X. Zhang, “A displacement sensor of dual-light based on FPGA,” Optoelectron. Lett., vol. 3, pp. 294-298, 2007.
[34] K. H. Kim, S. Y. Lee, S. Kim, S. G. Jeong, “DNA microarray scanner with a DVD pick-up head,” Curr. Appl. Phys., vol. 8, pp. 687-691, 2008.
[35] J. Y. Lee, Y. H. Wang, L. J. Lai, Y. J. Lin, and Y. H. Chang, “Development of an auto-focus system based on the Moiré method,” Measurement, vol. 44, pp. 1793-1800, 2011.
[36] H. C. Chang, T. M. Shih, N. Z. Chen, N. W. Pu, “A microscope system based on bevel-axial method auto-focus,” Opt. Lasers Eng., vol. 47, pp. 547-551, 2009.
[37] C. Y. Chen, R. C. Hwang, and Y. J. Chen, “A passive auto-focus camera control system”, Appl. Soft. Comput., vol. 10, no. 1, pp.296-303, 2009.
[38] M. A. Bueno-Ibarra, J. Alvarez-Borrego, L. Acho, and M. C. Chavez-Sanchez, “Fast Autofocus Algorithm for Automated Microscopes,” Opt. Eng., vol. 44, pp. 063601-1-063601-8, 2005.
[39] S. Yousefi, M. Rahman, and N. Kehtarnavaz, “A NEW Auto-Focus Sharpness Function for Digital and Smart-Phone Cameras”, IEEE Trans. on Consum. Electron., vol. 57, no. 3, pp.1003-1009, 2011.
[40] S. Schaefer, S. A. Boehm, and K. J. Chau, “Automated, portable, low-cost bright-field and fluorescence microscope with autofocus and autoscanning capabilitie”, Appl. Opt., vol. 51, no. 14, pp.2581-2588, 2012.
[41] http://www.mathworks.com/
[42] http://www.lin.com.tw/menu/products/Measuring/2008_Measuring/apply_science/Interferometer.asp
[43] A. Tulsi, S. Vishal, S. M. Dalip, and S. Chandra, “High-resolution full-field optical coherence microscopy using a Mirau interferometer for the quantitative imaging of biological cell”, Appl. Opt., vol. 50, no. 34, pp.6343-6351, 2011.
[44] http://www.nikon-instruments.com.cn/TechFiles/200807/291004455721.html
[45] A. Schick, “Confocal displacement sensor,” US Pattent, 7271919, 2007.
[46] 林佑儒,“疊紋自動對焦技術 Development of an auto-focus system by the moiré method,” 國立中央大學光機電工程研究所,碩士論文,2010。
[47] 賴律臻,“差動式疊紋自動對焦系統 Auto focus system based on differential technique and moiré method,” 國立中央大學光機電工程研究所,碩士論文,2011。
[48] 陳奇夆,“工程光學上課講義” 國立中央大學光機電工程研究所,2012。
[49] W. J. Smith, A. Simone, Modern Optical Engineering, 3rd ed., McGraw-Hill International Editions, 2001.
[50] http://wegudevice.com/index.html
[51] C. S. Liu, P. H. Hu, and Y. C. Lin, “Design and experimental validation of novel optics-based autofocusing microscope”, Appl. Phys. B, vol. 109, no. 2, pp.259-268, 2012.
[52] Y. Fujimoto, “Focus detecting device for an optical apparatus,” US Pattent, 6649893, 2003.
[53] K. C. Fan, “A non-contact automatic measurement for free-form surface profiles”, Computer Integrated Manufacturing Systems, vol. 10, no. 4, pp.277-285, 1997.
[54] G. Manneberg, S. Hertegard, and J. Liljencrantz, “Measurement of human vocal fold vibrations with laser triangulation”, Opt. Eng., vol. 40, no. 9, pp.2041-2044, 2001.
[55] J. Elazar, S. ˇSelmi´, M. Tomi´c, and M. Prokin, “A fibre-optic displacement sensor for a cyclotron environment based on a modified triangulation method”, J. Opt. A:Pure Appl. Opt., vol. 4, no. 6, pp.347-355, 2002.
[56] J. P. Peterson, and R. B. Peterson, “Laser triangulation for liquid film thickness measurements through multiple interfaces”, Appl. Opt, vol. 45, no. 20, pp.4916-4926, 2006.
[57] J. P. Peterson, and R. B. Peterson, “Laser triangulation for liquid film thickness measurements through multiple interfaces”, Appl. Opt, vol. 45, no. 20, pp.4916-4926, 2006.
[58] D. Braˇcun, V. Gruden, and J. Možina, “A method for surface quality assessment of die-
castings based on laser triangulation”, Meas. Sci. Technol., vol. 19, no. 4, pp. 045707-1- 045707-8, 2008.
[59] D. Ehlert, H. J. Horn, and R. Adamek, “Measuring crop biomass density by laser triangulation”, Comput. Electron. Agric., vol. 61, no. 2, pp.117-125, 2008.
[60] M. M. Klimanov, “Triangulating laser system for measurements and inspection of turbine blades”, Meas. Tech., vol. 52, no. 7, pp.725-731, 2009.
[61] A. J. Tuononen, “Laser triangulation to measure the carcass deflections of a rolling tire”, Meas. Sci. Technol., vol. 22, no. 12, pp.125304-1-125304-8, 2011.
[62] J. H. Wu, J. D. Wang, W. Fang, Y. P. Lee, Y. C. Shan, H. K. Kao, S. H. Ma, and J. A. Jiang, “Blind guidance system based on laser triangulation”, Opt. Eng., vol. 51, no. 5, pp.054302-1-054302-8, 2012.
[63] G. Bitelli, A. Simone, F. Girardi, and C. Lantieri, “Laser scanning on road pavements: a new approach for characterizing surface texture”, Sensors, vol. 12, no. 7, pp.9110-9128, 2012.
[64] 黃衍任,“自動光學檢測上課講義” 國立中央大學機械工程學系,2012。
[65] R. C. Gonzalez, R. E. Woods, Digital image processing, 3rd ed., Pearson/Prentice Hall, 2008.
[66] http://www.lin.com.tw/products/Scientific/sciinfo/CF160.htm
[67] E. Muka and N. Y. Woo, “Apparatus for stabilizing a laser beam,” European Patent 0229 825 B1, 1986.
[68] M. J. W. Rodwell, K. J. Weingarten, and D. M. Bloom, “Reduction of timing fluctuations in a mode-locked Nd:YAG laser by electronic feedback,” Opt. Lett., vol. 11, pp. 638-640, 1986.
[69] S. Nakamura, T. Maeda, and Y. Tsunoda, “Autofocusing effect due to wavelength change of diode lasers in an optical pickup,” Appl. Opt., vol. 26, pp. 2549-2553, 1987.
[70] D. W. Smith, “Reducing phase fluctuations in a coherent radiation beam using feedforward control,” U.S. Patent 4847477, 1989.
[71] I. A. Andronova and I. L Bershtein, “Suppression of fluctuations of the intensity of radiation emitted by semiconductor lasers,” Sov. J. Quantum Electron., vol. 21, pp. 616-618, 1991.
[72] H. Mizoguchi, Y. Amada, and N. Ito, “Laser device,” U.S. Patent 5535233, 1996.
[73] L. Wang, T. Tschudi, T. Halldórsson, and P. Pétursson, “Speckle reduction in laser projections with ultrasonic waves,” Opt. Eng., vol. 39, no. 5, pp. 1629-1664, 2000.
[74] S. Gossler, M. M. Casey, A. Freise, et al., “Mode-cleaning and injection optics of the gravitational-wave detector GEO600,” Rev.Sci. Instrum., vol. 74, pp. 3787-3795, 2003.
[75] B. D. Maxson, “Systems and method for despeckling a laser light source,” U.S. Patent 0053476, 2010.
[76] J. I. Trisnadi, “Hadamard speckle contrast reduction,” Opt. Lett., vol. 29, no. 1, pp. 11-13, 2004.
[77] Z. Liao, T. Xing, G. Cheng, and W. Wumei, “Speckle reduction in laser projection display by modulating illumination light,” Proc. SPIE, vol. 6622, pp. 662229-1-662229-9, 2008.
[78] A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE, vol. 6911, pp. 69110T-1-69110T-7, 2008.
[79] J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE, vol. 4657, pp. 131-137, 2002.
[80] S. V. Egge, M. N. Akram, V. Kartashov, K. Welde, Z. Tong, and U. Ö. A. Aksnes “Sinusoidal rotating grating for speckle reduction in laser projectors: feasibility study,” Opt. Eng., vol. 50, no. 8, pp. 083202-1-083202-8, 2011.
[81] F. P. Shevlin, “Optical system and method,” U.S. Patent 20110102748, 2011. |