博碩士論文 100323082 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:35.171.45.182
姓名 江昇鴻(Sheng-hong Jiang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 新型光學式自動聚焦顯微鏡的設計與其性能分析
(Design and analysis of novel optics-based autofocusing microscope)
相關論文
★ 超快雷射薄石英晶圓微鑽孔研究★ 以田口法作微型動壓軸承最佳化設計與性能評價
★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證
★ 雷射直寫技術應用於金屬網格軟性透明電極製作★ 多功能崁入式金屬網格透明電極技術開發
★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作★ 雷射直寫自還原金屬複合墨水製作高抗氧化銅鎳合金網格透明電極
★ 以雷射碳化靜電紡絲碳奈米纖維製作超級電容電極★ 航太用鋁合金板熱處理爐設施之研究
★ 雷射加工機應用於微米元件轉印製程之研究★ 連續與脈衝式近紅外光雷射對無鹼玻璃之改質與雙面微透鏡陣列加工
★ 使用濕式蝕刻後處理輔助之雷射藍寶石通孔研究★ 鋰離子電池模組之產熱模型建立與熱傳模擬分析
★ 脈衝雷射切割無定向矽鋼片及人工智能質量預測的實驗研究★ 雷射選擇圖案與無電鍍銅沉積應用於鋁矽酸玻璃基板之金屬化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文提出一套新型光學式自動聚焦顯微鏡,其架構乃是將三角測距、刀緣法、重心法、像散法和兩個不同放大倍率的成像光路作結合,並從離焦光斑隨待測物相對位置之變化情形,以此作為聚焦的判斷依據。
本論文系統架構茲說明如下:一準直鏡將雷射光源準直擴束後,才通過一遮蔽物(knife)與分光鏡(BS1),並藉由反射鏡將光源送至物鏡並聚焦於待測物上。由待測物產生一反射光束會依原路徑折反回光路系統中,此時,經由分光鏡(BS1)將光源反射至分光鏡(BS2)後,便可將光束分為兩道(光路I和光路II),兩道光束最後各自通過兩相互垂直的圓柱透鏡,才各別成像於感測器(CCD1和CCD2)上。其中光路I適合長距離、低定位精度的聚焦;光路II適合短距離、高定位精度的聚焦,透過此系統來結合兩個光路,可達到長距離、高定位精度的聚焦。藉由兩光路之性能互補並結合訊號演算法來完成一套自動聚焦顯微鏡。
根據模擬與實驗結果顯示,我們的系統相較傳統使用凸透鏡之舊架構有較高之聚焦精度。且在相同聚焦精度下,以雙行程感測光路做聚焦時,其對焦次數都少於單光路聚焦。
摘要(英) In this thesis, a novel optics-based autofocusing microscope was developed based on triangulation, knife-edge method, centroid method, astigmatic method and two optical paths. According to the different distance between the sample and the objective lens, the shape of the laser spot also varies and can be detected by a CCD sensor, i.e., the defocus distances can be found.
In this structure of the proposed autofocusing microscope, the light beam is expanded and collimated by means of an expander lens and is then bisected by a knife. The light beam is then passed through BS1, mirror, objective lens and is incident on the sample surface. The laser light reflected from the sample surface passes back through the objective lens, mirror, BS1 and is then incident on a BS2, where it is split into two separate optical paths(Optical Path I and II). Finally, the two separate optical paths are passed through two cylindrical lens, where they are perpendicular to one another and is then incident on CCD1 and CCD2, respectively. The Optical Path I can be used to implement an auto-focus with both a large range of auto-focus distances and low focus accuracy. The Optical Path II can be used to implement an
auto-focus with both a short range of auto-focus distances and high focus accuracy. The two optical paths are combined using a self-written autofocus-processing algorithm to realize an autofocusing microscope.
The simulation and experimental results show that compared to conventional optics-based autofocusing microscopes with biconvex lens, the proposed microscope system has a higher focusing accuracy. In addition, under the same focusing accuracy, the focusing times of the proposed microscope system using two optical paths are less than that of the proposed microscope system using a single optical path.
關鍵字(中) ★ 雷射源
★ 自動聚焦
★ 顯微鏡
★ 三角測距
★ 檢測
關鍵字(英) ★ Laser
★ autofocusing
★ microscope
★ triangulation
★ Inspection
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 2
1-2-1 影像式自動聚焦文獻回顧 2
1-2-2 光學式自動聚焦文獻回顧 6
1-3 研究目的 15
1-4 論文架構 15
第二章 基礎理論 16
2-1 三角測距 16
2-2 影像處理 19
2-3 小結 22
第三章 系統架構 23
3-1 元件介紹 23
3-2 雷射聚焦偵測系統 25
3-2-1 系統主要架構 25
3-2-2 雙行程感測光路架構 26
3-2-3 離焦距離與方向之判讀 29
3-2-4 特徵曲線與自動聚焦流程 30
3-3 同軸視覺即時影像系統 32
3-4 小結 33
第四章 光學模擬 34
4-1 文獻架構模擬 34
4-1-1 ZEMAX模擬凸透鏡架構 34
4-1-2 ZEMAX模擬凸透鏡離焦光斑 37
4-2 論文之架構模擬 40
4-2-1 ZEMAX模擬圓柱透鏡架構 40
4-2-2 ZEMAX模擬圓柱透鏡離焦光斑 43
4-3 模擬之離焦光斑重心變化曲線圖 45
第五章 實驗結果與討論 46
5-1 自動聚焦測試反射鏡之結果 47
5-1-1 實際離焦光斑與待測物離焦影像 47
5-1-2 實驗之離焦光斑重心變化曲線圖 48
5-1-3 自動聚焦測試 49
5-2 小結 60
第六章 誤差分析 61
6-1 雷射光源擾動 61
6-2 曲線擬合造成之誤差 73
6-3 影像閥值造成之誤差 78
6-4 小結 80
第七章 結論與未來展望 82
7-1 結論 81
7-2 未來展望 82
參考文獻 85
著作目錄 93
參考文獻 [1] W. Y. Hsu, C. S. Lee, P. J. Chen, N. T. Chen, F. Z. Chen, Z. R. Yu, C. H. Kuo, and C. H. Hwang,“Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol., vol. 20, pp.045902-1-045902-9, 2009.
[2] K. Campbell, Y. Fainman, and A. Groisman, “Pneumatically actuated adaptive lenses with millisecond response time,” Appl. Phys. Lett., vol. 91, pp. 171111-1-171111-3, 2007.
[3] C. S. Liu, S. S. Ko, and P. D. Lin, “Experimental characterization of high-performance miniature auto-focusing VCM actuator,” IEEE Trans. Magn., vol. 47, no. 4, pp. 738-745, 2011.
[4] C. S. Liu, P. D. Lin, P. H. Lin, S. S. Ke, Y. H. Chang, and J. B. Horng, “Design and characterization of miniature auto-focusing VCM actuator for cell phone camera applications,” IEEE Trans. Magn., vol. 45, no. 1, pp. 155-159, 2009.
[5] Y. Liron, Y. Paran, N. G. Zatorsky, B. Geiger, and Z. Kam, “Laser autofocusing system for high-resolution cell biological imaging,” J. Microsc.-Oxf., vol. 221, pp. 145-151, 2006.
[6] J. H. Lee, Y. S. Kim, S. R. Kim, I. H. Lee, and H. J. Pahk, “Real-time application of critical dimension measurement of TFT-LCD pattern using a newly proposed 2D image-processing algorithm,” Opt. Lasers Eng., vol. 46, pp. 558-569, 2008.
[7] S. L. Brazdilova and M. Kozubek, “Information content analysis in automated microscopy imaging using an adaptive autofocus algorithm for multimodal functions,” J. Microsc.-Oxf., vol. 236, pp. 194-202, 2009.
[8] S. Yazdanfar, K. B. Kenny, K. Tasimi, A. D. Corwin, E. L. Dixon, and R. J. Filkins, “Simple and robust image-based autofocusing for digital microscopy,” Opt. Express, vol. 16, pp. 8670-8677, 2008.
[9] C. H. Chen and T. L. Feng, “Fast 3D shape recovery of a rough mechanical component from real time passive autofocus system,” Int. J. Adv. Manuf. Technol., vol. 34, pp. 944–957, 2007.
[10] E. F. Wright, D. M. Wells, A. P. French, C Howells, and N. M Everitt, “A low-cost automated focusing system for time-lapse microscopy,” Meas. Sci. Technol. vol. 20, 027003-1- 027003-4, 2009.
[11] C. W. Chiu, P. C. P. Chao, and D.Y. Wu, “Optimal design of magnetically actuated optical image stabilizer mechanism for cameras in mobile phones via genetic algorithm,” IEEE Trans. Magn., vol. 43, pp. 2582-2584, 2007.
[12] H. Oku and M. Ishikawa, “High-speed autofocusing of a cell using diffraction patterns,” Opt. Express, vol. 14, pp. 3952-3960, 2006.
[13] P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt., vol. 47, pp. D176-D182, 2008.
[14] T. Kim and T. C. Poon, “Autofocusing in optical scanning holography,” Appl. Opt., vol. 48, pp. H153-H159, 2009.
[15] S. Lee, J. Y. Lee, W. Yang, and D. Y. Kim, “Autofocusing and edge detection schemes in cell volume measurements with quantitative phase microscopy,” Opt. Express, vol. 17, pp. 6476-6486, 2009.
[16] M. Moscaritolo, H. Jampel, F. Knezevich, and R. Zeimer, “An image based auto-focusing algorithm for digital fundus photography,” IEEE Trans. Med. Imag., vol. 28, pp. 1703-1707, 2009.
[17] K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nat. Photonics, vol. 2, pp. 311-314, 2008.
[18] C. Kwan, A. P. Snyder, R. P. Erickson, P. A. Smith, W. M. Maswadeh, B. Ayhan, J. L. Jensen, J. O. Jensen, and A. Tripathi, “Chemical agent detection using GC-IMS: a comparative study,” IEEE Sens. J., vol. 10, pp. 451-460, 2010.
[19] S. J. Abdullah, M. M. Ratnam, and Z. Samad, “Error-based autofocus system using image feedback in a liquid-filled diaphragm lens,” Opt. Eng., vol. 48, pp. 123602-1-123602-9, 2009.
[20] R. M. Wasserman, P. G. Gladnick, and K. W. Atherton, “Systems and methods for rapidly automatically focusing a machine vision inspection system,” U.S. Patent 7030351 B2, 2006.
[21] J. Jeon, I. Yoon, D. Kim, J. Lee, and J. Paik, “Fully digital auto-focusing system with automatic focusing region selection and point spread function estimation,” IEEE Trans. Magn., vol. 56, pp. 1204-1210, 2010.
[22] K. Koh, J. G. Kuk, B. Jin, W. Choiand, and N. I. Cho, “Autofocus method using dual aperture and color filters,” J. Electron. Imaging, vol. 20, pp. 033002-1-033002-6, 2011.
[23] M. Yamana, “Automatic focal-point sensing apparatus sensing high and low magnification,” U.S. Patent 5245173, 1993.
[24] D. K. Cohen, W. H. Gee, M. Ludeke, and J. Lewkowicz, “Automatic focus control: the astigmatic lens approach,” Appl. Opt., vol. 23, pp. 565-570, 1984.
[25] K. C. Fan, C. L. Chu, and J. I. Mou, “Development of a low-cost autofocusing probe for profile measurement,” Meas. Sci. Technol., vol. 12, pp. 2137-2146, 2001.
[26] Q. P. Li, F. Ding and P. Fang, “Flash CCD laser displacement sensor,” Electron. Lett., vol. 42, pp. 910-912, 2006.
[27] Y. Tanaka, T. Watanabe, K. Hamamoto, and H. Kinoshita, “Development of nanometer resolution focus detector in vacuum for extreme ultraviolet microscope,” Jpn. J. Appl. Phys., vol. 45, no. 9A, pp. 7163-7166, 2006.
[28] S. J. Lee and D. Y. Chang, “A laser sensor with multiple detectors for freeform surface digitization,” Int. J. Adv. Manuf. Technol., vol. 31, pp.1181-1190, 2007.
[29] Z. Li and K. Wu, “Autofocus system for space cameras,” Opt. Eng., vol. 44, pp. 053001-1-053001-5, 2005.
[30] H. G. Rhee, D. I. Kim, and Y. W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum., vol. 80, pp. 073103-1-073103-5, 2009.
[31] Y. Nishio, “Optical displacement meter, optical displacement measuring method, optical displacement measuring program, computer-readable recording medium, and device that records the program,” U.S. Patent 7489410 B2, 2009.
[32] M. Kataoka and K. Nemoto, “Focusing servo device and focusing servo method,” U.S. Patent 7187630 B2, 2007.
[33] M. He, W. Zhang, and X. Zhang, “A displacement sensor of dual-light based on FPGA,” Optoelectron. Lett., vol. 3, pp. 294-298, 2007.
[34] K. H. Kim, S. Y. Lee, S. Kim, S. G. Jeong, “DNA microarray scanner with a DVD pick-up head,” Curr. Appl. Phys., vol. 8, pp. 687-691, 2008.
[35] J. Y. Lee, Y. H. Wang, L. J. Lai, Y. J. Lin, and Y. H. Chang, “Development of an auto-focus system based on the Moiré method,” Measurement, vol. 44, pp. 1793-1800, 2011.
[36] H. C. Chang, T. M. Shih, N. Z. Chen, N. W. Pu, “A microscope system based on bevel-axial method auto-focus,” Opt. Lasers Eng., vol. 47, pp. 547-551, 2009.
[37] C. Y. Chen, R. C. Hwang, and Y. J. Chen, “A passive auto-focus camera control system”, Appl. Soft. Comput., vol. 10, no. 1, pp.296-303, 2009.
[38] M. A. Bueno-Ibarra, J. Alvarez-Borrego, L. Acho, and M. C. Chavez-Sanchez, “Fast Autofocus Algorithm for Automated Microscopes,” Opt. Eng., vol. 44, pp. 063601-1-063601-8, 2005.
[39] S. Yousefi, M. Rahman, and N. Kehtarnavaz, “A NEW Auto-Focus Sharpness Function for Digital and Smart-Phone Cameras”, IEEE Trans. on Consum. Electron., vol. 57, no. 3, pp.1003-1009, 2011.
[40] S. Schaefer, S. A. Boehm, and K. J. Chau, “Automated, portable, low-cost bright-field and fluorescence microscope with autofocus and autoscanning capabilitie”, Appl. Opt., vol. 51, no. 14, pp.2581-2588, 2012.
[41] http://www.mathworks.com/
[42] http://www.lin.com.tw/menu/products/Measuring/2008_Measuring/apply_science/Interferometer.asp
[43] A. Tulsi, S. Vishal, S. M. Dalip, and S. Chandra, “High-resolution full-field optical coherence microscopy using a Mirau interferometer for the quantitative imaging of biological cell”, Appl. Opt., vol. 50, no. 34, pp.6343-6351, 2011.
[44] http://www.nikon-instruments.com.cn/TechFiles/200807/291004455721.html
[45] A. Schick, “Confocal displacement sensor,” US Pattent, 7271919, 2007.
[46] 林佑儒,“疊紋自動對焦技術 Development of an auto-focus system by the moiré method,” 國立中央大學光機電工程研究所,碩士論文,2010。
[47] 賴律臻,“差動式疊紋自動對焦系統 Auto focus system based on differential technique and moiré method,” 國立中央大學光機電工程研究所,碩士論文,2011。
[48] 陳奇夆,“工程光學上課講義” 國立中央大學光機電工程研究所,2012。
[49] W. J. Smith, A. Simone, Modern Optical Engineering, 3rd ed., McGraw-Hill International Editions, 2001.
[50] http://wegudevice.com/index.html
[51] C. S. Liu, P. H. Hu, and Y. C. Lin, “Design and experimental validation of novel optics-based autofocusing microscope”, Appl. Phys. B, vol. 109, no. 2, pp.259-268, 2012.
[52] Y. Fujimoto, “Focus detecting device for an optical apparatus,” US Pattent, 6649893, 2003.
[53] K. C. Fan, “A non-contact automatic measurement for free-form surface profiles”, Computer Integrated Manufacturing Systems, vol. 10, no. 4, pp.277-285, 1997.
[54] G. Manneberg, S. Hertegard, and J. Liljencrantz, “Measurement of human vocal fold vibrations with laser triangulation”, Opt. Eng., vol. 40, no. 9, pp.2041-2044, 2001.
[55] J. Elazar, S. ˇSelmi´, M. Tomi´c, and M. Prokin, “A fibre-optic displacement sensor for a cyclotron environment based on a modified triangulation method”, J. Opt. A:Pure Appl. Opt., vol. 4, no. 6, pp.347-355, 2002.
[56] J. P. Peterson, and R. B. Peterson, “Laser triangulation for liquid film thickness measurements through multiple interfaces”, Appl. Opt, vol. 45, no. 20, pp.4916-4926, 2006.
[57] J. P. Peterson, and R. B. Peterson, “Laser triangulation for liquid film thickness measurements through multiple interfaces”, Appl. Opt, vol. 45, no. 20, pp.4916-4926, 2006.
[58] D. Braˇcun, V. Gruden, and J. Možina, “A method for surface quality assessment of die-
castings based on laser triangulation”, Meas. Sci. Technol., vol. 19, no. 4, pp. 045707-1- 045707-8, 2008.
[59] D. Ehlert, H. J. Horn, and R. Adamek, “Measuring crop biomass density by laser triangulation”, Comput. Electron. Agric., vol. 61, no. 2, pp.117-125, 2008.
[60] M. M. Klimanov, “Triangulating laser system for measurements and inspection of turbine blades”, Meas. Tech., vol. 52, no. 7, pp.725-731, 2009.
[61] A. J. Tuononen, “Laser triangulation to measure the carcass deflections of a rolling tire”, Meas. Sci. Technol., vol. 22, no. 12, pp.125304-1-125304-8, 2011.
[62] J. H. Wu, J. D. Wang, W. Fang, Y. P. Lee, Y. C. Shan, H. K. Kao, S. H. Ma, and J. A. Jiang, “Blind guidance system based on laser triangulation”, Opt. Eng., vol. 51, no. 5, pp.054302-1-054302-8, 2012.
[63] G. Bitelli, A. Simone, F. Girardi, and C. Lantieri, “Laser scanning on road pavements: a new approach for characterizing surface texture”, Sensors, vol. 12, no. 7, pp.9110-9128, 2012.
[64] 黃衍任,“自動光學檢測上課講義” 國立中央大學機械工程學系,2012。
[65] R. C. Gonzalez, R. E. Woods, Digital image processing, 3rd ed., Pearson/Prentice Hall, 2008.
[66] http://www.lin.com.tw/products/Scientific/sciinfo/CF160.htm
[67] E. Muka and N. Y. Woo, “Apparatus for stabilizing a laser beam,” European Patent 0229 825 B1, 1986.
[68] M. J. W. Rodwell, K. J. Weingarten, and D. M. Bloom, “Reduction of timing fluctuations in a mode-locked Nd:YAG laser by electronic feedback,” Opt. Lett., vol. 11, pp. 638-640, 1986.
[69] S. Nakamura, T. Maeda, and Y. Tsunoda, “Autofocusing effect due to wavelength change of diode lasers in an optical pickup,” Appl. Opt., vol. 26, pp. 2549-2553, 1987.
[70] D. W. Smith, “Reducing phase fluctuations in a coherent radiation beam using feedforward control,” U.S. Patent 4847477, 1989.
[71] I. A. Andronova and I. L Bershtein, “Suppression of fluctuations of the intensity of radiation emitted by semiconductor lasers,” Sov. J. Quantum Electron., vol. 21, pp. 616-618, 1991.
[72] H. Mizoguchi, Y. Amada, and N. Ito, “Laser device,” U.S. Patent 5535233, 1996.
[73] L. Wang, T. Tschudi, T. Halldórsson, and P. Pétursson, “Speckle reduction in laser projections with ultrasonic waves,” Opt. Eng., vol. 39, no. 5, pp. 1629-1664, 2000.
[74] S. Gossler, M. M. Casey, A. Freise, et al., “Mode-cleaning and injection optics of the gravitational-wave detector GEO600,” Rev.Sci. Instrum., vol. 74, pp. 3787-3795, 2003.
[75] B. D. Maxson, “Systems and method for despeckling a laser light source,” U.S. Patent 0053476, 2010.
[76] J. I. Trisnadi, “Hadamard speckle contrast reduction,” Opt. Lett., vol. 29, no. 1, pp. 11-13, 2004.
[77] Z. Liao, T. Xing, G. Cheng, and W. Wumei, “Speckle reduction in laser projection display by modulating illumination light,” Proc. SPIE, vol. 6622, pp. 662229-1-662229-9, 2008.
[78] A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE, vol. 6911, pp. 69110T-1-69110T-7, 2008.
[79] J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE, vol. 4657, pp. 131-137, 2002.
[80] S. V. Egge, M. N. Akram, V. Kartashov, K. Welde, Z. Tong, and U. Ö. A. Aksnes “Sinusoidal rotating grating for speckle reduction in laser projectors: feasibility study,” Opt. Eng., vol. 50, no. 8, pp. 083202-1-083202-8, 2011.
[81] F. P. Shevlin, “Optical system and method,” U.S. Patent 20110102748, 2011.
指導教授 何正榮、劉建聖
(Jeng-rong Ho、Chien-sheng Liu)
審核日期 2013-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明