博碩士論文 100323090 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.145.60.29
姓名 謝亦喬(YI-CHIAO HSIEH)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 雙光子光致聚合微製造系統之研發
(Research and Development of Two-photon Photopolymerization Micro-fabricationSystem)
相關論文
★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發
★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法
★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究★ 雙光子聚合微製造技術之三維結構 製造品質改進研究
★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進★ 組織工程用冷凍成型製造系統 之自動化製作流程開發
★ 自動相機校正與二維影像輪廓萃取研究★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究
★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合
★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究
★ 聚醚醚酮之積層製造系統開發★ 基於雙光子聚合技術之長軸成形法製造高深寬比結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 雙光子聚合(Two-Photon Polymerization, TPP)微製造技術可以製作出解析度小於10μm任意複雜形狀之立體微結構,隨著科技的進步許多產業所需之產品愈來愈小,製作微小構件之設備需求性普遍提高,又TPP為製造技術可滿足現今客製化製作3D(Three Dimensional)產品的主流技術快速原型(Rapid Prototyping)解析度不足之缺憾。本研究將以TPP微製造技術為基礎,著重在微製造系統的建立,以製造出業界實際應用要求,其尺寸達毫米等級且精度達到微米等級之產品。因此在本研究之TPP微製造系統中使用伺服馬達驅動之線性運動平台(Linear Stage Drived by Servo Motor)滿足產品尺寸可達毫米之需求,及利用樣品承載台之水平校正法及對雷射光輸出之光功率進行分析以求精度達到微米等級之水準。經過研究成果顯示本研究已成功研發TPP微製造系統且已聚合出初步產品雛形。
摘要(英) Two-photon polymerization micro manufacturing technology can produce less than 10μm resolution of any complex shape stereo microstructure, with advances technology required for many industrial products that become smaller, the production of small components for equipment a general increase in demand for sex, but also the manufacturing technology TPP customized to the needs of in the present production Three Dimensional mainstream technology products Rapid Prototyping insufficient resolution flaw. This research use TPP technology for focusing on the establishment of micro-manufacturing systems to produce the industry’s requirements of practical application, the size of millimeter precision micron grade level and the product. Therefore, in this study TPPmicro-fabrication system using linear stage drived by servo motor products to meet the demand for sizes up to mm, Sample mounting platform using the right level of correction method and the laser light output analysis of the optical power to reached the level of accuracy of micron ratings. After research shows, this study has successfully developed TPPmicro-fabricationsystems and have been polymerization product of a preliminary prototype.
關鍵字(中) ★ 雙光子光致聚合
★ 體素
★ 奈秒雷射
★ 伺服馬達驅動之線性運動平台
關鍵字(英) ★ Two-Photon Polymerization
★ Voxel
★ Nanosecond Laser
★ Linear Stage Drived by Servo Motor
論文目次 中文摘要 ……………………………………………………………… ii
ABSTRACT ……………………………………………………………… iii
目錄 ……………………………………………………………… iv
圖目錄 ……………………………………………………………… v
表目錄 ……………………………………………………………… vii
第一章 緒論………………………………………………………… 1
1-1 研究背景…………………………………………………… 1
1-2 文獻回顧…………………………………………………… 4
1-3 研究動機與目的…………………………………………… 11
第二章 理論說明…………………………………………………… 12
2-1 雙光子吸收之光致聚合反應……………………………… 12
2-2 雙光子聚合微製造技術…………………………………… 14
2-3 雙光子微製造技術系統分析……………………………… 18
2-4 無限遠光學系統…………………………………………… 22
2-5 繞射極限…………………………………………………… 24
2-6 聲光調變器………………………………………………… 25
第三章 研究方法…………………………………………………… 27
3-1 雙光子光致聚合微製造技術系統之光路設計…………… 27
3-2 系統硬體設備介紹………………………………………… 30
3-3 系統硬體及設備空間配置………………………………… 36
3-4 樣品乘載台之水平校正…………………………………… 41
3-5 雷射光輸出功率穩定度分析……………………………… 43
第四章 結果與討論………………………………………………… 48
4-1 雙光子光致聚合微製造技術系統之校正成果…………… 48
4-2 雙光子光致聚合微製造初步聚合成果…………………… 56
第五章 結論與未來研究方向……………………………………… 59
5-1 結論………………………………………………………… 59
5-2 未來研究方向……………………………………………… 59
參考文獻 ……………………………………………………………… 60
參考文獻 ﹝1﹞ Miwa, M., Juodkazis, S., Kawakami, T., Matsuo, S., and Misawa, H., “Femtosecond Two-photon Stereo- Lithography,” Applied Physics A, Vol. 73, No. 5, pp. 561-566, 2001.
﹝2﹞ Bhawalkar, J. D., Kumar, N. D., Zhao, C.-F., and Prasad, P. N., “Two-photon photodynamic therapy,”, Journal of Clinical Laser Medicine and Surgery, Vol. 15, No. 5, pp. 201-204, 1997.
﹝3﹞ 潘恩亞、蒲念文、董玉平與游漢輝,「雙光子吸收光致聚合技術應用於微元件製作之研究」,中正嶺學報,34卷,1-16頁,2005。
﹝4﹞ Maruo, S. and Fourkas, J. T., “Recent Progress in Multiphoton Microfabrication”, Laser & Photonics Reviews, Rev.2, No.1-2, pp.100-111, 2008.
﹝5﹞ Li, L., Gattass, R.-R., Gershgoren, E., Hwang, H., and Fourkas, J.-T., “Achieving λ/20 Resolution by One-Color Initiation and Deactivation of Polymerization”, Science, Vol.324, pp.910-913, 2009.
﹝6﹞ Kawata, S., Sun, H.-B., Tanaka, T., and Takada, K., “Finer Features for Functional Microdevices”, Nature, Vol.412, pp.697-698, 2001.
﹝7﹞ Sun, H.-B., Kawakami, T., Xu, Y., Ye, J.-Y., Matuso, S., Misawa, H., Miwa, M., and Kaneko, R., “Real Three-Dimensional Microstructures Fabricated by Photopolymerization of Resins Through Two-photon Absorption”, Optics Letters, Vol.25, pp.1110-1112, 2000.
﹝8﹞ Kumi, G., Yanez, C.-O., Belfield, K.-D., and Fourkas, J. T., “High-Speed Multiphoton Absorption Polymerization: Fabrication of Microfluidic Channels with Arbitrary Cross-Sections and High Aspect Ratios”, Lab on a Chip, Vol.10, pp.1057-1060, 2010.
﹝9﹞ Zhang, Y.-L., Chen, Q.-D., Xia, H., and Sun, H.-B., “Designable 3D Nanofabrication by Femtosecond Laser Direct Writing”, Nano Todprocessay, Vol.5, pp.435-448, 2010.
﹝10﹞ Wu, D., Wu, S.-Z., Niu, L.-G., Chen, Q.-D., Wang, R., Song, J.-F., Fang, H.-H., and Sun, H.-B., “High Numerical Aperture Microlens Arrays of Close Packing”, Applied Physics Letters, Vol.97, No. 3, pp. 031109, 2010.
﹝11﹞ Engelhardt, S., Hoch, E., Borchers, K., Meyer, W., Krüger, H., Tovar, G. E. M., and Gillner, A., “Fabrication of 2D Protein Microstructures and 3D Polymer-Protein Hybrid Microstructures by Two-Photon Polymerization”, Biofabrication, Vol.3, 025003, 2011.
﹝12﹞ Ovsianikov, A., Doraiswamy, A., Narayan, R., and Chichkov, B.-N., “Two-photon Polymerization for Fabrication of Biomedical Devices”, Microfluidics, BioMEMS, and Medical Microsystems V, Proceedings of SPIE, Vol.6465, 64650O, 2007.
﹝13﹞ Xia, H., Wang, J., Tian, Y., Chen, Q.-D., Du, X.-B., Zhang, Y.-L., He, Y., and Sun, H.-B., “Ferrofluids for Fabrication of Remotely Controllable Micro-Nanomachines by Two-Photon Polymerization”, Advanced Materials, Vol.22, pp.3204-3207, 2010.
﹝14﹞ Maruo, S., Ikuta, K., and Korogi, H.,“Submicron Manipulation Tools Driven by Light in a Liquid”, Applied Physics Letters, Vol.82, pp.133-135, 2003.
﹝15﹞ Tosa, N., Bosson, J., Pierre, M., Rambaud, C., Bouriau, M., Vitrant, G., Stéphan, O., Astilean, S.,and Baldeck, P. L., “Optical Properties of Metallic Nanostructures Fabricated by Two-Photon Induced Photoreduction”, Proceedings of SPIE,Vol.6195, 619501, 2006.
﹝16﹞ Park, S.-H., Lee, S.-H., Yang, D.-Y., Kong, H.-J., and Lee, K.-S., “Subregional Slicing Method to Increase Three-Dimensional Nanofabrication Efficiency in Two-Photon Polymerization”, Applied Physics Letters, Vol.87, 154108, 2005.
﹝17﹞ Takada, K., Sun, H.-B., and Kawata, S., “Improved Spatial Resolution and Surface Roughness in Photopolymerization-Based Laser Nanowriting”, Applied Physics Letters, Vol.86, 071122, 2005.
﹝18﹞ Divliansky, I.-B., Weaver, G., Petrovich, M., Jabbour, T., Seigneur, H.-P., Parnell-Lampen, C., Thompson, A., Belfield, K.-D., and Kuebler, S.-M., “CAD-Integrated System for Automated Multi-Photon Three-Dimensional Micro- and Nano-Fabrication”, Progress in Biomedical Optics and Imaging – Proceedings of SPIE, 5720, pp.196-203, 2005.
﹝19﹞ Cunningham, L.-P., Veilleux, M.-P., and Campagnola, P.-J., “Freeform Multiphoton Excited Microfabrication for Biological Applications Using a Rapid Prototyping CAD-based Approach”, Optics Express, Vol.14, pp.8613-8621, 2006.
﹝20﹞ Lim, T.-W., Son, Y., Yang, D.-Y., Kong, H.-J., Lee, K.-S., and Park, S.-H., “Highly Effective Three-Dimensional Large-Scale Microfabrication Using a Continuous Scanning Method”, Applied Physics A: Materials Science & Processing, Vol.92, No. 3,pp.541-545, 2008.
﹝21﹞ Stichel, T., Hecht, B., Houbertz, R., and Sextl, G., “Two-Photon Polymerization as Method for the Fabrication of Large Scale Biomedical Scaffold Applications”, Journal of Laser Micro/ Nanoengineering, Vol.5, pp.209-212, 2010.
﹝22﹞ Park, S.-H., Yang, D.-Y., and Lee, K.-S., “Two-photon Stereolithography for Realizing Ultraprecise Three-dimensional Nano/microdevices”, Laser & Photonics Reviews, Vol.3, pp.1-11, 2009.
﹝23﹞ Lončar,M., Doll, T., Vučković,J.,andScherer,A., “Design and Fabrication of Silicon Photonic Crystal Optical Waveguides”, Journal of Lightwave Technology, Vol. 18,No. 10, pp. 1402-1411, 2000.
﹝24﹞ 楊岳倫,「以雙光子光製聚合微製造技術研製光動力微結構」,中臺科技大學,碩士論文,民國99年。
﹝25﹞ http://en.wikipedia.org/wiki/Stereolithography
﹝26﹞ Kawata, S., and Sun, H.-B., “Two-Photon Photopolymerization as a Tool for Making Micro-Devices”, Applied Surface Science, Vol. 208-209, pp. 153-158, 2003.
﹝27﹞ Wu, S., Serbin, J., and Gu, M., “Two-Photon Polymerization for Three-Dimensional Micro-Fabrication”, Journal of Photochemistry and Photobiology A : Chemistry, Vol. 181, pp. 1-11, 2006.
﹝28﹞ Correa, D.S., Cardoso, M.R., Tribuzi, V., Misoguti, L., and Mendonca, C.-R., “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining”, Journal of Selected Topics in Quantum Electronics, Vol. 18, No. 1, pp. 176-186, 2012.
﹝29﹞ Danilevičius, P., Rekštytė, S., Balčiūnas, E., Kraniauskas, A., Širmenis, R., Baltriukienė, D., Malinauskas, M., Bukelskienė, V., Gadonas, R., Sirvydis, V., and Piskarskas, A., ”Direct Laser Fabrication of Polymeric Implants for Cardiovascular Surgery”, Materials Science / Medziagotyra, Vol. 18, No. 2, pp. 145-149, 2012.
﹝30﹞ Sun, H.-B., Maeda, M., Takada, K., Chon, J. W. M., Gu, M., and Kawata, S., “Experimental Investigation of Single Voxels for Laser Nanofabrication via Two-Photon Photopolymerization”, Applied Physics Letters, Vol. 83, pp. 819-821, 2003.
﹝31﹞ Lim, T.-W., Park, S.-H., and Yang, D.-Y., “Contour Offset Algorithm for Precise Patterning in Two-Photon Polymerization”, Microelectronic Engineering, Vol. 77, pp. 382-388, 2005.
﹝32﹞ Tanaka,T.,Sun, H.-B., and Kawata,S., “Rapid Sub-Diffraction-Limit Laser Micro/Nanoprocessing in a Threshold Material System”,Applied Physics Letters, Vo. 80, No. 2, pp. 312-314, 2002.
﹝33﹞ Sun,H.-B., Takada, K., Kim,M.-S., Lee,K.-S.and Kawat,S., “Scaling Laws of Voxels in Two-Photon Photopolymerization Nanofabrication”,Applied Physics Letters, Vo. 83, No.6, pp. 1104-1106, 2003.
﹝34﹞ Sun, H.-B., and Kawata, S., “Two-Photon Laser Precision Microfabrication and Its Applications to Micro-Nano Devices and Systems”, Journal of Lightwave Technology, Vol. 21, pp. 624-633, 2003.
﹝35﹞ Lim, T.-W., Son, Y., Yang, D.-Y., Kong, H.-J. and Lee, K.-S.” Selective Ablation-Assisted Two-Photon Stereolithography for Effective Nano- and Microfabrication”, Applied Physics A, Vol. 103, pp. 1111-1116, 2011.
﹝36﹞ Malinauskas, M., Purlys, V., Rutkauskas, M. and Gadonas, R.,” Two-Photon Polymerization forFabrication of Three-Dimensional Micro- and Nanostructures Over a Large Area”, Proceedings of the SPIE, Vol. 7204, 72040C-72040C-11, 2009.
﹝37﹞ https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33zsl/davidson-abramowitz-optical_microscopy.pdf
﹝38﹞ 黃貞翰,「探針強化近場掃描式光學顯微鏡之研製」,國立成功大學,碩士論文,民國95年。
﹝39﹞ Wei, P., Li, N., and Feng, L., “A Type of Two-PhotonMicrofabricationSystem and Experimentations", ISRN Mechanical Engineering. Vol. 2011, 2011.
﹝40﹞ 蔡建中,「利用光學外差干涉式橢圓儀量測扭轉列向式液晶之光學參數」,國立陽明大學,碩士論文,民國94年。
指導教授 廖昭仰(Chao-Yaug LIAO) 審核日期 2013-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明