博碩士論文 100323092 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.144.77.71
姓名 蔡禹昇(YU-SHENG CAI)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
(Development of ANSYS-Fluent-based Numerical Approaches for Studies of Three-dimensional Gas Flows in a Planetary MOCVD Reactor)
相關論文
★ 超快雷射薄石英晶圓微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證
★ 雷射直寫技術應用於金屬網格軟性透明電極製作★ 多功能崁入式金屬網格透明電極技術開發
★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作★ 雷射直寫自還原金屬複合墨水製作高抗氧化銅鎳合金網格透明電極
★ 以雷射碳化靜電紡絲碳奈米纖維製作超級電容電極★ 航太用鋁合金板熱處理爐設施之研究
★ 雷射加工機應用於微米元件轉印製程之研究★ 連續與脈衝式近紅外光雷射對無鹼玻璃之改質與雙面微透鏡陣列加工
★ 使用濕式蝕刻後處理輔助之雷射藍寶石通孔研究★ 鋰離子電池模組之產熱模型建立與熱傳模擬分析
★ 脈衝雷射切割無定向矽鋼片及人工智能質量預測的實驗研究★ 雷射選擇圖案與無電鍍銅沉積應用於鋁矽酸玻璃基板之金屬化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著製程技術的持續進步與應用面的不斷推新, LED 現已是重要的半導體主流產品之一。商業量產上 LED 的製造方式主要採用金屬有機物化學氣相沉積法。其製程方式主要是通入前驅氣體三甲基鎵和氮氣在晶圓表面藉由高溫載台產生熱裂解,化學反應後沉積一層氮化鎵。氮化鎵的生長過程除了要能調控複雜的化學反應外,如何掌握熱流場使反應源能大面積且均勻地分佈在生長之晶圓表面,也是重要的關鍵。因此對於反應腔體內部熱流場的精準控制,一直是金屬有機物化學氣相沉積法的製程良率與產能提升相當重要因素。
本文以 Aixtron Planetary Reactor G2 以及 G3 反應室作為暫態模擬研究之三維模型,以模擬軟體 ANSYS-Fluent 的架構下進行網格分割及熱流場分析。過往文獻雖然也有專注於行星式的模擬研究,但是卻都沒有將腔體內部的速度場與數值顯完整地呈現出來,因此本文的研究動機即是致力於開創出一種能適用於任何 Planetary Reactor 的模擬方式,以滑移網格的構思出發取代繁雜的動態網格,不需要每個模擬的時間步長 (time step) 都重製網格一次,可大幅度縮減計算時間與計算量,接續透過 Mesh motion 與自行撰寫 Code,清楚地呈現出行星式反應腔體內部完整的動態速度場、流線圖與溫度分佈。因此本文最後以 G2 & G3 腔體進行各三種不同的模擬參數搭配下,成功模擬出各個參數下腔體內部的熱流場分佈情形,其中在高腔壓下形況下會使腔體內部流場不穩定產生渦流,流量過小也會產生渦流,再透過反應源於晶圓上濃度的分佈計算出各個參數下薄膜成長率的變化,論證出無法採用僅公轉下的長率,預測加入自轉後的長晶成長率分佈。
摘要(英) With the continuous increase in applications and reduction in price, light emitting diodes (LEDs) has been emerged to be one of the major semiconductor devices. Commercially, growing thin films for an LED is mainly accomplished in an MOCVD (metal organic chemical vapor deposition) chamber. Taking the GaN thin film for example, both the precursor gases of trimethyl gallium and nitrogen are introduced into the reactor through designated inlets, they then flow over a high-temperature susceptor. The high temperature induces the pyrolysis and chemical reactions of the precursor gases and the reactant of GaN is eventually deposited on the surface of wafers, which are placed on the susceptor. For growing a large area and high-quality GaN thin film, a uniformly thermal flow field on the susceptor surface is essential because this is the prerequisite for producing uniform chemical reactions. Consequently, through understandings of the reactor’s thermal flow and, furthermore, a well control of it, is critical to the low-cost and high-yield fabrication.
This study aims to develop new User Defined Functions within the framework of ANSYS-Fluent Software for simulating three-dimensional thermal and flow fields in the G2 and G3 Aixtron Planetary Reactors. Many works for analyzing the quality and growth rate of the deposited film through simulating flows of gases in a reactor chamber have been published. Part of them was specifically for planetary reactors. However, most of these calculations were performed by approximating the reacting chamber as axial symmetry in geometry and these were, in fact, two-dimensional cases. The complete temperature distributions, detailed flow patterns and velocity fields in a planetary reactor were not accessible in these works, not to mention the transient phenomena, which affect significantly the early-stage chemical reactions and the initial nucleations. In addition, the flow in a planetary reactor is intrinsically three dimensional. To avoid the complexity and time-consuming process in re-meshing at each time step, the technique of dynamic meshes, which is relatively straightforward to the planetary-motioned boundary conditions in ANSYS Fluent, is not used. Instead, the slide mesh technique is employed in this study. Through self-developed User Defined Functions, we demonstrate the present approach is able to simulate gas flows in a planetary chamber and the detailed dynamics of thermal and flow can be authentically captured. Finally, we demonstrate the dynamics of gas flows for three different operating conditions in both Axitron G2 and G3 chambers, respectively, and their corresponding local growth rates are calculated and discussed.
關鍵字(中) ★ 有機金屬化學氣像沉積法
★ 計算流體力學
★ 氮化鎵
★ 行星式反應腔體
★ 三甲基鎵
關鍵字(英) ★ MOCVD
★ Fluent
★ GaN
★ Planetary Reactor
★ TMGa
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 xi
符號說明 xii
第一章 緒論 1
1-1 前言 1
1-2 MOCVD設備介紹 2
1-3 MOCVD反應室腔體 5
1-3.1 垂直式反應腔體 7
1-3.2 水平式反應腔體 9
1-4 研究動機與目的 12
第二章 文獻回顧 13
2-1 Rotating Disk Reactor 13
2-2 Close Coupled Showerhead Reactor 15
2-3 Planetary Reactor 18
2-4 流場可視化 27
2-5 Aixtron 行星式文獻總結 30

第三章 數值理論 34
3-1 數值模擬概述 34
3-2 ANSYS-Fluent 簡介 35
3-2.1 SIMPLE演算法簡述 36
3-2.2 SIMPLE之速度修正 36
3-2.3 SIMPLE之壓力修正 38
3-3 統御方程式、質傳方程式與成長率計算 41
3-3.1 統御方程式 41
3-3.2 質傳方程式 42
3-3.3 成長率與均勻性計算公式 42
3-4 模擬基本假設 43
3-5 邊界條件設定 44
3-6 網格獨立性驗證 45
3-7 模擬運算流程 47
第四章 行星式模擬測試 48
4-1 UDF撰寫程式 48
4-2 滑移網格 (Slide mesh) 49
4-3 Mesh motion 50
4-4 二維行星式模擬測試 52
4-5 三維行星式模擬測試 54
第五章 結果與討論 57
5-1 研究特點 57
5-2 G2 行星式反應室模擬模型 57
5-3 G2 僅公轉之熱流場分佈與成長率曲線分佈圖 59
5-4 G2 行星式公轉自轉模擬結果 63
5-4.1 G2 Case 1 64
5-4.2 G2 Case 2 70
5-4.3 G2 Case 3 74
5-4.4 晶圓成長率探討 78
5-4.5 Planetary Reactor G2 模擬小結 80
5-5 G3 行星式反應腔體 81
5-6 Planetary Reactor G3 模擬結果 83
5-6.1 G3 Case 1 84
5-6.2 G3 Case 2 87
5-6.3 G3 Case 3 89
5-6.4 Planetary Reactor G3 模擬小結 92
5-7 行星式 G2 & G3 模擬小結 93
第六章 結論與展望 95
口試委員問題與回覆 96
參考文獻 99
參考文獻 [1] 陆大成、段树坤,「金属有机化合物气相外延基础及应用」,科学出版社,2009
[2] L. Kadinski, V. Merai, A. Parekh, J. Ramer, E.A. Armour, R. Stall, A. Gurary, A, Galyukov, Yu. Makaro, “Computational analysis of GaN/InGaN deposition in MOCVD vertical rotating disk reactors,” Journal of Grystal Growth, Vol. 261, pp. 175-181, 2004.
[3] B. Mitrovic, A. Parekh, J. Ramer, V. Merai, E.A. Armour, L. Kadinski, A. Gurary, “Reactor design optimization based on 3D modeling of nitrides deposition in MOCVD vertical rotating disc reactors,” Journal of Grystal Growth, Vol. 289,pp. 708-714, 2006.
[4] B. Mitrovic, A. Gurary, L. Kadinski, “On the flow stability in vertical rotating disc MOCVD reactors under a wide range of process parameters,” Journal of Grystal Growth, Vol. 287, pp. 656-663, 2006.
[5] B. Mitrovic, A. Gurary, W. Quinn, ”Process conditions optimization for the maximum deposition rate and uniformity in vertical rotating disc MOCVD reactors based on CFD modeling,” Journal of Grystal Growth, Vol. 303,pp. 323-329, 2007.
[6] J.H. Han, D.Y. Yoon, “3D CFD for chemical transport in a rotating disk CVD reactor,” 3D Research Center and Springer, 2010.
[7] 莊子慶,「MOCVD 腔體熱流場與新式進氣檔板之設計模擬分析研究」,國立中央大學,碩士論文,2013
[8] 莊博安,「金屬有機氣相沉積反應腔體之熱流場與質傳數值模擬分析」,國立中央大學,碩士論文,2013
[9] R.P. Pawlowski, C. Theodoropouls, A.G. Salinger, T.J. Mountziaris, H.K. Moffat, J.N Shadid, E.J. Thrush, ”Fundamental models of the metalorganic vapor-phase epitaxy of gallium nitride and their use in reactor design,” Journal of Grystal Growth, Vol. 221,pp. 622-628, 2000.
[10] T.C. Xenidou, A.G. Boudouvis, N.C Markatos, D. Samelor, F. Senocq, N. PrudHome, C. Vahlas, “An experimental and computational analysis of a MOCVD process for the growth of Al films using DMEAA,” Surface & Coatings Technology, Vol. 201, pp. 8868-8872, 2007.
[11] T.C. Xenidou, N. Prud′homme, C.Vahlas, N.C. Markatos, A.G. Boudouvis, “Reaction and transport interplay in Al MOCVD investigated through experiments and computational fluid dynamic analysis,” Journal of The Electrochemical Society, Vol. 157(12), pp. 633-641, 2010.
[12] R. Zuo, H. Yu, N. Xu, X. He, “Influence of Gas mixing and heating on Gas-Phase reactions in GaN MOCVD Growth,” ESC Journal of Solid State Science and Technology, Vol. 1(1), pp. 46-53, 2012.
[13] R. Beccard, D. Schmitz, E.G. Woelk, G. Strauch, Y. Makarov, M. Heuken, M. Deschler, H. Juergensen, “High temperature CVD systems to grow GaN or SiC based structures,” Materials Science and Engineering, B61-62, pp. 314-319, 1999.
[14] M. Dauelsberg, L. Kadinski, Y.N. Makarov, T. Bergunde, G. Strauch, M. Weyers, “Modeling and experimental verification of transport and deposition behavior during MOVPE of Ga1-xInxP in the Planetary Reactor,” Journal of Crystal Growth, Vol. 208, pp. 85-92, 2000.
[15] M. Dauelsberg, M. Deufel, M. Reinhold, G. Strauch, “Equipment and process simulation of compound semiconductor MOCVD in the production scale Multiwafer Planetary Reactor,” Simulation of Semiconductor Process and Devices, 2001.
[16] 郭文平,邵嘉平,羅毅,孫長征,郝智彪,韓彥軍, “MOCVD生長GaN材料的模擬,” Chinese Journal of Semiconductors, Vol. 26, No. 4, 2005.
[17] W.V. Lundin, E.E. Zavarin, D.S. Sizov, M.A. Sinitsin, A.F. Tsatsul’nikov, A.V. Kondratyev, E.V. Yakovlev, R.A. Talalaev, “Effect of reactor pressure and residence time on GaN MOVPE growth efficiency,” Journal of Crystal Growth, Vol. 287, pp. 605-609, 2006.
[18] M. Dauelsberg, C. Martin, H. Protzmann, A.R. Boyd, E.J. Thrush, J. Kappeler, M. Heuken, R.A. Talalaev, E.V. Yakovlev, A.V. Kondratyev, “Modeling and process design of III-nitride MOVPE at near-atmospheric pressure in close coupled showerhead and planetary reactors,” Journal of Crystal Growth, Vol. 298, pp. 418-424, 2007.
[19] C. Martin, M. Dauelsberg, H. Protzmann, A.R. Boyd, E.J. Thrsh, M. Heuken, R.A. Talalaev, E.V. Yakovlev, A.V. Kondratyev, “Modelling of group-III nitride MOVPE in the closed coupled showerhead reactor and Planetary Reactor,” Journal of Crystal Growth, Vol. 303, pp. 318-322, 2007.
[20] D. Brien, M. Dauelsberg, K. Christiansen, J. Hofeldt, M. Deufel, M. Heuken, “Modelling and simulation of MOVPE of GaAs-based compound semiconductors in production scale Planetary Reactors,” Journal of Crystal Growth, Vol. 303, pp. 330-333, 2007.
[21] C.S. Kim, J. Hong, J. Shim, Y. won, Y. Kwon, “Multiphysics Modeling and Design of Ultra large Multiwafer MOVPE React for Group III-Nitride Light Emitting Diodes,” IEEE on Thermal, 2010.
[22] D.A. Schmitz, S. Habermann, J. Hofeldt, D. Brien, B. Scheneller, M. Heuken, “ Application of adcanced Planetary Reactor technology for production of III-V compound semiconductor matericals for CPV on 6” Ge wafers,” IEEE, 2011.
[23] H. Shaolin, G. Zhiyin, Y. Han, L. Sheng, “A buffered distributed spray MOCVD reactor design,” IEEE International Conference on Electronic Packaging Technology & High Density Packaging, 2012.
[24] T. Ming-Lun, F. Cheng-Chia, L. Lung-Yu, “Numerical simulation of the temperature distribution in a planetary MOCVD reactor,” Chemical Engineering and Processing: Process Intensification, Vol. 81,pp. 48-58, 2014.
[25] D.I. Fotiadis, A.M. Kremer, D.R. Mckenna, K.F. Jensen, “Complex phenomena in vertical MOCVD reactors: effects on deposition uniformity and interface abruptness,” Journal of Crystal Growth, Vol. 85,pp. 154-164, 1987.
[26] A.G. Mathews, J.E. Peterson, “Flow visualizations and transient temperature measurements in an axisymmetric impinging jet rapid thermal chemical vapor deposition reactor,” ASME, 2002.
[27] Y.H. Liu, L.W. Tseng, C.Y. Huang, K.L. Lin, C.C. Chen, “Particle image velocimetry measurement of jet impingement in a cylindrical chamber with a heated rotating disk,” International Journal of Heat and Mass Transfer, Vol. 65, PP. 339-347, 2013.
[28] M. Masi, M.D. Stanislao, A. Veneroni, ”Fluid-dynamics during vapor epitaxy and modeling,” Progress in Crystal Growth and Characterization of Materials, Vol. 47,PP. 239-270, 2003.
[29] C.Y. Shin, B.J. Baek, C.R. Lee, B. Pak, J.M. Yoon, K.S. Park, “Numerical analysis for the growth of GaN layer in MOCVD reactor,” Journal of Crystal Growth, Vol. 247,pp. 301-312, 2003.
指導教授 何正榮(Jeng-Rong Ho) 審核日期 2015-4-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明