博碩士論文 100323105 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.149.229.253
姓名 李岳蒲(Yueh-Pu Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 應用磁性粒子於微流體裝置之可逆接合
相關論文
★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究★ 多重微流體晶片機械應力刺激細胞培養之研究
★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)
★ 複合式物理力的生物反應器自動化與控制設計★ 外部致動之微流體機電控制平台
★ 以微铣削進行高分子微流體裝置之製程整合★ 奈米矽質譜晶片於質譜檢測之應用研究
★ 矽奈米結構對於質譜離子化效率探討之研究★ 微滾軋製程應用於高分子材料轉印微結構之研究
★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究★ 利用熱壓製造類多孔隙介質之 微流道模型研究
★ 單晶矽材料電化學放電鑽孔及同軸電度之研究★ 微流道中液滴成形及滴落現象之模擬分析
★ 兆聲波輔助化學溶液清潔晶圓表面汙染顆粒研究★ 真空加熱矽奈米結構晶片對於提升質譜檢測靈敏度與離子化機制探討與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究成功的證明使用氧化鐵磁性粒子與二甲基矽氧烷(PDMS)製作出磁性PDMS裝置,其為一種簡單製作且可以達到高強度的可逆磁性接合方法;在此提出了兩種磁性PDMS裝置,包括不可光學檢測的暗視野裝置與可光學檢測的明視野裝置。
研究顯示,暗視野裝置製作上類似標準的PDMS鑄造,較不受微流道幾何形狀的影響;而明視野裝置澆鑄性能與微流道幾何圖形高度有關,實驗針對微流道的佈局進行了詳細的研究,探討PDMS墊塊層與微模具基板之間的間隙大小對於製作明視野裝置的相關性。磁性PDMS裝置接合強度測試中,證明在裝置底部增加一層PDMS薄膜層可以有效改善表面粗糙度,並且有效的提升磁性PDMS的可逆磁性接合強度。測試結果顯示,有PDMS薄膜的暗視野裝置最佳接合強度為110 KPa;而有PDMS薄膜的明視野裝置最佳接合強度為81 KPa。
摘要(英) Iron oxide magnetic microparticles and poly(dimethylsiloxane) (MMPs-PDMS) composite was successfully demonstrated as a simple and high-strength reversible magnetic bonding method in this study. Dark-field (optical inspection impossible) and light-field (optical inspection possible) MMPs-PDMS casting were presented. This study showed that microchannel geometries have limited influence on dark-field casting which is similar to standard PDMS casting. Light-field casting performance was highly related to microchannel geometries. Effects of the microchannel layout, and the gap between the cover-PDMS layer and micromold substrate were detail investigated. MMPs-PDMS magnetic bonding experiments showed that thin PDMS film incorporating an MMPs-PDMS layer can effectively reduce surface roughness and enhance MMPs-PDMS reversible magnetic bonding strength. A thin PDMS film-coated dark-field MMPs-PDMS device exhibited the greatest bonding strength of 110 KPa. For a light-field MMPs-PDMS device with a thin PDMS film, a magnetic bonding strength of 81 KPa can be achieved.
關鍵字(中) ★ 可逆接合
★ 微流體裝置
★ 磁性
關鍵字(英)
論文目次 目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
第一章 緒論 1
1.前言 1
1.2文獻回顧 3
1.3研究目的 9
1.4論文架構 10
第二章 實驗設計與製程 11
2.1製程設備與耗材 11
2.1.1 製程設備與實驗儀器 11
2.1.2 製程材料與實驗耗材 12
2.2 黃光製程 13
2.2.1 光罩製作 14
2.2.2 晶圓清潔 15
2.2.3 光阻塗佈 15
2.2.4 軟烤 16
2.2.5 曝光 17
2.2.6 曝後烤 17
2.2.7 顯影 17
2.2.8 硬烤 18
2.2.9母模增厚製程 18
2.3 ”Fe3O4” 磁性奈米粒子合成[28] 19
2.4 磁性PDMS裝置製程 21
2.4.1 SU-8母模旋佈PDMS薄膜 22
2.4.2 PDMS墊塊製作 22
2.4.3 磁性PDMS混合與填入 23
2.4.4磁性PDMS裝置組裝 25
2.4.5暗視野裝置製程 25
2.4 磁性粒子於明視野裝置內之含量判定 26
2.5 磁性PDMS裝置接合強度測試裝置架設 27
2.5.1檢測流程 28
2.6 磁性PDMS表面粗糙度測量方法 28
第三章 結果與討論 29
3.1 磁性PDMS吸入能力測試 29
3.1.1母模圖形-直線 30
3.1.2母模圖形-曲線 33
3.1.3母模圖形-夾角 36
3.2 磁性PDMS裝置接合強度測試 39
3.2.1明視野磁性PDMS裝置 40
3.2.2暗視野磁性PDMS裝置 42
3.3 磁性PDMS表面粗糙度測量 44
3.3.1 PDMS表面粗糙度量測 45
3.3.2磁性PDMS裝置無增加PDMS薄膜 45
3.3.3磁性PDMS裝置增加PDMS薄膜 45
第四章 結論 48
第五章 參考文獻 49
參考文獻 [1] E. Livak-Dahl, I. Sinn, and M. Burns, ”Microfluidic Chemical Analysis Systems,” Annual Review of Chemical and Biomolecular Engineering, Vol 2, vol. 2, pp. 325-353, 2011.
[2] D. B. Weibel and G. M. Whitesides, ”Applications of microfluidics in chemical biology,” Current Opinion in Chemical Biology, vol. 10, pp. 584-591, Dec 2006.
[3] S. C. Jakeway, A. J. de Mello, and E. L. Russell, ”Miniaturized total analysis systems for biological analysis,” Fresenius Journal of Analytical Chemistry, vol. 366, pp. 525-539, Mar-Apr 2000.
[4] A. Alrifaiy, O. A. Lindahl, and K. Ramser, ”Polymer-Based Microfluidic Devices for Pharmacy, Biology and Tissue Engineering,” Polymers, vol. 4, pp. 1349-1398, Sep 2012.
[5] L. Nan, Z. D. Jiang, and X. Y. Wei, ”Emerging microfluidic devices for cell lysis: a review,” Lab on a Chip, vol. 14, pp. 1060-1073, 2014.
[6] C. Iliescu, ”Microfluidics in glass: Technologies and applications,” Informacije Midem-Journal of Microelectronics Electronic Components and Materials, vol. 36, pp. 204-211, Dec 2006.
[7] C. Iliescu, H. Taylor, M. Avram, J. M. Miao, and S. Franssila, ”A practical guide for the fabrication of microfluidic devices using glass and silicon,” Biomicrofluidics, vol. 6, Mar 2012.
[8] H. Becker and L. E. Locascio, ”Polymer microfluidic devices,” Talanta, vol. 56, pp. 267-287, Feb 11 2002.
[9] G. S. Fiorini and D. T. Chiu, ”Disposable microfluidic devices: fabrication, function, and application,” Biotechniques, vol. 38, pp. 429-446, Mar 2005.
[10] M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, ”Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, vol. 288, pp. 113-116, Apr 7 2000.
[11] U. M. Attia, S. Marson, and J. R. Alcock, ”Micro-injection moulding of polymer microfluidic devices,” Microfluidics and Nanofluidics, vol. 7, pp. 1-28, Jul 2009.
[12] S. K. Sia and G. M. Whitesides, ”Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis, vol. 24, pp. 3563-3576, Nov 2003.
[13] C. W. Tsao and D. L. DeVoe, ”Bonding of thermoplastic polymer microfluidics,” Microfluidics and Nanofluidics, vol. 6, pp. 1-16, Jan 2009.

[14] J. C. McDonald and G. M. Whitesides, ”Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices,” Accounts of Chemical Research, vol. 35, pp. 491-499, 2002/07/01 2002.
[15] C. H. Lin, C. H. Chao, and C. W. Lan, ”Low azeotropic solvent for bonding of PMMA microfluidic devices,” Sensors and Actuators B-Chemical, vol. 121, pp. 698-705, Feb 20 2007.
[16] L. Brown, T. Koerner, J. H. Horton, and R. D. Oleschuk, ”Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents,” Lab on a Chip, vol. 6, pp. 66-73, 2006.
[17] M. Laher and S. Hild, ”A detailed micrometer scale investigation of the solvent bonding process for microfluidic chip fabrication,” Rsc Advances, vol. 4, pp. 5371-5381, 2014.
[18] C. W. Tsao, L. Hromada, J. Liu, P. Kumar, and D. L. DeVoe, ”Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment,” Lab on a Chip, vol. 7, pp. 499-505, 2007.
[19] Y. H. Tennico, M. T. Koesdjojo, S. Kondo, D. T. Mandrell, and V. T. Remcho, ”Surface modification-assisted bonding of polymer-based microfluidic devices,” Sensors and Actuators B-Chemical, vol. 143, pp. 799-804, Jan 7 2010.
[20] S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, ”Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” Journal of Microelectromechanical Systems, vol. 14, pp. 590-597, Jun 2005.
[21] M. A. Eddings, M. A. Johnson, and B. K. Gale, ”Determining the optimal PDMS-PDMS bonding technique for microfluidic devices,” Journal of Micromechanics and Microengineering, vol. 18, Jun 2008.
[22] P. Kim and K. Y. Suh, ”Rigiflex, Spontaneously Wettable Polymeric Mold for Forming Reversibly Bonded Nanocapillaries,” Langmuir, vol. 23, pp. 4549-4553, 2007/04/01 2007.
[23] H. Lee, B. P. Lee, and P. B. Messersmith, ”A reversible wet/dry adhesive inspired by mussels and geckos,” Nature, vol. 448, pp. 338-U4, Jul 19 2007.
[24] M. Le Berre, C. Crozatier, G. Velve Casquillas, and Y. Chen, ”Reversible assembling of microfluidic devices by aspiration,” Microelectronic Engineering, vol. 83, pp. 1284-1287, 2006.



[25] Q. Chen, G. Li, Y. Nie, S. H. Yao, and J. L. Zhao, ”Investigation and improvement of reversible microfluidic devices based on glass-PDMS-glass sandwich configuration,” Microfluidics and Nanofluidics, vol. 16, pp. 83-90, Jan 2014.
[26] M. Rafat, D. R. Raad, A. C. Rowat, and D. T. Auguste, ”Fabrication of reversibly adhesive fluidic devices using magnetism,” Lab Chip, vol. 9, pp. 3016-9, Oct 21 2009.
[27] M. Rasponi, F. Piraino, N. Sadr, M. Laganà, A. Redaelli, and M. Moretti, ”Reliable magnetic reversible assembly of complex microfluidic devices: fabrication, characterization, and biological validation,” Microfluidics and Nanofluidics, vol. 10, pp. 1097-1107, 2010.
[28] C.-T. Chen and Y.-C. Chen, ”Fe3O4/TiO2 Core/Shell Nanoparticles as Affinity Probes for the Analysis of Phosphopeptides Using TiO2 Surface-Assisted Laser Desorption/Ionization Mass Spectrometry,” Anal Chem, vol. 77, pp. 5912-5919, 2005/09/01 2005.
指導教授 曹嘉文 審核日期 2015-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明