博碩士論文 100323108 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:34.229.151.87
姓名 江姵儀( Pei-yi Chiang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析
(Numerical simulation of flow, thermal and oxygen distributions for a Czochralski silicon growth with in a transverse magnetic field)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究★ CZ法生長大尺寸藍寶石單晶之熱流場與溶質數值模擬研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 柴氏長晶法是目前最常用來生長矽晶體的方法,但其長晶過程中容易產生氧雜質,影響晶體品質,過去多以調整長晶參數的方式,進行製程優化,但目前該方法已無法解決,需尋求其它方法突破瓶頸。而外加水平式磁場方式可以有效降低傳統柴氏長晶法之晶體中氧雜質濃度,並提高晶體徑向氧雜質濃度分佈之均勻性,但在水平式磁場作用下,熔湯受羅倫茲力影響,呈現三維型態,將增加晶體生長及模擬的困難度。因此,本研究利用三維數值模擬方法,於柴氏晶體生長過程外加水平式磁場,探討水平磁場的影響並深入瞭解其作用機制,再藉此分析生長參數對熔湯流場、溫場與氧雜質分佈之影響,以生成低含氧量單晶矽。
在長晶參數部分,低坩堝轉速不僅可以降低堝壁溫度,並會造成自由液面的徑向流速變慢,使過多的氧雜質可在自由液面蒸發為氧化矽,模擬結果顯示坩堝轉速若小於1rpm時可大幅的降低氧雜質濃度;而當降低晶體轉速時,雖然可以降低氧雜質的濃度,但是卻使得晶體徑向氧雜質分佈開始變得不均勻,破壞晶體品質。因此坩堝轉速為水平磁場下控制晶體氧含量多寡的一重要因素。在氬氣流量方面,流量增加時,雖然更容易將自由液面處的氧化矽雜質帶走,但卻使得熔湯中原本逼近靜止的流動受到擾動,進而加快氧雜質進入晶體,因此,晶體中氧雜質濃度隨著氬氣流量增加呈現上升的趨勢。另外,對於不同晶體大小而言,生長大尺寸晶體影響氧雜質蒸發量,使得更多氧雜質進入晶體,因此欲生長大尺寸晶體,勢必得面臨雜質過多的問題。
除了生長參數影響外,不同的長晶階段氧雜質濃度亦會有所差異,本研究模擬結果顯示晶體頭部和尾部為氧雜質濃度最高的地方,晶體軸向氧雜質濃度呈現不均勻曲線,該現象與中美公司實驗結果趨勢一致。藉由模擬結果可知長晶過程中,坩堝內熔湯的深度、流動型態、堝壁溫度及氬氣流速的快慢,是導致不均勻軸向氧雜質分佈的原因。為了提高軸向均勻性,本研究調整加熱器位置和坩堝轉速,透過此方法,軸向不均勻性可以分別改善約6.6%及24.7%。
摘要(英) A three-dimensional numerical simulation has been performed to understand the motion of the melt flow, thermal field and oxygen distributions during the Czochralski silicon single crystal growth process under the influence of a transverse magnetic field. With the application of a transverse magnetic, the velocity, temperature and oxygen concentration fields in the melt become three-dimensional and asymmetric. There were two different flow patterns on the plane parallel and crossing transverse magnetic field, separately. Therefore, the presence of a transverse magnetic field decreases the oxygen concentration level along the melt-crystal interface. The uniformity of oxygen concentration at the melt-crystal interface is also improved when the magnetic field is applied. However, the two flow motion will cause the different temperature distributions form distorted in the whole melt. It is hard to simulation and crystal growth.
In this study, the numerical simulation has been performed to clear the mechanism of oxygen transportation, such as the distribution of oxygen concentration in the melt is related to the crystal rotation rate and crucible rate. The lower temperature at the crucible wall and the free surface velocity decrease as the crucible rotation rate decrease. When the crucible rotation rate reaches below 1 rpm, the oxygen concentration value along the melt-crystal interface decrease enlarges. The uniformity of oxygen concentration is better for higher crystal diameters. The crystal rotation rate has negligible influence on the oxygen concentration. But the radial distribution of oxygen uniformity is improved at higher crystal rotation rates. In the case of transverse field, the crucible rotation rate is a key parameter in the control of oxygen concentration in the crystal.
The quantity of the oxygen transportation and silica concentration on the free surface can be increased by increasing the gas flow rate. Because the argon gas velocity affect the radial velocity and interfere the free surface flow motion. However, the crystal oxygen concentration was increased with an increase in the flow velocity of argon gas in the TMCZ.
This thesis analysis silicon crystal growth process under magnetic Czochralski method, this trend is in consistence with the experimental one. The variation of the axial oxygen concentration with the growth length of the silicon crystal is related to the melt depth of the crucible, the flow structure inside the melt, the crucible temperature, and the argon flow speed along the free surface. In order to improve the axial non-uniform of oxygen concentration, the heater position and crucible rates are adjusted. The axial non-uniform of oxygen concentration can be improved approximately 24.7% and 6.6% by revising the crucible rates and modifying the heater position.
關鍵字(中) ★ 三維數值模擬
★ 水平式磁場
★ 柴氏晶體生長
★ 氧雜質
關鍵字(英) ★ 3D Numerical simulation
★ Transverse magnetic field
★ Czochralski crystal growth
★ Oxygen concentration
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
表目錄 viii
圖目錄 ix
符號說明 xii
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 1
1-3 研究動機及目的 5
第二章 研究方法 8
2-1 物理系統 8
2-2 基本假設 8
2-3 數學模式與邊界條件 9
2-3-1 統御方程式 9
2-3-2 熱場邊界條件 10
2-3-3 流場邊界條件 11
2-3-4 磁場邊界條件 11
2-3-5 氧雜質邊界條件 11
2-4 無因次參數 13
2-5 數值方法與網格、收斂測試 15
2-5-1 數值方法 16
2-5-2 求解步驟 16
2-5-3 網格測試和收斂性測試 17
第三章 結果與討論 25
3-1 水平式磁場作用機制 25
3-2 水平式磁場和無磁場之熔湯流場、熱場、氧濃度比較 26
3-3 坩堝轉速及晶體尺寸對氧濃度的影響 28
3-4 晶體轉速對氧濃度的影響 31
3-5 氬氣流速對氧濃度的影響 32
3-6 軸向氧濃度的變化和改善 34
第四章 結論及未來展望 64
4-1 結論 64
4-2 未來展望 65
參考文獻 67
參考文獻 [1] 林明獻:「矽晶圓半導體材料技術」。
[2] G. K. Teal and J. B. Little, “Growth of germanium single crystals”, Physical Review, Vol. 78, pp. 647, 1950.
[3] K. Hoshikawa and X. Huang, “Oxygen transportation during Czochralski silicon crystal growth“, Materials Science and Engineering, Vol. 72, pp. 73–79, 2000.
[4] A. D. Smirnov and V. V. Kalaev, “Development of oxygen transport model in Czochralski growth of silicon crystals“, Journal of Crystal Growth, Vol. 310, pp. 2970-2976, 2008.
[5] ?琬婷,「柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析」,國立中央大學,碩士論文,民國99年。
[6] 閔乃本:「晶體生長的物理基礎」,1960年六月。
[7] T. Zhang, G. X. Wang, H. Zhang, F. Ladeinde and V. Prasad, “Turbulent transport of oxygen in the Czochralski growth of large silicon crystals“, Journal of Crystal Growth, Vol. 198-199, pp. 141-146, 1999.
[8] J. C. Chen, Y. Y. Teng, W. T. Wun, C. W. Lu, H. I Chen, C. Y. Chen, W. C. Lan, “Numerical simulation of oxygen transport during the CZ silicon crystal growth process“, Journal of Crystal Growth, Vol. 318, pp. 318-323, 2011.
[9] D. P. Lukanin, V. V. Kalaev, Yu. N. Makarov, T. Wetzel, J. Virbulis, W. V. Ammon, “Advances in the simulation of heat transfer and prediction of the melt-crystal interface shape in silicon CZ growth“, Journal of Crystal Growth, Vol. 266, pp. 20-27, 2004.
[10] S. Togawa, X. Huang, K. Izunome, K. Terashima, “Oxygen transport analysis in Czochralski silicon melt by considering the oxygen evaporation from the melt surface“, Journal of Crystal Growth, Vol. 148, pp. 169-173, 2010.
[11] H. P Utech and M. C. Flemings, “Elimination of Solute Banding in Indium Antimonide Crystals by Growth in a Magnetic Field“, Journal of Applied Physics, Vol. 37, pp. 2021, 1966.
[12] H. A. Chedzey and D. T. J. Hurle, “Avoidance of Growth-striae in Semiconductor and Metal Crystals grown by Zone-melting Techniques“, Nature, Vol. 210, pp. 933, 1966.
[13] U. P. Utech and M.C. Flemings, Journal of Applied Physics, Vol. 37, pp. 2021, 1966.
[14] H. A. Chedzey and D. T. J Hurle, Nature, Vol. 210, pp. 933, 1966.
[15] A. F. Witt, C.J. Herman, and H.C. Gatos, Journal of Materials Science, Vol. 5, pp. 822, 1975.
[16] K. M. Kim and P. Smetana, Journal of Applied Physics, Vol. 58, pp. 2731, 1985.
[17] P. S. Ravishankar, T. T. Braggins and R. N. Thomas, “Impurities in commercial-scale magnetic czochralski silicon:axial versus transverse magnetic fields“, Journal of Crystal Growth, Vol. 104, pp. 617-628, 1990.
[18] R. W. Series, Journal of Crystal Growth, Vol. 7, pp. 92, 1989.
[19] H. Hirata and K. Hoshikawa, Journal of Crystal Growth, Vol. 6, pp. 747, 1989.
[20] K. Hoshi, T. Suzuki, Y. Okubo, and N. Isawa, E. Abstr, Electrochemical Society Meet, pp. 811, 1980.
[21] Kinji Hoshi, Nobuyuki Isawo, Toshihiko Suzuki, and Yasunori Ohkubo, “Czochralski Silicon Crystals Grown in a Transverse Magnetic Field“, Journal of Electrochemical Society, Vol. 132, pp. 3.
[22] Lijun Liu, Satoshi Nakano, Koichi Kakimoto, “An analysis of temperature distribution near the melt-crystal interface in silicon Czochralski growth with a transverse magnetic field“, Journal of Crystal Growth, Vol. 282, pp. 45-49, 2005.
[23] N. Machida, K. Hoshikawa, Y. Shimizu, “The effects of argon gas flow rate and furnace pressure on oxygen concentration in Czochralski silicon single crystals grown in a tramsverse magnetic field”, Journal of Crystal Growth, Vol. 210, pp. 532-540, 2000.
[24] K. Kakimoto, H. Ozoe, “Oxygen distribution at a solid-liquid interface of silicon under tramsverse magnetic fields”, Journal of Crystal Growth, pp. 429-437, 2000.
[25] A. Krauze, A. Muiznieks, A. Muhlbauer, Th. Wetzel, J. Virbulis, “Numerical 3D Modelling of turbulent melt flow in CZ system with Horizontal DC magnetic field”, International Scientific Colloquium, 2003.
[26] A. Krauzea, A. Muimnieksa, A. Muhlbauer, Th. Wetzelb, W. V. Ammonb, “Numerical 3D modelling of turbulent melt flow in large CZ system with horizontal DC magnetic field—I: flow structure analysis”, Journal of Crystal Growth, Vol. 262, pp. 157-167, 2004.
[27] Y. Collet, O. Magotte, N. V. D. Bogaert, R. Rolinsky, M. Jacot, V. Regnier, F. Dupret, “Effective simulation of the effect of a transverse magnetic field(TMF) in Czochralski Silicon growth”, Journal of Crystal Growth, 2012.
[28] CGSim Flow Module, Ver. 3.11.1, Theory Manual, STR, Inc., Richmond, VA, , 2010.
[29] A. D. Smirnov, V. V. Kalaev, “Development of oxygen transport model in Czochralski growth of silicon crystals”, Journal of Crystal Growth, Vol. 310, pp. 2970-2976, 2008.
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2014-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明