博碩士論文 100324003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:54.237.183.249
姓名 王辰戎(Chen-rong Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米自泳動粒子之擴散行為
(Diffusion of Nano-Swimmers)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 抗氧化奈米銅粒子的製備及分析
★ 柱狀自泳動粒子之擴散行為與沉降平衡★ 過氧化氫的界面性質與穩定性
★ 液橋分離與液面爬升物體之研究★ 電潤濕動態行為探討
★ 表面粗糙度對接觸角遲滯影響之效應★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象
★ 低溫還原氧化石墨烯薄膜★ 雙離子型磺基甜菜鹼基材之潤濕現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自泳動粒子為具備有自我推進通過周遭流體能力的物體,諸如魚類群游、鳥類群飛,或者是許多常見細菌如大腸桿菌、衣藻等,它們的運動行為都是近年來許多科學家欲探討的問題。然而在微觀尺度上這些自泳動細菌大多有著類似的運動方式,我們稱之為run-and-tumble motion。短時間內它們的運動軌跡近乎直線,經過一段時間後則會以極短暫的時間停住然後轉向,接著再重複同樣的過程,與布朗運動非常相似卻又不完全相同。而藉由其與周遭流體作用的方式又可分為從後方推進的pusher以及從前方驅動的puller。
本研究採用耗散粒子動力學法,依據run-and-tumble motion模型模擬pusher類型的奈米自泳動粒子於有限及無限邊界系統中的運動行為。首先,在無限邊界系統中,藉由三種測量方式皆得到了奈米自泳動粒子的擴散係數比一般不具有自我推進能力的粒子高,且在沉降平衡時自泳動粒子的濃度分佈情形也較為膨潤,此模擬結果與一般實驗結果相符。接著,在有限邊界系統中,我們同樣求得了奈米自泳動粒子的擴散係數,並發現相較於無限邊界系統時,由於彈道式軌跡的運動方式使奈米自泳動粒子容易滯留在邊界板面上,進而增加摩擦導致擴散係數的下降。我們以白金漢π理論與物理假設整理出影響變因的關係式,能夠成功地預測其擴散係數下降的量值,與其滯留在板面上的機率。最後依據Galajda等人的實驗,我們製造不對稱的漏斗型板子邊界,使奈米自泳動粒子在其中由於向左與向右的擴散係數不同,進而產生一往較大擴散係數方向移動的靜速度,藉以達到控制其運動方向的目的。
摘要(英) Self-propelled micro-swimmers are biological organisms or synthetic objects that propel themselves through the surrounding fluids. Examples are a fish in a school, traveling birds, various swimming bacteria such as Escherichia coli and the green alga Chlamydomonas reinhardtii, etc. In the microscale living system, various self-propelled bacteria mostly have the same pattern of motion, which is called run-and-tumble motion. The trajectory of its motion is linear in a short interval, then punctuated by sudden and rapid randomizations in direction. The above process is repeated continually. This dynamics has something similar with Brownian motion but also something different. In addition, these swimmers can be classified as having pusher or puller polarity, which means that they are driven from the rear or the front fluids, respectively.
In this study, dissipative particle dynamics (DPD) based on the mode of run-and-tumble motion is employed to simulate self-propelled nano-swimmers in bounded/unbounded system. For the unbounded system, it is found that the diffusion coefficient of nano-swimmers is higher than that of passive swimmers. The sedimentation length is increasing for nano-swimmers at sedimentation equilibrium state which is consistent with results from experiments. For the bounded system, the diffusion coefficient of nano-swimmers was obtained as well. It has a high probability for nano-swimmers to detain at the wall because of the motion mode of ballistic trajectory, which leads to the increment of friction and decrement of diffusion coefficient. Based on Buckingham Pi theorem, the expression of diffusion coefficient is obtained which is associated with the velocity, distance between the two walls, and rotation characteristic time. Furthermore, when the walls are designed with a funnel shape, owing to the existence of diffusion coefficient difference between two opposite sites, the nano-swimmers tend to move toward the site with higher diffusion coefficient.
關鍵字(中) ★ 自泳動
★ 擴散
關鍵字(英) ★ self-propelled
★ swimmer
★ active particle
★ diffusivity
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
第一章 緒論 1
1-1 簡介 1
1-2 常見的自泳動粒子 1
1-3 Run-and-tumble motion模型 3
1-4 自泳動粒子與周遭流體作用方式 4
1-5 自泳動粒子的特性與應用 6
1-5-1 擴散與沉降平衡 6
1-5-2 與物質表面間的作用 8
第二章 模擬原理與方法 11
2-1 耗散粒子動力學(Dissipative Particle Dynamics) 11
2-2 DPD原理 13
2-2-1 DPD作用力 13
2-2-2 噪訊與時間尺度(Noise and Time Step) 16
2-2-3 斥力參數(Repulsion Parameters) 17
2-2-4 弗洛里-哈金斯理論(Flory-Huggins Theory) 18
2-2-5 長度、速度、時間尺度的無因次化 21
2-2-6 積分法求解 22
2-2-7 週期性邊界條件 23
2-2-8 Cell List表列法 25
2-3 模擬系統與參數 26
2-3-1 系統基本參數設定 26
2-3-2 自泳動粒子的設定 27
2-3-3 牆粒子的設定 30
2-4 擴散係數(Diffusion Coefficient, D) 31
2-4-1 平均平方位移(Mean Square Displacement, MSD) 31
2-4-2 速度自相關函數(Velocity Autocorrelation Function, VAF) 32
2-5 沉降平衡(Sedimentation Equilibrium, SE) 34
2-6 白金漢π定理(Buckingham π Theorem) 36
第三章 奈米自泳動粒子於無邊界系統中擴散行為 37
3-1 自泳動粒子的可動性 37
3-2 MSD法量測擴散係數 39
3-3 VAF法量測擴散係數 40
3-4 沉降平衡的改變 41
第四章 奈米自泳動粒子於有限邊界系統中運動行為 44
4-1 擴散係數於有限邊界系統中的改變 44
4-2 奈米自泳動粒子與板子間的作用 48
4-3 奈米自泳動粒子於板子表面的滯留行為 52
4-4 流體動力學作用對奈米自泳動粒子運動之影響 60
4-5 控制奈米自泳動粒子的運動方向 62
第五章 結論 65
第六章 參考文獻 66
參考文獻 [1] J. Gray, The movement of sea-urchin spermatozoa. Journal of Experimental Biology. 1955, 32, 775-801 .
[2] H. C. Berg, E. coli in Motion. Springer: New York, 2003; p 134.
[3] H. C. Berg; D. A. Brown, Chemotaxis in Escherichia coli analyzed by three-dimensional tracking. Annual Review of Plant Physiology and Plant Molecular Biology 1974, 19, 55-78.
[4] E. H. Harris, Chlamydomonas as a model organism. Annual review of plant biology 2001, 52 (1), 363-406.
[5] A. A. Solovev, et al., Collective behaviour of self-propelled catalytic micromotors. Nanoscale 2013, 5 (4), 1284-1293.
[6] J. Tailleur; M. E. Cates, Statistical mechanics of interacting run-and-tumble bacteria. Physical Review Letters 2008, 100 (21).
[7] J. Saragosti, et al., Modeling E. coli Tumbles by Rotational Diffusion. Implications for Chemotaxis. Plos One 2012, 7 (4).
[8] M. E. Cates, Diffusive transport without detailed balance in motile bacteria: does microbiology need statistical physics? , Rep. Prog. Phys. 2012, 75 (4).
[9] A. Baskaran; M. C. Marchetti, Statistical mechanics and hydrodynamics of bacterial suspensions. Proceedings of the National Academy of Sciences of the United States of America 2009, 106 (37), 15567-15572.
[10] Y. Hatwalne, et al., Rheology of active-particle suspensions. Physical Review Letters 2004, 92 (11), 118101.
[11] S. Rafai, et al., Effective Viscosity of Microswimmer Suspensions. Physical Review Letters 2010, 104 (9), 098102.
[12] P. T. Underhill, et al., Diffusion and spatial correlations in suspensions of swimming particles. Physical Review Letters 2008, 100 (24), 248101.
[13] J. R. Howse, et al., Self-motile colloidal particles: From directed propulsion to random walk. Physical Review Letters 2007, 99 (4), 048102.
[14] J. Palacci, et al., Sedimentation and effective temperature of active colloidal suspensions. Physical Review Letters 2010, 105 (8), 088304.
[15] I. Theurkauff, et al., Dynamic Clustering in Active Colloidal Suspensions with Chemical Signaling. Physical Review Letters 2012, 108 (26), 268303.
[16] M. Enculescu; H. Stark, Active Colloidal Suspensions Exhibit Polar Order under Gravity. Physical Review Letters 2011, 107 (5), 058301.
[17] M. J. Kim; K. S. Breuer, Enhanced diffusion due to motile bacteria. Physics of Fluids 2004, 16 (9), L78-L81.
[18] P. Galajda, et al., A wall of funnels concentrates swimming bacteria. J. Bacteriol. 2007, 189 (23), 8704-8707.
[19] J. Tailleur; M. E. Cates, Sedimentation, trapping, and rectification of dilute bacteria. Epl 2009, 86 (6), 60002.
[20] M. B. Wan, et al., Rectification of swimming bacteria and self-driven particle systems by arrays of asymmetric barriers. Physical Review Letters 2008, 101 (1), 018102.
[21] M. B. Wan; Y. Jho, Directed motion of elongated active polymers. Soft Matter 2013, 9 (12), 3255-3261.
[22] R. Di Leonardo, et al., Bacterial ratchet motors. Proceedings of the National Academy of Sciences of the United States of America 2010, 107 (21), 9541-9545.
[23] A. P. Berke, et al., Hydrodynamic attraction of swimming microorganisms by surfaces. Physical Review Letters 2008, 101 (3), 038102.
[24] J. Hill, et al., Hydrodynamic surface interactions enable Escherichia coli to seek efficient routes to swim upstream. Physical Review Letters 2007, 98 (6), 068101.
[25] R. W. Nash, et al., Run-and-Tumble Particles with Hydrodynamics: Sedimentation, Trapping, and Upstream Swimming. Physical Review Letters 2010, 104 (25), 258101.
[26] J. Schwarz-Linek, et al., Phase separation and rotor self-assembly in active particle suspensions. Proceedings of the National Academy of Sciences of the United States of America 2012, 109 (11), 4052-4057.
[27] J. Bialke, et al., Crystallization in a Dense Suspension of Self-Propelled Particles. Physical Review Letters 2012, 108 (16), 168301.
[28] I. Tuval, et al., Bacterial swimming and oxygen transport near contact lines. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 (7), 2277-2282.
[29] P. J. Hoogerbrugge; J. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters 1992, 19 (3), 155-160.
[30] R. D. Groot; P. B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997, 107 (11), 4423-4435.
[31] P. Espanol; P. Warren, Statistical-mechanics of dissipative particle dynamics. Europhysics Letters 1995, 30 (4), 191-196.
[32] J. B. Gibson, et al., Simulation of particle adsorption onto a polymer-coated surface using the dissipative particle dynamics method. J. Colloid Interface Sci. 1998, 206 (2), 464-474.
[33] M. P. Allen; D. J. Tildesley, Computer simulation of liquids. Oxford university press: New York, 1989; p 385.
[34] R. D. Groot; T. J. Madden, Dynamic simulation of diblock copolymer microphase separation. J. Chem. Phys. 1998, 108 (20), 8713-8724.
[35] D. C. Rapaport, The art of molecular dynamics simulation. Cambridge University Press: Cambridge, 2004; p 564.
[36] D. Frenkel; B. Smit, Understanding molecular simulation: from algorithms to applications. Academic press: San Diego, 2001; p 443.
[37] 理查.費曼; 羅伯.雷頓; 馬修.山德士, 費曼物理學講義:力學、輻射與熱-熱與統計力學. 天下遠見出版公司: 台北, 2007; p 251.
[38] J. Perrin., Mouvement brownien et réalité moléculaire, Ann. Chim. Phys. 1909, 18, 5-104.
[39] E. Buckingham, On physically similar systems; illustrations of the Uuse of dimensional equations. Physical Review 1914, 4 (4), 345-376.
指導教授 曹恆光(Heng-kwong Tsao) 審核日期 2013-6-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明