博碩士論文 100324012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.145.201.71
姓名 陳敦祈(Tun-chi Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以電刺激增進骨髓基質細胞骨分化之最佳化探討
(Optimization of Electrical Stimulation for Improving Osteogenesis of Bone Marrow Stromal Cells)
相關論文
★ 利用穿膜胜肽改善帶正電高分子之轉染效率★ 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化
★ 利用電場控制導電性高分子以進行基因於聚電解質多層膜的組裝★ 以短鏈胜肽接枝聚乙烯亞胺來進行基因輸送應用之研究
★ 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染★ 電場對於複合奈米絲進行原位基因傳送之影響
★ 利用電場調控聚電解質多層膜的釋放 以應用於基因輸送★ 發展載藥電紡聚乳酸/多壁奈米碳管/聚乙二醇纖維
★ 利用寡聚精胺酸促進去氧寡核苷酸輸送★ 利用聚己內酯/褐藻酸鈉之複合電紡絲擴增癌症幹細胞
★ 以二元體形式之Indolicidin 應用於去氧寡核苷酸之輸送★ Indolicidin之色胺酸殘基對於轉染效率的影響
★ Indolicidin之二聚體形式對輸送去氧寡核?酸的影響★ 搭建可提供電刺激與機械刺激之生物反應器
★ 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體★ 開發促進傷口癒合之複合敷料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以導電性高分子聚吡咯薄膜做為培養大鼠骨髓間葉幹細
胞的基材,並經由骨分化時期不同時間電刺激與調控電刺激物理參數
以觀察幹細胞成骨分化的影響。首先在不同時間電刺激方面,分別在
更換骨分化培養液後作為第0, 2, 4, 6, 8, 10, 12 天個別對細胞進行一
次4 小時的恆定電壓刺激。再於第14 天進行茜素紅染色及鈣沉積定
量分析。結果發現,於骨分化第8 天電刺激的組別與其他時間點電刺
激相比有較明顯的礦化現象。利用RT PCR 及qPCR 結果來分析骨相
關基因調控,發現電刺激可以延長ALP 及Cbfa1 的表現時間,增加
osteocalcin 基因的表現,並加速osteopontin 基因的下降。接著以骨分
化培養第8 天電刺激為最佳時間點,分別調控電刺激參數,並於第
14 天進行茜素紅染色以及鈣沉積定量分析。首先與定電壓相比,0.01
Hz 方波具有較佳骨化效果。另外在調整振幅及偏移中,發現決定骨
化的效果主要是在於實質上的通電電壓而非振幅。最後我們以不同的
運作時間比來調控方波,發現運作時間比介於10%至99%效果最佳。
摘要(英) Polypyrrole, was applied to culture rat bone marrow stromal cells
(BMSCs) to determine the effect of the period of electrical stimulation
(ES) and parameters of electricity on osteogenesis. For period of ES
experiments, BMSCs were induced using osteogenic and were treated
constant 2V at Day 0, 2, 4, 6, 8, 10, 12. Alizarin red staining and calcium
deposition analysis at Day 14 were performed, which demonstrated that
ES at Day 8 led to highest mineralization. Therefore,
reversed-transcription PCR and quantities PCR were applied to analyze
the osteogenic relative gene regulation. The results indicated that ES at
Day 8 can not only extend the period of alkaline phosphatase and Cbfa1
genes, but also accelerate the promotion of osteocalcin gene and the
decline of osteopontin gene. Then we regulated different ES parameters
and evaluated using alizarin red staining and calcium deposition analysis
at Day 14. Compared to constant voltage, square waves with 0.01 Hz may
improve the level of calcium deposition. Through adjusting the amplitude
and offset, the effect of operation voltage should be more important than
the amplitude. Finally, different duty cycles were applied to regulate
square waves, and the results suggested that 10% to 99% of duty cycles
demonstrated optimal mineralization.
關鍵字(中) ★ 聚吡咯薄膜
★ 電刺激
★ 成骨
★ 間質幹細胞
★ 骨分化基因
關鍵字(英) ★ polypyrrole
★ electrical stimulation
★ osteoblast
★ stromal stem cell
★ osteoblast-related gene
論文目次 摘要................................................................................................................................ I
Abstract ......................................................................................................................... II
致謝.............................................................................................................................. III
目錄.............................................................................................................................. IV
圖表目錄...................................................................................................................... VI
第一章 緒論........................................................................................................ 1
1-1 研究動機................................................................................................ 1
1-2 實驗假說................................................................................................ 3
第二章 文獻回顧與理論基礎............................................................................ 4
2-1 組織工程................................................................................................ 4
2-2 幹細胞.................................................................................................... 6
2-3 骨分化進程與骨相關基因.................................................................... 8
2-4 電刺激.................................................................................................. 10
第三章 實驗方法與設備.................................................................................. 16
3-1 實驗藥品.............................................................................................. 16
3-1-1 材料製備用藥.............................................................................. 16
3-1-2 細胞培養、骨分化用藥.............................................................. 16
3-1-3 骨分化定性、定量試劑.............................................................. 19
3-1-4 Total RNA 萃取、反轉錄cDNA、PCR 試劑、膠體電泳 ....... 20
3-2 實驗儀器.............................................................................................. 23
3-3 試藥製備與實驗方法.......................................................................... 25
3-3-1 Polypyrrole 製備、電刺激裝置製作 .......................................... 25
3-3-2 細胞冷凍解凍、培養繼代.......................................................... 27
3-3-3 不同時間點電刺激實驗、電刺激參數最佳化.......................... 28
3-3-4 茜素紅染色(Alizarin Red Staining, ARS) .................................. 32
3-3-5 Calcium-O-Cresolphtalein Complexone ...................................... 33
3-3-6 Purification of Total RNA from Animal Cells Using Spin
Technology-RNeasy Mini Kit ...................................................................... 35
3-3-7 SuperScript III First-Strand Synthesis System for RT-PCR ........ 36
3-3-8 Polymerase chain reaction (PCR) & Electrophoresis .................. 38
3-3-9 Real-Time PCR (Quantitative Polymerase Chain Reaction) ....... 41
3-4 實驗設計與架構.................................................................................. 44
3-4-1 導電高分子聚吡咯親疏水性與電性質...................................... 44
V
3-4-2 不同時間點電刺激對骨分化的影響.......................................... 44
3-4-3 最佳化電刺激參數增進骨分化現象.......................................... 45
3-5 材料物理性質分析.............................................................................. 47
3-5-1 親疏水性分析.............................................................................. 47
3-5-2 導電性分析.................................................................................. 48
3-5-3 穩定性測試.................................................................................. 49
3-6 生物性質分析...................................................................................... 50
3-6-1 茜素紅染色(Alizarin Red Staining, ARS) .................................. 50
3-6-2 Calcium-O-Cresolphthalein Complexone .................................... 50
3-6-3 骨分化相關基因表現.................................................................. 51
第四章 結果與討論.......................................................................................... 61
4-1 導電高分子聚吡咯.............................................................................. 61
4-1-1 親疏水性(Wettability) ................................................................. 61
4-1-2 電性質量測(Conductivity) .......................................................... 62
4-1-3 穩定性測試(Stability) ................................................................. 66
4-2 不同時間點電刺激之骨分化表現...................................................... 67
4-2-1 茜素紅染色與鈣離子沉積分析.................................................. 67
4-2-2 Total RNA 萃取、反轉錄PCR 和膠體電泳 ............................. 74
4-2-3 即時聚合脢連鎖反應(Real-Time PCR) ..................................... 77
4-3 最佳化電刺激參數.............................................................................. 82
4-3-1 茜素紅染色與鈣離子沉積分析.................................................. 82
第五章 結論...................................................................................................... 89
第六章 參考資料.............................................................................................. 91
參考文獻 1. Yang-Guk Chung, Allen T. Bishop, Goetz A. Giessler, Osami Suzuki, Jeffrey L.
Platt, Michael Pelzer, Patricia F. Friedrich, and T. Kremer., Surgical
angiogenesis: a new approach to maintain osseous viability in
xenotransplantation. Xenotransplantation, 2010. 17(1): p. 38-47.
2. Bessa, P.C., M. Casal, and R.L. Reis, Bone morphogenetic proteins in tissue
engineering: the road from laboratory to clinic, part II (BMP delivery).
Journal of Tissue Engineering and Regenerative Medicine, 2008. 2(2-3): p.
81-96.
3. Togloom, A., K.-T. Lim, J.-H. Kim, H. Seonwoo, P. Garg, P.-H. Choung, C.-S.
Cho, Y.-H. Choung, and J.H. Chung, Molecular Responses in Osteogenic
Differentiation of Mesenchymal Stem Cells Induced by Physical Stimulation.
Tissue Engineering and Regenerative Medicine, 2011. 8(3): p. 271-281.
4. Huang, C.O., Rei, Effect of Hydrostatic Pressure on Bone Regeneration Using
Human Mesenchymal Stem Cells. Tissue Engineering Part A, 2012. 18(19-20):
p. 2106-2113.
5. Spadaro, J.A., Mechanical and electrical interactions in bone remodeling.
Bioelectromagnetics, 1997. 18(3): p. 193-202.
6. Bassett, C.A.L. and R.O. Becker, Generation of electric potentials by bone in
response to mechanical stress. Science, 1962. 137(3535): p. 1063-1064.
7. BASSETT, C.A.L., R.J. PAWLUK, and R.O. BECKER, Effects of electric
currents on bone in vivo. Nature, 1964. 204: p. 652-654.
8. Becker, R.O., C. Bassett, and C.H. Bachman, Bioelectric factors controlling
bone structure. H. Frost. New York: Little Brown, 1964.
9. Fukada, E. and I. Yasuda, On the piezoelectric effect of bone. J. Phys. Soc.
Japan, 1957. 12(10): p. 1158-1162.
10. Yasuda, I., K. Noguchi, and T. Sata, Dynamic callus and electric callus. J
Bone Joint Surg A, 1955. 37: p. 1292-8.
11. 徐藝庭, 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化. 國立中
央大學 化學工程暨材料工程研究所學位論文, 2012: p. 34-35.
12. Meng, S., Z. Zhang, and M. Rouabhia, Accelerated osteoblast mineralization
on a conductive substrate by multiple electrical stimulation. Journal of bone
92
and mineral metabolism, 2011. 29(5): p. 535-544.
13. Prockop, D., Marrow stromal cells as steam cells for nonhematopoietic tissues.
Science, 1997. 276(5309): p. 71-74.
14. Hess, R., A. Jaeschke, H. Neubert, V. Hintze, S. Moeller, M. Schnabelrauch,
H.-P. Wiesmann, D.A. Hart, and D. Scharnweber, Synergistic effect of defined
artificial extracellular matrices and pulsed electric fields on osteogenic
differentiation of human MSCs. Biomaterials, 2012. 33(35): p. 8975-8985.
15. Jansen, J.H., O.P.v.d. Jagt, B.J. Punt, J.A. Verhaar, J.P.v. Leeuwen, H. Weinans,
and H. Jahr, Stimulation of osteogenic differentiation in human
osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study. Bmc
Musculoskeletal Disorders, 2010. 11.
16. Sun., L.-Y., D.-K. Hsieh., T.-C. Yu., H.-T. Chiu., S.-F. Lu., G.-H. Luo., T.K.
Kuo., O.K. Lee., and T.-W. Chiou., Effect of Pulsed Electromagnetic Field on
the Proliferation and Differentiation Potential of Human Bone Marrow
Mesenchymal Stem Cells. Bioelectromagnetics, 2009. 30(4): p. 251-260.
17. Sun, S., Y. Liu, S. Lipsky, and M. Cho, Physical manipulation of calcium
oscillations facilitates osteodifferentiation of human mesenchymal stem cells.
Faseb Journal, 2007. 21(7): p. 1472-1480.
18. Post, S., B.M. Abdallah, J.F. Bentzon, and M. Kassem, Demonstration of the
presence of independent pre-osteoblastic and pre-adipocytic cell populations
in bone marrow-derived mesenchymal stem cells. Bone, 2008. 43(1): p. 32-39.
19. Zhang, J., K.G. Neoh, X. Hu, E.-T. Kang, and W. Wang, Combined effects of
direct current stimulation and immobilized BMP-2 for enhancement of
osteogenesis. Biotechnology and Bioengineering, 2013. 110(5): p. 1466-1475.
20. Hutmacher, D.W., Scaffolds in tissue engineering bone and cartilage.
Biomaterials, 2000. 21(24): p. 2529-2543.
21. Jo, I., J.M. Lee, H. Suh, and H. Kim, Bone tissue engineering using marrow
stromal cells. Biotechnology and Bioprocess Engineering, 2007. 12(1): p.
48-53.
22. Fagoonee, S., R. Pellicano, L. Silengo, and F. Altruda, Potential applications
of germline cell-derived pluripotent stem cells in organ regeneration.
Organogenesis, 2011. 7(2): p. 116-122.
23. Arnold I Caplan, S.P.B., Mesenchymal stem cells: building blocks for
molecular medicine in the 21st century. Trends in Molecular Medicine, 2001.
7(6): p. 259-264.
24. Aubin, J.E. and J.T. Triffitt, Mesenchymal stem cells and osteoblast
differentiation. Principles of bone biology, 2002. 1: p. 59-81.
25. Kale, S. and M.W. Long, Osteopoiesis: The early development of bone cells.
93
Critical Reviews in Eukaryotic Gene Expression, 2000. 10(3-4): p. 259-271.
26. Aubin, J.E., Advances in the osteoblast lineage. Biochemistry and Cell
Biology-Biochimie Et Biologie Cellulaire, 1998. 76(6): p. 899-910.
27. Jaiswal, R.K., N. Jaiswal, S.P. Bruder, G. Mbalaviele, D.R. Marshak, and M.F.
Pittenger, Adult human mesenchymal stem cell differentiation to the osteogenic
or adipogenic lineage is regulated by mitogen-activated protein kinase.
Journal of Biological Chemistry, 2000. 275(13): p. 9645-9652.
28. Donald G. PhinneyKopen, G., G. Kopen, W. Righter, S. Webster, N. Tremain,
and D.J. Prockop, Donor variation in the growth properties and osteogenic
potential of human marrow stromal cells. Journal of Cellular Biochemistry,
1999. 75(3): p. 424-436.
29. Zohar, R., J. Sodek, and C.A.G. McCulloch, Characterization of stromal
progenitor cells enriched by flow cytometry. Blood, 1997. 90(9): p. 3471-3481.
30. Hager, S., F.M. Lampert, H. Orimo, G.B. Stark, and G. Finkenzeller,
Up-Regulation of Alkaline Phosphatase Expression in Human Primary
Osteoblasts by Cocultivation with Primary Endothelial Cells is Mediated by
p38 Mitogen-Activated Protein Kinase-Dependent mRNA Stabilization. Tissue
Engineering Part A, 2009. 15(11): p. 3437-3447.
31. Maehata, Y., S. Takamizawa, S. Ozawa, Y. Kato, S. Sato, E. Kubota, and R.-I.
Hata, Both direct and collagen-mediated signals are required for active
vitamin D-3-elicited differentiation of human osteoblastic cells: Roles of
osterix, an osteoblast-related transcription factor. Matrix Biology, 2006. 25(1):
p. 47-58.
32. Mahonen, A., A. Jukkola, L. Risteli, J. Risteli, and P.H. Mäenpää, Type I
procollagen synthesis is regulated by steroids and related hormones in human
osteosarcoma cells. Journal of Cellular Biochemistry, 1998. 68(2): p. 151-163.
33. Ducy, P., R. Zhang, V. Geoffroy, A.L. Ridall, and G. Karsenty, Osf2/Cbfa1: A
transcriptional activator of osteoblast differentiation. Cell, 1997. 89(5): p.
747-754.
34. Liu, W., S. Toyosawa, T. Furuichi, N. Kanatani, C. Yoshida, Y. Liu, M.
Himeno, S. Narai, A. Yamaguchi, and T. Komori, Overexpression of Cbfa1 in
osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple
fractures. Journal of Cell Biology, 2001. 155(1): p. 157-166.
35. Balint, R.C., Nigel J.; Cartmell, Sarah H., Electrical Stimulation: A Novel Tool
for Tissue Engineering. Tissue Engineering Part B: Reviews, 2012. 19(1): p.
48-57.
36. Gan, J.C. and P.A. Glazer, Electrical stimulation therapies for spinal fusions:
current concepts. European Spine Journal, 2006. 15(9): p. 1301-1311.
94
37. Saxena, A., L.A. DiDomenico, A. Widtfeldt, T. Adams, and W. Kim,
Implantable electrical bone stimulation for arthrodeses of the foot and ankle
in high-risk patients: a multicenter study. The Journal of foot and ankle
surgery, 2005. 44(6): p. 450-454.
38. Petrisor, B. and J.T. Lau, Electrical bone stimulation: an overview and its use
in high risk and Charcot foot and ankle reconstructions. Foot and Ankle
Clinics, 2005. 10(4): p. 609-620.
39. Kuzyk, P.R. and E.H. Schemitsch, The science of electrical stimulation
therapy for fracture healing. Indian journal of orthopaedics, 2009. 43(2): p.
127-131.
40. Jian, Z., M. Hui-Ping, C. Ke-Ming, G. Bao-Feng, C. Guo-Zheng, W. Jia-Qi,
and W. Zhe, Effect of Four Different Wave of 1.8mT 50Hz Electromagnetic
Fields on Proliferation and Differentiation of Osteoblasts In vitro. Progress in
Biochemistry and Biophysics, 2011. 38(10): p. 967-974.
41. Aaron, R.K., D.M. Ciombor, and B.J. Simon, Treatment of nonunions with
electric and electromagnetic fields. Clinical orthopaedics and related research,
2004. 419: p. 21-29.
42. Wang, Z., C.C. Clark, and C.T. Brighton, Up-regulation of bone
morphogenetic proteins in cultured murine bone cells with use of specific
electric fields. The Journal of Bone & Joint Surgery, 2006. 88(5): p.
1053-1065.
43. Leo, M., F. Milena, C. Ruggero, S. Stefania, and T. GianCarlo, Biophysical
stimulation in osteonecrosis of the femoral head. Indian Journal of
Orthopaedics, 2009. 43(1): p. 17-21.
44. Emes, Y., K. Akca, B. Aybar, S. Yalcin, Y. Cavusoglu, U. Baysal, H. Issever, B.
Atalay, P. Vural, M. Erguven, M.C. Cehreli, and A. Bilir, Low-level laser
therapy vs. pulsed electromagnetic field on neonatal rat calvarial
osteoblast-like cells. Lasers in Medical Science, 2013. 28(3): p. 901-909.
45. NJOBUENWU, D.O., E.O. OBOHO, and R.H. GUMUS, Determination of
contact angle from contact area of liquid droplet spreading on solid substrate.
Leonardo Electronic Journal of Practices and Technologies, 2007. 10: p.
29-38.
46. Marom, R., I. Shur, R. Solomon, and D. Benayahu, Characterization of
adhesion and differentiation markers of osteogenic marrow stromal cells. J
Cell Physiol, 2005. 202(1): p. 41-8.
47. Raouf, A. and A. Seth, Discovery of osteoblast-associated genes using cDNA
microarrays. Bone, 2002. 30(3): p. 463-471.
48. Wen, L., Y. Wang, H. Wang, L. Kong, L. Zhang, X. Chen, and Y. Ding, L-type
95
calcium channels play a crucial role in the proliferation and osteogenic
differentiation of bone marrow mesenchymal stem cells. Biochemical and
Biophysical Research Communications, 2012. 424(3): p. 439-445.
49. Aubin, J.E., F. Liu, L. Malaval, and A.K. Gupta, Osteoblast and Chondroblast
Differentiation. Bone, 1995. 17(2): p. S77-S83.
50. Yamate, T., H. Mocharla, Y. Taguchi, J.U. Igietseme, S.C. Manolagas, and E.
Abe, Osteopontin expression by osteoclast and osteoblast progenitors in the
murine bone marrow: demonstration of its requirement for osteoclastogenesis
and its increase after ovariectomy. Endocrinology, 1997. 138(7): p. 3047-55.
51. Qiufeng, L. and W. Zhiyong, SYNTHESIS AND CHARACTERIZATION OF
POLYPYRROLE NANOPARTICLES VIA UNSTIRRED POLYMERIZATION.
Acta Polymerica Sinica, 2009. 6: p. 004.
52. 林錫勳, 電化學製備聚砒硌膜之電化學與材料特性的研究. 臺灣碩博士論
文 國立中正大學化學工程研究所, 2001: p. 6-8.
53. Brie, M., R. Turcu, and A. Mihut, Stability study of conducting polypyrrole
films and polyvinylchloride-polypyrrole composites doped with different
counterions. Materials Chemistry and Physics, 1997. 49(2): p. 174-178.
54. Blair, H.C., L.J. Robinson, C.L.H. Huang, L. Sun, P.A. Friedman, P.H.
Schlesinger, and M. Zaidi, Calcium and bone disease. Biofactors, 2011. 37(3):
p. 159-167.
55. Heim, M., O. Frank, G. Kampmann, N. Sochocky, T. Pennimpede, P. Fuchs, W.
Hunziker, P. Weber, I. Martin, and I. Bendik, The phytoestrogen genistein
enhances osteogenesis and represses adipogenic differentiation of human
primary bone marrow stromal cells. Endocrinology, 2004. 145(2): p. 848-859.
56. Perrien, D.S., E.C. Brown, J. Aronson, R.A. Skinner, D.C. Montague, T.M.
Badger, and J.C.K. Lumpkin, Immunohistochemical study of osteopontin
expression during distraction osteogenesis in the rat. Journal of
Histochemistry & Cytochemistry, 2002. 50(4): p. 567-574.
57. Sato, M., N. Yasui, T. Nakase, H. Kawahata, M. Sugimoto, S. Hirota, Y.
Kitamura, S. Nomura, and T. Ochi, Expression of bone matrix proteins mRNA
during distraction osteogenesis. Journal of Bone and Mineral Research, 1998.
13(8): p. 1221-1231.
58. Fujita, T., R. Fukuyama, N. Izumo, T. Hirai, T. Meguro, H. Nakamuta, and M.
Koida, Transactivation of core binding factor alpha 1 as a basic mechanism to
trigger parathyroid hormone-induced osteogenesis. Japanese Journal of
Pharmacology, 2001. 86(4): p. 405-416.
指導教授 胡威文(Wei-wen Hu) 審核日期 2013-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明