博碩士論文 100324013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:54.237.183.249
姓名 張嘉芬(Chia-Fen Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 抗氧化奈米銅粒子的製備及分析
(Synthesis and Characterization of anti-oxidative copper nanoparticles)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 奈米自泳動粒子之擴散行為
★ 柱狀自泳動粒子之擴散行為與沉降平衡★ 過氧化氫的界面性質與穩定性
★ 液橋分離與液面爬升物體之研究★ 電潤濕動態行為探討
★ 表面粗糙度對接觸角遲滯影響之效應★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象
★ 低溫還原氧化石墨烯薄膜★ 雙離子型磺基甜菜鹼基材之潤濕現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於銅墨可以取代銀墨應用在印刷電子產品(printed electronics)上,因此近幾年來,奈米銅粒子的製備引起了大家的注目。然而,因奈米銅粒子在空氣中十分容易氧化,且銅氧化物的電阻率及燒結溫度都遠比純銅高,此特性使得在製備及應用上都十分棘手。
本實驗以硫酸銅水溶液為前驅鹽,在其中添加明膠作為保護劑,並以氫硼化鈉水溶液當作還原劑還原上述混合物,最後加入聯胺水溶液當作除氧劑,依此方法所製備而成的奈米銅膠溶液,其粒徑藉由DLS及TEM量測結果為40~50 nm,以UV-Vis光譜量測其氧化速率,結果顯示奈米銅粒子的特徵吸收峰,其吸收強度可穩定維持兩個月,此外,TEM繞射環的結果顯示兩個月後仍然為銅,並沒有氧化銅生成,表示此奈米銅膠溶液可持續抗氧化長達兩個月。將此奈米銅膠溶液加入去離子水後以高速離心來分離銅粒子及雜質,以此方法清洗兩次過後,以TGA與EDS交互檢測驗證,顯示其雜質含量已達到5 wt%以下。由兩點探針量測水洗兩次後沉澱物的電阻率為3.37×10-3 ( ),此電阻率與以銀膠畫出類似圖樣的電阻率相似,表示此沉澱物的電導度已足夠當成導線使用。此外,針對影響奈米銅粒子的粒徑、氧化速率及電導度的變因分別作探討。
奈米銅粒子的粒徑與還原劑的強弱和明膠的添加量有關,適當控制明膠和銅離子的比例可得到最小的粒徑40~50 nm。
明膠的添加可延長奈米銅粒子的氧化時間,且可藉由除氧劑-聯胺水溶液的添加使得溶液氧含量降低,以避免奈米銅粒子的氧化,且隨著聯胺濃度的增加可延長其抗氧化時間。
以清洗過兩次的奈米銅沉澱物,改變不同熱處理溫度,其電導度維持定值並無增加,在此,探討其清洗過程與電導度的關係。
摘要(英) In general, copper nanoparticles are easy to oxidize in the ambient conditions. That is the main obstacle for copper ink to use because the appearance of copper oxide will result in rising the sintering temperature and decreasing the conductivity. Therefore, preventing copper nanoparticles from oxidization becomes an important issue.
In this study, the addition of hydrazine utilized as oxygen scanvenger decreases the oxygen concentration in the liquid media. This method could prevent the copper nanoparticles from the exposure of oxygen and copper nanoparticles could store more than two months without oxidation.
If the reducing agent is stronger and the concentration of gelatin is appropriate, the size of CuNPs is smaller. When the CuNPs is oxidized, there are two different oxidation final states. If the concentration of gelatin is higher, the oxidation state is [Cu(gel)]2+ . If the concentration of gelatin is lower, the oxidation state is [Cu(OH)4]2-. After washing two times by DI water, the impurities could be totally removed. The shiny precipitate can not be redispersed by sonocation and can be taken by tweezers. The precipitation is centrifugation-induced sintering, and its conductivity is similar with silver paste.
關鍵字(中) ★ 銅
★ 奈米粒子
關鍵字(英) ★ copper
★ nanoparticle
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 奈米科技 4
1-3 銅的基本性質及反應 5
1-4 明膠簡介 6
第二章 基本原理及文獻回顧 8
2-1 表面電漿共振 8
2-2 奈米粒子的穩定性 9
2-3 金屬奈米粒子的燒結行為 16
2-4 文獻回顧 18
2-4-1 粒徑限制 19
2-4-2 氧化問題 19
2-5 研究目的 22
第三章 實驗 23
3-1 實驗藥品 23
3-2 實驗儀器 24
1. 溶氧度計 (Dissolve Oxygen Analyzer) : 型號DO200,Y.S.I。 24
3-3 實驗流程及步驟 26
3-3-1 銅奈米粒子的合成 28
3-3-2 銅奈米粒子的純化 28
3-4 儀器分析原理及分析方法 29
3-4-1 溶氧度計 29
3-4-2 紫外光-可見光光譜儀 30
3-4-3 動態散射光譜儀 32
3-4-4 穿隧式電子顯微鏡 32
3-4-5 場發射掃描式高解析度顯微鏡 32
3-4-6 熱重分析儀 33
3-4-7 兩點探針 33
第四章 奈米銅粒子的粒徑控制 34
4-1 還原劑的影響 34
4-2 保護劑的影響 36
4-2-1 反應機制 37
4-2-2 明膠濃度的影響 38
第五章 奈米銅粒子的氧化行為 46
5-1 未添加除氧劑時的氧化現象 46
5-1-1 明膠濃度的影響 47
5-1-2 氧化機制 48
5-2 添加除氧劑的奈米銅膠溶液 53
第六章 抗氧化奈米銅粒子的燒結現象及電導 58
6-1 純化效率 58
6-2 離心力燒結及電導量測 59
6-2-1 離心燒結(centrifugation sintering) 59
6-2-2 熱燒結(heat sintering) 60
第七章 結論 64
第八章 參考資料 65
參考文獻 1. Zschieschang, U., et al., Flexible organic circuits with printed gate electrodes. Advanced Materials, 2003. 15(14): p. 1147-+.
2. Kang, P.G., S.O. Ogunbo, and D. Erickson, High Resolution Reversible Color Images on Photonic Crystal Substrates. Langmuir, 2011. 27(16): p. 9676-9680.
3. Yonezawa, T., et al., The preparation of copper fine particle paste and its application as the inner electrode material of a multilayered ceramic capacitor. Nanotechnology, 2008. 19(14).
4. Redinger, D., et al., An ink-jet-deposited passive component process for RFID. Ieee Transactions on Electron Devices, 2004. 51(12): p. 1978-1983.
5. Tekin, E., P.J. Smith, and U.S. Schubert, Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter, 2008. 4(4): p. 703-713.
6. Park, B.K., et al., Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Films, 2007. 515(19): p. 7706-7711.
7. Kumashiro, Y., et al., Novel materials for electronic device fabrication using ink-jet printing technology. Applied Surface Science, 2009. 256(4): p. 1019-1022.
8. Buffat, P. and J.P. Borel, Size effect on the melting temperature of gold particles. Physical Review A, 1976. 13(6): p. 2287-2298.
9. Heinzl, J. and C.H. Hertz, Ink-jet printing. Advances in Electronics and Electron Physics, 1985. 65: p. 91-171.
10. Marmur, A., The lotus effect: Superhydrophobicity and metastability. Langmuir, 2004. 20(9): p. 3517-3519.
11. Vukusic, P. and J.R. Sambles, Photonic structures in biology (vol 424, pg 852, 2003). Nature, 2004. 429(6992): p. 680-680.
12. Willets, K.A. and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, in Annual Review of Physical Chemistry. 2007. p. 267-297.
13. Mie, G., Simulation of the Colour Effects Connected with Colloidal Gold Particles. Annals of Physics, 1908. 25: p. 377.
14. Smithard, M.A., Size effect on the optical and paramagnetic absorption of silver particles in a glass matrix. Solid State Communications, 1973. 13: p. 153-156.
15. Ashby, M.F., A First Report on Sintering Diagrams. Acta Metal, 1974. 22: p. 275-289.
16. Lee, J.S., L. Klinger, and E. Rabkin, Particle rearrangement during sintering of heterogeneous powder mixtures: A combined experimental and theoretical study. Acta Materialia, 2012. 60(1): p. 123-130.
17. Coble, R.L., Sintering crystalline solids. I. Intermediate and final state diffusion models. Journal of Applied Physics, 1961. 32: p. 793-799.
18. Herring, C., Some theorems on the free energies of crystal surfaces. Physical Review 1951. 82: p. 87-93.
19. Gaffet, E., et al., Metastable Phase-Transformations Induced by Ball-Milling in the Cu-W System. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1991. 134: p. 1380-1384.
20. Zhang, Y., et al., Fabrication of copper nanorods by low-temperature metal organic chemical vapor deposition. Chinese Science Bulletin, 2006. 51(21): p. 2662-2668.
21. Tilaki, R.M., A.I. Zad, and S.M. Mahdavi, Size, composition and optical properties of copper nanoparticles prepared by laser ablation in liquids. Applied Physics a-Materials Science & Processing, 2007. 88(2): p. 415-419.
22. Rossnagel, S.M. and J. Hopwood, Metal-Ion Deposition from Ionized Magnetron Sputtering Discharge. Journal of Vacuum Science & Technology B, 1994. 12(1): p. 449-453.
23. Haram, S.K., A.R. Mahadeshwar, and S.G. Dixit, Synthesis and characterization of copper sulfide nanoparticles in Triton-X 100 water-in-oil microemulsions. Journal of Physical Chemistry, 1996. 100(14): p. 5868-5873.
24. Lisiecki, I. and M.P. Pileni, Synthesis of Copper Metallic Clusters Using Reverse Micelles as Microreactors. Journal of the American Chemical Society, 1993. 115(10): p. 3887-3896.
25. Pileni, M.P. and I. Lisiecki, Nanometer Metallic Copper Particle Synthesis in Reverse Micelles. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 1993. 80(1): p. 63-68.
26. Balogh, L. and D.A. Tomalia, Poly(amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters. Journal of the American Chemical Society, 1998. 120(29): p. 7355-7356.
27. Ohde, H., F. Hunt, and C.M. Wai, Synthesis of silver and copper nanoparticles in a water-in-supercritical-carbon dioxide microemulsion. Chemistry of Materials, 2001. 13(11): p. 4130-4135.
28. Cheon, J.M., et al., Synthesis of Ag nanoparticles using an electrolysis method and application to inkjet printing. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2011. 389(1-3): p. 175-179.
29. Kumar, R.V., et al., Sonochemical synthesis of amorphous Cu and nanocrystalline Cu2O embedded in a polyaniline matrix. Journal of Materials Chemistry, 2001. 11(4): p. 1209-1213.
30. Goia, D.V. and E. Matijevic, Preparation of monodispersed metal particles. New Journal of Chemistry, 1998. 22(11): p. 1203-1215.
31. Park, B.K., et al., Synthesis and size control of monodisperse copper nanoparticles by polyol method. Journal of Colloid and Interface Science, 2007. 311(2): p. 417-424.
32. Wang, Y.H., P.L. Chen, and M.H. Liu, Synthesis of well-defined copper nanocubes by a one-pot solution process. Nanotechnology, 2006. 17(24): p. 6000-6006.
33. Wu, C.W., B.P. Mosher, and T.F. Zeng, One-step green route to narrowly dispersed copper nanocrystals. Journal of Nanoparticle Research, 2006. 8(6): p. 965-969.
34. Khanna, P.K., et al., Synthesis of hydrophilic copper nanoparticles: effect of reaction temperature. Journal of Nanoparticle Research, 2009. 11(4): p. 793-799.
35. Narushima, T., H. Tsukamoto, and T. Yonezawa, High temperature oxidation event of gelatin nanoskin-coated copper fine particles observed by in situ TEM. Aip Advances, 2012. 2(4).
36. Song, X.Y., et al., A method for the synthesis of spherical copper nanoparticles in the organic phase. Journal of Colloid and Interface Science, 2004. 273(2): p. 463-469.
37. Lisiecki, I., F. Billoudet, and M.P. Pileni, Control of the shape and the size of copper metallic particles. Journal of Physical Chemistry, 1996. 100(10): p. 4160-4166.
38. Qi, L.M., J.M. Ma, and J.L. Shen, Synthesis of copper nanoparticles in nonionic water-in-oil microemulsions. Journal of Colloid and Interface Science, 1997. 186(2): p. 498-500.
39. Wu, S.H. and D.H. Chen, Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. Journal of Colloid and Interface Science, 2004. 273(1): p. 165-169.
40. Salzemann, C., et al., Anisotropic copper nanocrystals synthesized in a supersaturated medium: Nanocrystal growth. Langmuir, 2004. 20(26): p. 11772-11777.
41. Ang, T.P., T.S.A. Wee, and W.S. Chin, Three-dimensional self-assembled monolayer (3D SAM) of n-alkanethiols on copper nanoclusters. Journal of Physical Chemistry B, 2004. 108(30): p. 11001-11010.
42. Mott, D., et al., Synthesis of size-controlled and shaped copper nanoparticles. Langmuir, 2007. 23(10): p. 5740-5745.
43. Kanninen, P., et al., Influence of ligand structure on the stability and oxidation of copper nanoparticles. Journal of Colloid and Interface Science, 2008. 318(1): p. 88-95.
44. Li, J. and C.Y. Liu, Carbon-coated copper nanoparticles: synthesis, characterization and optical properties. New Journal of Chemistry, 2009. 33(7): p. 1474-1477.
45. Luechinger, N.A., E.K. Athanassiou, and W.J. Stark, Graphene-stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics. Nanotechnology, 2008. 19(44).
46. Athanassiou, E.K., R.N. Grass, and W.J. Stark, Large-scale production of carbon-coated copper nanoparticles for sensor applications. Nanotechnology, 2006. 17(6): p. 1668-1673.
47. Grass, R.N. and W.J. Stark, Gas phase synthesis of fcc-cobalt nanoparticles. Journal of Materials Chemistry, 2006. 16(19): p. 1825-1830.
48. Kobayashi, Y. and T. Sakuraba, Silica-coating of metallic copper nanoparticles in aqueous solution. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2008. 317(1-3): p. 756-759.
49. Lee, W.R., et al., Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles. Journal of the American Chemical Society, 2005. 127(46): p. 16090-16097.
50. Grouchko, M., A. Kamyshny, and S. Magdassi, Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing. Journal of Materials Chemistry, 2009. 19(19): p. 3057-3062.
51. Ng, K.H. and R.M. Penner, Electrodeposition of silver-copper bimetallic particles having two archetypes by facilitated nucleation. Journal of Electroanalytical Chemistry, 2002. 522(1): p. 86-94.
52. Manikandan, D., S. Mohan, and K.G.M. Nair, Annealing-induced metallic core-shell clusterization in soda-lime glass: an optical absorption study - experiment and theory. Physica B-Condensed Matter, 2003. 337(1-4): p. 64-68.
53. Grouchko, M., et al., Synthesis of copper nanoparticles catalyzed by pre-formed silver nanoparticles. Journal of Nanoparticle Research, 2009. 11(3): p. 713-716.
54. Engels, V., et al., Nanoparticulate copper - routes towards oxidative stability. Dalton Transactions, 2010. 39(28): p. 6496-6502.
55. Jeong, S., et al., Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing. Advanced Functional Materials, 2008. 18(5): p. 679-686.
56. Darroudi, M., et al., Fabrication and Characterization of Gelatin Stabilized Silver Nanoparticles under UV-Light. International Journal of Molecular Sciences, 2011. 12(12): p. 6346-6356.
57. Ming, L.Q., et al., Preparation of Cu nanoparticleswith NaBH4 by aqueous reduction method. Transactions of Nonferrous Metals Society of China, 2012. 22: p. 117-123.
58. Yonezawa, T., N. Nishida, and A. Hyono, One-pot Preparation of Antioxidized Copper Fine Particles with a Unique Structure by Chemical Reduction at Room Temperature. Chemistry Letters, 2010. 39(6): p. 548-549.
59. Goa, J., A Micro Biuret Method for Protein Determination Determination of Total Protein in Cerebrospinal Fluid. Scandinavian Journal of Clinical & Laboratory Investigation, 1953. 5: p. 218-222.
60. Rice, K.P., et al., Solvent-Dependent Surface Plasmon Response and Oxidation of Copper Nanocrystals. Journal of Physical Chemistry C, 2011. 115(5): p. 1793-1799.
指導教授 曹恆光(Heng-Kwong Tsao) 審核日期 2013-6-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明