博碩士論文 100324017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:3.228.220.31
姓名 李芳紜(Fang-Yun Li)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析
(Electrochemical Impedance Spectroscopic Analysis of AgInS2 Thin Films Prepared by Using Ultrasonic Assisted Chemical Bath Deposition)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 奈米結構之Au/MnO2複合陰極觸媒材料
★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究
★ IMPS於Ag-In-S半導體薄膜之分析與應用★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性
★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究
★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質★ 電化學分解水之電極材料製備與效率探討
★ 金屬氧化物與硫化物異質結構薄膜之電化學研究★ 噴霧熱裂解法製備Zn-doped n-type CuInS2 薄膜及其光電化學性質分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用超音波輔助化學水浴法製備不同厚度之AgInS2半導體薄膜,並分析此材料之物性與光電性質,探討載子傳輸機制。從實驗結果可發現AgInS2薄膜為Orthorhombic phase,使用吸收光譜推測直接能隙值約為1.93~1.98 eV。光電性質量測的結果顯示,薄膜隨著鍍膜次數增加,可有效降低基材裸露與暗電流上升問題,其中鍍膜兩次之AgInS2光電極具有較佳的光電流值,在偏壓 1 V vs. SCE 下為 1.8 mA/cm2。由開環電位法量測薄膜於犧牲試劑( Na2S+K2SO3 )之費米能階(平帶電位)為 -0.845 V~ -1.020 V v.s. SCE,而Electrochemistry Impedance Spectroscopy(EIS)分析得知薄膜於相同犧牲試劑之費米能階為 -0.8 V~ -1.2 V vs. SCE,兩者數值相近。暗反應中,於犧牲試劑量測之EIS,可發現隨著鍍膜次數增加,R1(溶液電阻及薄膜電阻)也隨著增加;隨著偏壓較負,由於空乏區厚度變薄,會使得半導體電容越來越大;於照光情況下使用犧牲試劑為電解質所量測出來之EIS,可推測照光下,光激發生成之載子在不同偏壓下的傳輸機制,隨著光強增加,R2(電荷傳輸阻抗)會變小,使得載子傳輸較為容易。而不同光強下,皆於 -1.0 V ( vs. S.C.E.) 電容有最大值且載子存活時間最長。
未來的研究可調整不同銀銦比所製備之薄膜,由 EIS 分析技術得知薄膜於照光下之表面態電容、表面態時間,以了解此三成分硫化物光電極薄膜的光電化學行為。
摘要(英) In our previous studies, we have prepared photocatalyst thin films using Ultrasonic Chemical Bath Deposition (UCBD). By controlling [Ag]/[In] molar ratios in the precursors, we can obtain a single phase AgIn5S8, mixtures of AgIn5S8 and AgInS2 and a single phase AgInS2 thin films. Our studies focused on preparing AgInS2 films with different thickness and studying their electrochemical properties.
All the AgInS2 films after 400 °C thermal treatment have the orthorhombic structure and the direct energy band gap in the range of 1.93 to 1.98 eV. In order to understand the photoelectrochemical properties, AgInS2 films with different coatings were prepared. Xe lamp with an intensity of 100 mW/cm2 was then used to illuminate our samples. The photocurrent densities as a function of applied potential were measured. It was found that homogeneous AgInS2 films were obtained with increasing coatings. In addition, these dense films can effectively suppress the the dark current. In particular, the AgInS2 thin film of deposition two times (485.2 ± 28.2 nm) has the highest photocurrent density of 1.8 mA/cm2 under a bias of 1 V vs. SCE.
The fermi level (flat band potential) of films can be estimated from open circuit potential (OCP) measurements, as well as electrochemical impedance spectroscopic (EIS) analysis. The fermi levels of films in the sacrificial reagent consisted of Na2S and K2SO3 measured using OCP and EIS were varied from -0.845 V~ -1.020 V and -0.8 V~ -1.2 V, respectively. More information, such as charge transfer resistance and capacitance, can be retrieved from EIS analysis by fitting the experimental data to the model. In fact, Randle’ s model fitted the data better than other complicated models, which suggested that carriers transfer to the electrolyte directly from valence band under illumination. When depositing times increase, the resistance R1 (solution resistance and film resistance) will increase. When the applied potential decreases, the capacitance of the semiconductor will increase due to the thinner depletion layer. R2 (charge transfer resistance) will decrease dramatically under illumination, perhaps due to much higher carrier density. At -1.0 V vs. SCE, the AgInS2 film (D3) has the highest capacitance and the logest lifetime.
In the future, the EIS analysis can be used to investigate Ag-In-S thin film photoelectrode with different [Ag]/[In] molar ratios, to realize the physical original of charge transfer process of such materials.
關鍵字(中) ★ 光觸媒
★ 半導體薄膜
★ 電化學阻抗頻譜分析
★ 載子傳輸
關鍵字(英) ★ photocatalyst
★ semiconductor thin films
★ EIS
★ carrier transfer
論文目次 中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 前言 1
1-2 EIS(Electrochemical Impedance Spectroscopy)簡介 3
1-3 研究動機 4
第二章 文獻回顧 5
2-1 能帶理論 5
2-2 光觸媒 6
2-3 Ag-In-S半導體薄膜簡介 6
2-4 Ag-In-S薄膜製備技術 7
2-4-1 噴霧熱裂解法 (Spray Pyrolysis, SP) 8
2-4-2 硫化法 (Sulphurization) 9
2-4-3 連續式離子層吸收和反應 (Successive Ionic Layer Adsorption and Reaction) 9
2-4-4 熱蒸鍍法(Thermal Evaporation) 10
2-4-5 電沉積法 (Electrodeposition) 11
2-4-6 化學水浴沉積法 (Chemical Bath Deposition, CBD) 12
2-5 電化學交流阻抗頻譜(Electrochemistry Impedance Spectroscopy,EIS) 13
2-5-1 EIS基礎理論與分析 13
2-5-2 等效電路模型(Equivalent Circuit Models) 16
2-5-3 EIS 之數據分析 19
第三章 研究方法 31
3-1 實驗藥品 31
3-2 實驗儀器 32
3-3 實驗流程圖 33
3-4 實驗步驟 33
3-4-1 基材清洗 33
3-4-2 超音波輔助化學水浴法製備 Ag-In-S 光觸媒薄膜 34
3-5 薄膜基本性質檢測 36
3-5-1 二次離子質譜儀(Secondary ion mass spectrometry,SIMS)分析 36
3-5-2 拉曼光譜學(Raman spectroscopy)分析 37
3-5-3 UV-vis分析 38
3-6 光電化學量測 39
3-6-1 光電極薄膜製備 39
3-6-2 光電流量測 39
3-6-3 霍爾量測 (Hall Effect Measurement) 40
3-6-4 開環電位法(Open Circuit Potential,OCP) 40
3-6-5 電化學阻抗頻譜(Electrochemistry Impedance Spectroscopy,EIS) 41
第四章 結果與討論 43
4-1 超音波輔助化學水浴法製備AgInS2 43
4-2 晶型結構與表面型態分析 45
4-2-1 X光繞射(X-ray Diffraction,XRD)分析 45
4-2-2 掃描式電子顯微鏡(Scanning Electron Microscope,SEM)分析 46
4-3 元素分析 55
4-3-1 SIMS分析 55
4-3-2 拉曼光譜學(Raman spectroscopy)分析 58
4-4 光電化學測量與分析 59
4-5 UV-vis分析及霍爾量測分析 62
4-6 開環電位分析及電化學阻抗分析 65
4-6-1 開環電位分析 65
4-6-2 電化學阻抗分析 66
第五章 結論與未來展望 85
參考文獻 86
附錄 90
參考文獻 [1] 陳麗貞: 取之不盡、用之不竭的太陽能。 2010年,取自https://record.niet.gov.tw/Epaper/09933/3-3.html。
[2] Fujishima, A. and Honda K., “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, Vol 238, pp. 37-38, 1972.
[3] Kudo, A. and Miseki Y., “Heterogeneous photocatalyst materials for water splitting”, Chemical Society Reviews, Vol 38, pp. 253-278, 2009.
[4] Klahr, B., Gimenez S., Fabregat-Santiago F., Hamann T. and Bisquert J., “Water Oxidation at Hematite Photoelectrodes: The Role of Surface States”, Journal of the American Chemical Society, Vol 134, pp. 4294-4302, 2012.
[5] Vanmaekelbergh, D. and Cardon F., “On the impedance associate with electron-hole recombination in the space charge layer of an illuminated semiconductor/electrolyte interface”, Semiconductor Science and Technology, Vol 3, pp. 124, 1988.
[6] 蔡淑慧,半導體工程精選 = Semiconductor engineering,24-25頁,五南,臺北市,2007年。
[7] 吳錦貞,「I-III-VI/II-VI族可見光應答光觸媒材料之光電化學分析與水分解產氫應用」,國立中正大學,博士論文,2009。
[8] 蔡淑慧,半導體工程精選 = Semiconductor engineering,2頁,五南,臺北市,2007年。
[9] Gratzel, M., “Photoelectrochemical cells”, Nature, Vol 414, pp. 338-344, 2001.
[10] Shay, J. L., Tell B., Schiavone L. M., Kasper H. M. and Thiel F., “Energy bands of AgInS2 in the chalcopyrite and orthorhombic structures”, Physical Review B, Vol 9, pp. 1719-1723, 1974.
[11] Delgado, G., Mora A. J., Pineda C. and Tinoco T., “Simultaneous Rietveld refinement of three phases in the Ag-In-S semiconducting system from X-ray powder diffraction”, Materials Research Bulletin, Vol 36, pp. 2507-2517, 2001.
[12] Ortega-Lopez, M., Morales-Acevedo A. and Solorza-Feria O., “Physical properties of AgInS2 films prepared by chemical spray pyrolysis”, Thin Solid Films, Vol 385, pp. 120-125, 2001.
[13] Chamberlin, R. R. and Skarman J. S., “Chemical Spray Deposition Process for Inorganic Films”, Journal of The Electrochemical Society, Vol 113, pp. 86-89, 1966.
[14] Pamplin, B. and Feigelson R. S., “Spray pyrolysis of CuInSe2 and related ternary semiconducting compounds”, Thin Solid Films, Vol 60, pp. 141-146, 1979.
[15] Gorska, M., Beaulieu R., Loferski J. J. and Roessler B., “Spray pyrolysis of silver indium sulfides”, Thin Solid Films, Vol 67, pp. 341-345, 1980.
[16] Aguilera, M. L. A., Ortega-Lopez M., Resendiz V. M. S., Hernandez J. A. and Trujillo M. A. G., “Some physical properties of chalcopyrite and orthorhombic AgInS2 thin films prepared by spray pyrolysis”, Materials Science and Engineering: B, Vol 102, pp. 380-384, 2003.
[17] Sunil, M. A., Deepa K. G. and Nagaraju J., “Effect of sulphur variation in AgInS2 thin films prepared by chemical spray pyrolysis”, Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE, 000174-000176, 2012.
[18] Makhova, L., Szargan R. and Konovalov I., “Investigation of the growth process and properties of CuIn5S8 and AgIn5S8 spinel thin films”, Thin Solid Films, Vol 472, pp. 157-163, 2005.
[19] Nakamura, S. and Seto S., “Optical properties of AgInS2 thin films prepared by sulfurization of evaporated metal precursors”, Physica Status Solidi (C), Vol 6, pp. 1137-1140, 2009.
[20] Pathan, H. M. and Lokhande C. D., “Chemical deposition and characterization of copper indium disulphide thin films”, Applied Surface Science, Vol 239, pp. 11-18, 2004.
[21] Patil, R. S., Lokhande C. D., Mane R. S., Pathan H. M., Joo O. S. and Han S. H., “Successive ionic layer adsorption and reaction (SILAR) trend for nanocrystalline mercury sulfide thin films growth”, Materials Science and Engineering: B, Vol 129, pp. 59-63, 2006.
[22] Akaki, Y., Komaki H., Yokoyama H., Yoshino K., Maeda K. and Ikari T., “Structural and optical characterization of Sb-doped CuInS2 thin films grown by vacuum evaporation method”, Journal of Physics and Chemistry of Solids, Vol 64, pp. 1863-1867, 2003.
[23] Akaki, Y., Kurihara S., Shirahama M., Tsurugida K., Seto S., Kakeno T. and Yoshino K., “Structural, electrical and optical properties of AgInS2 thin films grown by thermal evaporation method”, Journal of Physics and Chemistry of Solids, Vol 66, pp. 1858-1861, 2005.
[24] Thouin, L. and Vedel J., “Electrodeposition and Characterization of CulnSe2 Thin Films”, Journal of The Electrochemical Society, Vol 142, pp. 2996-3001, 1995.
[25] Wang, C. H., Cheng K. W. and Tseng C. J., “Photoelectrochemical properties of AgInS2 thin films prepared using electrodeposition”, Solar Energy Materials and Solar Cells, Vol 95, pp. 453-461, 2011.
[26] Tseng, C. J., Wang C. H. and Cheng K. W., “Photoelectrochemical performance of gallium-doped AgInS2 photoelectrodes prepared by electrodeposition process”, Solar Energy Materials and Solar Cells, Vol 96, pp. 33-42, 2012.
[27] Lokhande, C. D., Ennaoui A., Patil P. S., Giersig M., Diesner K., Muller M. and Tributsch H., “Chemical bath deposition of indium sulphide thin films: preparation and characterization”, Thin Solid Films, Vol 340, pp. 18-23, 1999.
[28] Lin, L. H., Wu C. C. and Lee T. C., “Growth of Crystalline AgIn5S8 Thin Films on Glass Substrates from Aqueous Solutions”, Crystal Growth & Design, Vol 7, pp. 2725-2732, 2007.
[29] Cheng, K. W. and Wang S. C., “Effects of complex agents on the physical properties of Ag–In–S ternary semiconductor films using chemical bath deposition”, Materials Chemistry and Physics, Vol 115, pp. 14-20, 2009.
[30] Cheng, K. W. and Wang S. C., “Influence of chelating agents on the growth and photoelectrochemical responses of chemical bath-synthesized AgIn5S8 film electrodes”, Solar Energy Materials and Solar Cells, Vol 93, pp. 307-314, 2009.
[31] Chang, W. S., Wu C. C., Jeng M. S., Cheng K. W., Huang C. M. and Lee T. C., “Ternary Ag–In–S polycrystalline films deposited using chemical bath deposition for photoelectrochemical applications”, Materials Chemistry and Physics, Vol 120, pp. 307-312, 2010.
[32] Cheng, K. W., Huang C. M., Huang Y. L., Chuang H. J. and Wu Y. C., “Photoelectrochemical performance of aluminum-doped AgIn5S8 electrodes created using chemical bath deposition”, Thin Solid Films, Vol 520, pp. 469-474, 2011.
[33] Cheng, K. W., Jhuang C. H. and Yeh L. Y., “Influence of gallium on the growth and photoelectrochemical performances of AgIn5S8 photoelectrodes”, Thin Solid Films, Vol 524, pp. 238-244, 2012.
[34] 黃銘賢,「超音波輔助化學水浴法製備 Ag-In-S 薄膜」,國立中正大學,2012。
[35] Application, G.: Basics of Electrochemical Impedance Spectroscopy。 2010年,取自http://www.gamry.com/assets/Application-Notes/Basics-of-EIS.pdf。
[36] Metrohm: Electrochemical Impedance Spectroscopy (EIS) Part 3 –Data Analysis 。 2011年,取自http://www.ecochemie.nl/download/Applicationnotes/Autolab_Application_Note_EIS03.pdf。
[37] Krishnan, R., “Fundamentals of Semiconductor Electrochemistry and Photoelectrochemistry”, Wiley-VCH Verlag GmbH & Co. KGaA, 2007.
[38] Metrohm,「Electrochemical Impedance Spectroscopy(EIS) Part 4 – Equivalent Circuit Models 」,2011。
[39] Kim, C. H., Kisiel K., Jung J., Ulanski J., Tondelier D., Geffroy B., Bonnassieux Y. and Horowitz G., “Persistent photoexcitation effect on the poly(3-hexylthiophene) film: Impedance measurement and modeling”, Synthetic Metals, Vol 162, pp. 460-465, 2012.
[40] Tomkiewicz, M., “Relaxation Spectrum Analysis of Semiconductor‐Electrolyte Interface ‐ TiO2”, Journal of The Electrochemical Society, Vol 126, pp. 2220-2225, 1979.
[41] Gassa, L. M., Mishima H. T., Lopez de Mishima B. A. and Vilche J. R., “An electrochemical impedance spectroscopy study of electrodeposited manganese oxide films in borate buffers”, Electrochimica Acta, Vol 42, pp. 1717-1723, 1997.
[42] Kim, S. H., Lim S. C., Lee J. H. and Zyung T., “Conduction mechanism of organic semiconductor AlQ3: Impedance spectroscopy analysis”, Current Applied Physics, Vol 5, pp. 35-37, 2005.
[43] Vanmaekelbergh, D. and Cardon F., “Calculation of the electrical impedance associated with the surface recombination of free carriers at an illuminated semiconductor/electrolyte interface”, Journal of Physics D: Applied Physics, Vol 19, pp. 643, 1986.
[44] Metikoš-Huković, M., Omanović S. and Jukić A., “Impedance spectroscopy of semiconducting films on tin electrodes”, Electrochimica Acta, Vol 45, pp. 977-986, 1999.
[45] Habibi, M. H., Talebian N. and Choi J.-H., “Characterization and photocatalytic activity of nanostructured indium tin oxide thin-film electrode for azo-dye degradation”, Thin Solid Films, Vol 515, pp. 1461-1469, 2006.
[46] 汪建民主編和凌永健著,材料分析 = Materials analysis,383-385頁,民全書局總經銷,臺北市,2005年。
[47] 汪建民主編和張華著,材料分析 = Materials analysis,659-660頁,民全書局總經銷,臺北市,2005年。
[48] Benno, G. and Joachim K., “Optical Properties of Thin Semiconductor Films”, 2003.
[49] Yu, Q., Yang H., Fu W., Chang L., Xu J., Yu C., Wei R., Du K., Zhu H., Li M. and Zou G., “Transparent conducting yttrium-doped ZnO thin films deposited by sol–gel method”, Thin Solid Films, Vol 515, pp. 3840-3843, 2007.
[50] Göde, F., Gümüş C. and Zor M., “Investigations on the physical properties of the polycrystalline ZnS thin films deposited by the chemical bath deposition method”, Journal of Crystal Growth, Vol 299, pp. 136-141, 2007.
[51] Goudarzi, A., Aval G. M., Sahraei R. and Ahmadpoor H., “Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer layer for solar cells”, Thin Solid Films, Vol 516, pp. 4953-4957, 2008.
[52] Zhong, Z. Y., Cho E. S. and Kwon S. J., “Characterization of the ZnS thin film buffer layer for Cu(In, Ga)Se2 solar cells deposited by chemical bath deposition process with different solution concentrations”, Materials Chemistry and Physics, Vol 135, pp. 287-292, 2012.
[53] Krol, R., “Principles of Photoelectrochemical Cells”, Springer US, 2012.
[54] Lin, L. H., Wu C. C., Lai C. H. and Lee T. C., “Controlled Deposition of Silver Indium Sulfide Ternary Semiconductor Thin Films by Chemical Bath Deposition”, Chemistry of Materials, Vol 20, pp. 4475-4483, 2008.
[55] Sachanyuk, V. P., Gorgut G. P., Atuchin V. V., Olekseyuk I. D. and Parasyuk O. V., “The Ag2S–In2S3–Si(Ge)S2 systems and crystal structure of quaternary sulfides Ag2In2Si(Ge)S6”, Journal of Alloys and Compounds, Vol 452, pp. 348-358, 2008.
[56] Pradhan, D., Kumar M., Ando Y. and Leung K. T., “Fabrication of ZnO Nanospikes and Nanopillars on ITO Glass by Templateless Seed-Layer-Free Electrodeposition and Their Field-Emission Properties”, ACS applied materials & interfaces, Vol 1, pp. 789-796, 2009.
[57] Hu, J. Q., Deng B., Tang K. B., Wang C. R. and Qian Y. T., “Preparation and phase control of nanocrystalline silver indium sulfides via a hydrothermal route”, Journal of Materials Research, Vol 16, pp. 3411-3415, 2001.
[58] Kudo, A., “Development of photocatalyst materials for water splitting”, International Journal of Hydrogen Energy, Vol 31, pp. 197-202, 2006.
[59] Kudo, A., Tsuji I. and Kato H., “AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation”, Chemical Communications, Vol 0, pp. 1958-1959, 2002.
[60] Tsuji, I., Kato H., Kobayashi H. and Kudo A., “Photocatalytic H2 Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)xZn2(1-x)S2 Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures”, Journal of the American Chemical Society, Vol 126, pp. 13406-13413, 2004.
[61] Bott, A. W., “Electrochemistry of semiconductors”, Current Separations, Vol 17, pp. 87-92, 1998.
[62] Van de Krol, R., Goossens A. and Schoonman J., “Mott‐Schottky Analysis of Nanometer‐Scale Thin‐Film Anatase TiO2”, Journal of The Electrochemical Society, Vol 144, pp. 1723-1727, 1997.
[63] Radecka, M., Zakrzewska K., Wierzbicka M., Gorzkowska A. and Komornicki S., “Study of the TiO2–Cr2O3 system for photoelectrolytic decomposition of water”, Solid State Ionics, Vol 157, pp. 379-386, 2003.
[64] Loef, R., Houtepen A. J., Talgorn E., Schoonman J. and Goossens A., “Study of Electronic Defects in CdSe Quantum Dots and Their Involvement in Quantum Dot Solar Cells”, Nano Letters, Vol 9, pp. 856-859, 2009.
[65] Harrington, S. P. and Devine T. M., “Analysis of Electrodes Displaying Frequency Dispersion in Mott-Schottky Tests”, Journal of The Electrochemical Society, Vol 155, pp. C381-C386, 2008.
[66] Azumi, K., Ohtsuka T. and Sato N., “Mott‐Schottky Plot of the Passive Film Formed on Iron in Neutral Borate and Phosphate Solutions”, Journal of The Electrochemical Society, Vol 134, pp. 1352-1357, 1987.
[67] Harrington, S. P. and Devine T. M., “Relation Between the Semiconducting Properties of a Passive Film and Reduction Reaction Rates”, Journal of The Electrochemical Society, Vol 156, pp. C154-C159, 2009.
[68] Beach, J. D., “InxGa1-xN For Photoelectrochmical Water Splitting”, Colorado School of Mines, 2001.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2013-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明