博碩士論文 100324023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:161 、訪客IP:3.14.83.223
姓名 吳彥儒(Yen-Ju Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 有機無機異質結構白光發光元件研究
(Organic/inorganic White Light Emitting Heterostructure)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了提升發光元件的演色性,使其於照明應用上有更好的發揮空間,有機和無機半導體材料的結合即提供了具有潛能的選擇。有許多研究也指出有機無機異質介面可擁有兩者材料的特性,使其突破原本單一材料在光性與電性上的限制。本研究揭示了一P型有機(F8T2)/P型(氮化鎵)無機異質介面發光元件,與一般電致或光致發光之P-N界面結構不同,我們發現此P-P有機/無機異質介面也能產生有效率的發光現象。
利用電致發光的方式使電子電洞對於有機/無機異質界面發出有機材料特性波長的光。且此異質界面結合應用於無機氮化鎵發光二極體,調整適當波長的材料混出最適化色溫。經由結果可發現此有機/無機異質界面可發出綠、黃光與無機氮化鎵二極體發出之藍光混成白光,此白光的色座標(0.28,0.30)非常接近標準白光之色座標(0.33,0.33)。藉由此結構改善以往採用螢光粉封裝技術所遇到光損耗、熱效應降低發光效率與壽命等缺失。據此達成本發明之目的與功效,且不使用螢光粉連帶可以降低氮化鎵二極體製造與封裝成本。
而本研究也提出了載子聚集效應來解釋此一P-P有機/無機介面的發光現象,也藉由時間解析的螢光發光(TRPL)與時間解析電致發光光譜(TREL)進行有機/無機異質界面間的載子與激子複合路徑與動力學探討。此研究提出一個新穎的有機/無機異質介面結構發光元件,同時此載子聚集的效應更可廣泛利用於有機/無機異質結構的研究與應用中。
摘要(英) To further increase the emission spectra for higher color rendering index (CRI) of inorganic light emitting diodes, the hybrid organic/inorganic systems may be a better approach to combine the advantages of both organic and inorganic semiconductors to overcome their respective limitations. This study proposed a novel white light device, which is based on the F8T2/GaN multi quantum wells (MQWs) structure, and identified this device combining the organic and inorganic semiconductors with appropriate charge transport and emission properties under an external forward bias. The International Commission on Illumination (CIE) coordinate of the white-light emission from the present device is at (0.28, 0.30), which is very close to the standard white light (0.33, 0.33). The white-light emission is attributed to the combination of two emission regions of GaN MQWs and the F8T2/p-GaN interface. Here, the carrier localization, which is based on the mobility gap and carrier accumulation, is constructed to explain why the p-p junction of this F8T2/p-GaN interface can contribute to the emission.
The excitation generated excitons and carriers transfer to emission regions while the diffusion and drift flows competitively on short timescales with various relaxation process. With the carrier localization effect, the carrier kinetics and the equilibrium would rearrange before the steady state being achieved. Therefore, the further understanding of carrier dynamics, recombination centers, and losing channels, as well as the proof of the carrier localization can be acquired by using ultrafast techniques of time-resolved photoluminescence (TRPL) and time-resolved electroluminescence (TREL).
In this study, the properties of carrier localization effect and the hybrid white-light device are reported. The p-p junction of F8T2/p-GaN does work and enhance the recombination rate (short lifetime) and emission efficiency of the device. Our work explores the applicability of polymer/GaN epi-layers emitting diodes for electrical and photonic characteristics, providing a new and easy route for producing and modulating the organic/inorganic white light emitting interface.
關鍵字(中) ★ 有機無機異質介面
★ 激子
★ 時間解析螢光光譜
★ 時間解析電致發光光譜
關鍵字(英) ★ organic/inorganic heterostructure
★ exciton
★ time-resolved PL
★ time-resolved EL
論文目次 Table of contents
中文摘要 I
Abstract II
Table of contents IV
List of Figures VI
List of Tables VIII
Chapter 1 Introduction of the theoretical background and main players 1
1.1 LED 1
1.2 OLED 4
1.3 F8T2 characters 6
1.4 Excitons and carriers kinetics in inorganic and organic semiconductors 8
1.5 Motivation - hybrid organic/ inorganic systems: a joint effort towards efficient optoelectronics 10
Chapter 2 Apparatus and analyzing system principles 11
2.1 MOCVD 12
2.2 PL 13
2.3 TRPL 14
2.4 Electroluminescence (EL) and time-resolved electroluminescence (TREL) 15
2.5 Hall measurement 16
2.6 TEM 18
2.7 Experimental process overview 18
Chapter 3 The optical and electrical properties of the F8T2/GaN epi-layers heterostructure 21
3.1 Electroluminescence (EL) and IV analysis 22
3.2 Photoluminescence (PL) analysis 26
3.3 The annealing treatment effect on the photoluminescence 27
3.4 Main emission mechanism 32
3.5 Conclusion 34
Chapter 4 Investigation - recombination dynamics of localized excitons in the organic/inorganic heterostructure 37
4.1 Excess carrier phenomenon in semiconductors 38
4.2 Interfacial charges and electric field distributions of p-p and p-n junctions 40
4.3 Mobility gap in organic/inorganic interface 45
4.4 Characteristics of polymer ordering 46
4.5 Electroluminescence measurement with CIE and energy band analysis 50
4.6 Model of carrier localization 57
4.7 Conclusion 58
Chapter 5 Proof of carrier localization mechanism – transient relaxation dynamics of photogenerated and electrogenerated charge carriers 60
5.1 Carrier transfer behavior of organic/ inorganic hybrid device 61
5.2 Relaxation of excitons and carriers under photoexcitation 62
5.3 The study of exciton dynamics by TRPL technique 65
5.3.1 The exciton dynamics of blue emission 67
5.3.2 The exciton dynamics of yellow/green emission 69
5.4 Relaxation of excitons and carriers under electroexcitation 73
5.5 The study of carrier dynamics by TREL technique 75
5.5.1 The emission intensity change with time 78
5.5.2 The lifetime and emission intensity change with external forward voltage 79
5.6 Characteristics under high applied voltage 82
5.7 Conclusion 87
Chapter 6 Summary 89
References 90
參考文獻 References
1. Choi, J. H.; Zoulkarneev, A.; Il Kim, S.; Baik, C. W.; Yang, M. H.; Park, S. S.; Suh, H.; Kim, U. J.; Bin Son, H.; Lee, J. S.; Kim, M.; Kim, J. M.; Kim, K., Nearly single-crystalline GaN light-emitting diodes on amorphous glass substrates. Nat Photonics 2011, 5 (12), 763-769.
2. Fujii, T.; Gao, Y.; Sharma, R.; Hu, E. L.; DenBaars, S. P.; Nakamura, S., Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Applied Physics Letters 2004, 84 (6), 855-857.
3. Kumar, P.; Guha, S.; Shahedipour-Sandvik, F.; Narayan, K. S., Hybrid n-GaN and polymer interfaces: Model systems for tunable photodiodes. Organic Electronics 2013, 14 (11), 2818-2825.
4. Murai, A.; Thompson, D. B.; Masui, H.; Fellows, N.; Mishra, U. K.; Nakamura, S.; DenBaars, S. P., Hexagonal pyramid shaped light-emitting diodes based on ZnO and GaN direct wafer bonding. Applied Physics Letters 2006, 89 (17).
5. S. Yoshida, S. M., and S. Gonda., Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN‐coated sapphire substrates. Applied Physics Letters 1983, 42, 427.
6. Nakamura, S., Gan Growth Using Gan Buffer Layer. Jpn. J. Appl. Phys. 1991, 30 (10a), L1705-L1707.
7. Nakamura, S.; Mukai, T.; Senoh, M., Candela-Class High-Brightness Ingan/Algan Double-Heterostructure Blue-Light-Emitting Diodes. Applied Physics Letters 1994, 64 (13), 1687-1689.
8. Ji, Y.; Zhang, Z. H.; Tan, S. T.; Ju, Z. G.; Kyaw, Z.; Hasanov, N.; Liu, W.; Sun, X. W.; Demir, H. V., Enhanced hole transport in InGaN/GaN multiple quantum well light-emitting diodes with a p-type doped quantum barrier. Opt. Lett. 2013, 38 (2), 202-4.
9. Kwon, Y.-H.; Gainer, G. H.; Bidnyk, S.; Cho, Y. H.; Song, J. J.; Hansen, M.; DenBaars, S. P., Structural and optical characteristics of In[sub x]Ga[sub 1−x]N/GaN multiple quantum wells with different In compositions. Applied Physics Letters 1999, 75 (17), 2545.
10. Pleasants, S., LEDs: Overcoming the ′green gap′. Nat Photonics 2013, 7 (8), 585-585.
11. Auf der Maur, M.; Pecchia, A.; Penazzi, G.; Rodrigues, W.; Di Carlo, A., Efficiency Drop in Green InGaN/GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations. Phys. Rev. Lett. 2016, 116 (2), 027401.
12. Renard, C.; Marcadet, X.; Massies, J.; Prevot, I.; Bisaro, R.; Galtier, P., Indium surface segregation in AlSb and GaSb. Journal of Crystal Growth 2003, 259 (1-2), 69-78.
13. Deng, Z.; Jiang, Y.; Wang, W.; Cheng, L.; Li, W.; Lu, W.; Jia, H.; Liu, W.; Zhou, J.; Chen, H., Indium segregation measured in InGaN quantum well layer. Sci Rep 2014, 4, 6734.
14. Sanchez, A. M.; Gass, M.; Papworth, A. J.; Goodhew, P. J.; Singh, P.; Ruterana, P.; Cho, H. K.; Choi, R. J.; Lee, H. J., V-defects and dislocations in InGaN/GaN heterostructures. Thin Solid Films 2005, 479 (1-2), 316-320.
15. Cho, H. K.; Lee, J. Y.; Yang, G. M.; Kim, C. S., Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density. Applied Physics Letters 2001, 79 (2), 215-217.
16. Jae-Hyun Ryou, P. D. Y., Jianping Liu, Zachary Lochner, Hyunsoo Kim, Suk Choi, Hee Jin Kim, Russell D. Dupuis, Control of Quantum-Confined Stark Effect in InGaN-Based QuantumWells. IEEE Journal of Selected Topics in Quantum Electronics 2009, 15 (4), 1080.
17. Sun, Q.; Han, J., Heteroepitaxy of Nonpolar and Semipolar GaN. In GaN and ZnO-based Materials and Devices, Pearton, S., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2012, pp 1-27.
18. Lahourcade, L.; Kandaswamy, P. K.; Renard, J.; Ruterana, P.; Machhadani, H.; Tchernycheva, M.; Julien, F. H.; Gayral, B.; Monroy, E., Interband and intersubband optical characterization of semipolar (1122)-oriented GaN/AlN multiple-quantum-well structures. Applied Physics Letters 2008, 93 (11), 111906.
19. Lee, Y. J.; Chen, Y. C.; Lee, C. J.; Cheng, C. M.; Chen, S. W.; Lu, T. C., Stable Temperature Characteristics and Suppression of Efficiency Droop in InGaN Green Light-Emitting Diodes Using Pre-TMIn Flow Treatment. Ieee Photonic Tech L 2010, 22 (17), 1279-1281.
20. Zhao, H.; Liu, G.; Zhang, J.; Poplawsky, J. D.; Dierolf, V.; Tansu, N., Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells. Opt. Express 2011, 19 Suppl 4, A991-A1007.
21. Huang, S. W.; Wu, Y. J.; Lin, H. Y.; Li, S. F.; Chen, Y. J.; Liu, C. Y., Etching Three-Dimensional Pattern on Sapphire Substrate by Dynamic Self-Masking Alunogen Compound. ECS Solid State Letters 2015, 4 (6), R35-R38.
22. Wu, Y. J.; Liu, Y. S.; Hsieh, C. Y.; Lee, P. M.; Wei, Y. S.; Chang, Y. H.; Lai, K. Y.; Liu, C. Y., Light Extraction Enhancement of Vertical LED by Growing ZnO Nano-Rods on Tips of Pyramids. Ieee Photonic Tech L 2013, 25 (18), 1774-1777.
23. Wu, Y. J.; Liao, C. H.; Hsieh, C. Y.; Lee, P. M.; Wei, Y. S.; Liu, Y. S.; Chen, C. H.; Liu, C. Y., Local Electronic Structures and Polarity of ZnO Nanorods Grown on GaN Substrates. Journal of Physical Chemistry C 2015, 119 (9), 5122-5128.
24. Waetzig, K.; Kunzer, M.; Kinski, I., Influence of sample thickness and concentration of Ce dopant on the optical properties of YAG:Ce ceramic phosphors for white LEDs. J. Mater. Res. 2014, 29 (19), 2318-2324.
25. Shi, H.; Zhu, C.; Huang, J.; Chen, J.; Chen, D.; Wang, W.; Wang, F.; Cao, Y.; Yuan, X., Luminescence properties of YAG:Ce, Gd phosphors synthesized under vacuum condition and their white LED performances. Optical Materials Express 2014, 4 (4), 649.
26. Gan, L.; Mao, Z.-Y.; Xu, F.-F.; Zhu, Y.-C.; Liu, X.-J., Molten salt synthesis of YAG:Ce3+ phosphors from oxide raw materials. Ceramics International 2014, 40 (3), 5067-5071.
27. Kuo, H. C.; Hung, C. W.; Chen, H. C.; Chen, K. J.; Wang, C. H.; Sher, C. W.; Yeh, C. C.; Lin, C. C.; Chen, C. H.; Cheng, Y. J., Patterned structure of remote phosphor for phosphor-converted white LEDs. Opt. Express 2011, 19 Suppl 4, A930-6.
28. Hu, R.; Luo, X.; Zheng, H., Hotspot Location Shift in the High-Power Phosphor-Converted White Light-Emitting Diode Packages. Jpn. J. Appl. Phys. 2012, 51, 09MK05.
29. Tang, C. W.; VanSlyke, S. A., Organic electroluminescent diodes. Applied Physics Letters 1987, 51 (12), 913.
30. Karzazi, Y., Organic Light Emitting Diodes: Devices and applications. J. Mater. Environ. Sci. 2014, 5 (1), 1-12.
31. Sakamoto, K.; Miki, K.; Usami, K., Polyimide photo-alignment films applicable to poly[ (9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene]. Molecular Crystals and Liquid Crystals 2007, 475 (1), 33-43.
32. Suzuki, A.; Ogahara, S.; Akiyama, T.; Oku, T., Fabrication and Characterization of Bulk Heterojunction Solar Cells Based on Liquid-Crystal Semiconductive Polymer. Energy and Power Engineering 2012, 04 (06), 459-464.
33. Gather, M. C.; Bradley, D. D. C., An Improved Optical Method for Determining the Order Parameter in Thin Oriented Molecular Films and Demonstration of a Highly Axial Dipole Moment for the Lowest Energy π–π* Optical Transition in Poly(9,9- dioctylfluorene-co-bithiophene). Advanced Functional Materials 2007, 17 (3), 479-485.
34. Sirringhaus, H.; Wilson, R. J.; Friend, R. H.; Inbasekaran, M.; Wu, W.; Woo, E. P.; Grell, M.; Bradley, D. D. C., Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase. Applied Physics Letters 2000, 77 (3), 406.
35. Kinder, L.; Kanicki, J.; Petroff, P., Structural ordering and enhanced carrier mobility in organic polymer thin film transistors. Synthetic Metals 2004, 146 (2), 181-185.
36. Kim, Y. M.; Lim, E.; Kang, I. N.; Jung, B. J.; Lee, J.; Koo, B. W.; Do, L. M.; Shim, H. K., Solution-processable field-effect transistor using a fluorene- and selenophene-based copolymer as an active layer. Macromolecules 2006, 39 (12), 4081-4085.
37. Tchoe, Y.; Jo, J.; Kim, M.; Heo, J.; Yoo, G.; Sone, C.; Yi, G. C., Variable-color light-emitting diodes using GaN microdonut arrays. Adv. Mater. 2014, 26 (19), 3019-23.
38. Qian, F.; Brewster, M.; Lim, S. K.; Ling, Y.; Greene, C.; Laboutin, O.; Johnson, J. W.; Gradecak, S.; Cao, Y.; Li, Y., Controlled synthesis of AlN/GaN multiple quantum well nanowire structures and their optical properties. Nano Lett. 2012, 12 (6), 3344-50.
39. Ra, Y. H.; Navamathavan, R.; Park, J. H.; Lee, C. R., High-quality uniaxial In(x)Ga(1-x)N/GaN multiple quantum well (MQW) nanowires (NWs) on Si(111) grown by metal-organic chemical vapor deposition (MOCVD) and light-emitting diode (LED) fabrication. ACS applied materials & interfaces 2013, 5 (6), 2111-7.
40. Titkov, I. E.; Yadav, A.; Zerova, V. L.; Zulonas, M.; Tsatsulnikov, A. F.; Lundin, W. V.; Sakharov, A. V.; Rafailov, E. U. In Internal quantum efficiency and tunable colour temperature in monolithic white InGaN/GaN LED, 2014; pp 89862A-89862A-8.
41. Blumstengel, S.; Sadofev, S.; Xu, C.; Puls, J.; Henneberger, F., Converting Wannier into Frenkel Excitons in an Inorganic/Organic Hybrid Semiconductor Nanostructure. Physical Review Letters 2006, 97 (23), 237401.
42. Mikhnenko, O. V.; Blom, P. W. M.; Nguyen, T. Q., Exciton diffusion in organic semiconductors. Energ Environ Sci 2015, 8 (7), 1867-1888.
43. Cornil, J.; Verlaak, S.; Martinelli, N.; Mityashin, A.; Olivier, Y.; Van Regemorter, T.; D′Avino, G.; Muccioli, L.; Zannoni, C.; Castet, F.; Beljonne, D.; Heremans, P., Exploring the energy landscape of the charge transport levels in organic semiconductors at the molecular scale. Acc. Chem. Res. 2013, 46 (2), 434-43.
44. Gong, X. O.; Iyer, P. K.; Moses, D.; Bazan, G. C.; Heeger, A. J.; Xiao, S. S., Stabilized blue emission from polyfluorene-based light-emitting diodes: Elimination of fluorenone defects. Advanced Functional Materials 2003, 13 (4), 325-330.
45. Levermore, P. A.; Jin, R.; Wang, X. H.; de Mello, J. C.; Bradley, D. D. C., Organic Light-Emitting Diodes Based on Poly(9,9-dioctylfluorene-co-bithiophene) (F8T2). Advanced Functional Materials 2009, 19 (6), 950-957.
46. Braun, S.; Salaneck, W. R.; Fahlman, M., Energy-Level Alignment at Organic/Metal and Organic/Organic Interfaces. Advanced Materials 2009, 21 (14-15), 1450-1472.
47. Dou, L.; Liu, Y.; Hong, Z.; Li, G.; Yang, Y., Low-Bandgap Near-IR Conjugated Polymers/Molecules for Organic Electronics. Chem. Rev. 2015, 115 (23), 12633-65.
48. Rochat, S.; Swager, T. M., Conjugated amplifying polymers for optical sensing applications. ACS applied materials & interfaces 2013, 5 (11), 4488-502.
49. Wang, L.; Yoon, M. H.; Lu, G.; Yang, Y.; Facchetti, A.; Marks, T. J., High-performance transparent inorganic-organic hybrid thin-film n-type transistors. Nature materials 2006, 5 (11), 893-900.
50. Kumar, T. A.; Capua, E.; Tkachev, M.; Adler, S. N.; Naaman, R., Hybrid Organic-Inorganic Biosensor for Ammonia Operating under Harsh Physiological Conditions. Advanced Functional Materials 2014, 24 (37), 5833-5840.
51. Kwon, Y. S.; Lim, J.; Yun, H.-J.; Kim, Y.-H.; Park, T., A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite. Energy & Environmental Science 2014, 7 (4), 1454.
52. Jo, J.; Vak, D.; Noh, Y. Y.; Kim, S. S.; Lim, B.; Kim, D. Y., Effect of photo- and thermo-oxidative degradation on the performance of hybrid photovoltaic cells with a fluorene-based copolymer and nanocrystalline TiO2. Journal of Materials Chemistry 2008, 18 (6), 654-659.
53. Valenta, I. P. a. J., Luminescence of excitons. In Luminescence Spectroscopy of Semiconductors, Oxford University Press: 2012.
54. Suzuki, A.; Suzuki, H.; Maruhashi, H.; Banya, S.; Akiyama, T.; Oku, T., Effect of annealing on photovoltaic properties and microstructure of conventional and inverted organic solar cells using active bilayer based on liquid-crystal semiconducting polymer and fullerene. International Journal of Energy Research 2014, 38 (12), 1541-1550.
55. L. Kinder, J. K., J. Swensen, P. Petroff, Structural ordering in F8T2 polyfluorene thin-film transistors In Proceedings of SPIE, Dimitrakopoulos, C. D., Ed. 2003; Vol. 5217.
56. Kasap, S., pn JUNCTION DEVICES AND LIGHT EMITTING DIODES. In pn Junction Devices, Web-Materials: 2001.
57. Streubel, K. P.; Kim, T.; Kim, J.; Yang, M.; Park, Y.; Chung, U. I.; Ko, Y.; Cho, Y.; Jeon, H.; Tu, L.-W.; Strassburg, M., Polychromatic white LED using GaN nano pyramid structure. 2013, 8641, 86410E.
58. Jin, R.; Levermore, P. A.; Huang, J.; Wang, X.; Bradley, D. D.; deMello, J. C., On the use and influence of electron-blocking interlayers in polymer light-emitting diodes. Physical chemistry chemical physics : PCCP 2009, 11 (18), 3455-62.
59. Berleb, S.; Brutting, W.; Paasch, G., Interfacial charges and electric field distribution in organic hetero-layer light-emitting devices. Organic Electronics 2000, 1 (1), 41-47.
60. Ishii, H.; Hayashi, N.; Ito, E.; Washizu, Y.; Sugi, K.; Kimura, Y.; Niwano, M.; Ouchi, Y.; Seki, K., Kelvin probe study of band bending at organic semiconductor/metal interfaces: examination of Fermi level alignment. Physica Status Solidi a-Applied Research 2004, 201 (6), 1075-1094.
61. Shen, K. C.; Jiang, M. C.; Liu, H. R.; Hsueh, H. H.; Kao, Y. C.; Horng, R. H.; Wuu, D. S., Pulsed laser deposition of hexagonal GaN-on-Si(100) template for MOCVD applications. Opt. Express 2013, 21 (22), 26468-74.
62. Liu, B.; Yang, B.; Yuan, F.; Liu, Q.; Shi, D.; Jiang, C.; Zhang, J.; Staedler, T.; Jiang, X., Defect-Induced Nucleation and Epitaxy: A New Strategy toward the Rational Synthesis of WZ-GaN/3C-SiC Core-Shell Heterostructures. Nano Lett. 2015, 15 (12), 7837-46.
63. Werzer, O.; Matoy, K.; Smilgies, D. M.; Rothmann, M. M.; Strohriegl, P.; Resel, R., Uniaxially aligned poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene] thin films characterized by the X-ray diffraction pole figure technique. Journal of Applied Polymer Science 2008, 107 (3), 1817-1821.
64. Brotas, G.; Costa, C.; Dias, S. I. G.; Costa, P. M. M.; Di Paolo, R. E.; Martins, J.; Farinhas, J.; Alcacer, L.; Morgado, J.; Matos, M.; Charas, A., Solution-Processable Donor-Acceptor-Donor Oligomers with Cross-Linkable Functionality. Macromol. Chem. Phys. 2015, 216 (5), 519-529.
65. Wang, M.; Jakubka, F.; Gannott, F.; Schweiger, M.; Zaumseil, J., Generalized enhancement of charge injection in bottom contact/top gate polymer field-effect transistors with single-walled carbon nanotubes. Organic Electronics 2014, 15 (3), 809-817.
66. Bailey, J.; Wright, E. N.; Wang, X. H.; Walker, A. B.; Bradley, D. D. C.; Kim, J. S., Understanding the role of ultra-thin polymeric interlayers in improving efficiency of polymer light emitting diodes. Journal of Applied Physics 2014, 115 (20), 204508.
67. Bougrov V., L. M. E., Rumyantsev S.L., Zubrilov A., Properties of Advanced SemiconductorMaterials GaN, AlN, InN, BN, SiC, SiGe. John Wiley & Sons, Inc.: 2001; p 1-30.
68. Lakhwani, G.; Rao, A.; Friend, R. H., Bimolecular recombination in organic photovoltaics. Annual review of physical chemistry 2014, 65, 557-81.
69. Brenner, T. M.; Egger, D. A.; Rappe, A. M.; Kronik, L.; Hodes, G.; Cahen, D., Are Mobilities in Hybrid Organic-Inorganic Halide Perovskites Actually "High"? J Phys Chem Lett 2015, 6 (23), 4754-7.
70. Sahoo, H., Förster resonance energy transfer – A spectroscopic nanoruler: Principle and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2011, 12 (1), 20-30.
71. Murphy, C. B.; Zhang, Y.; Troxler, T.; Ferry, V.; Martin, J. J.; Jones, W. E., Probing Forster and dexter energy-transfer mechanisms in fluorescent conjugated polymer chemosensors. Journal of Physical Chemistry B 2004, 108 (5), 1537-1543.
72. Thilaga, A., Effect of the Pauli exclusion principle on the singlet exciton yield in conjugated polymers. Applied Physics A 2015.
73. Alfano, A. J.; Showell, M. S.; Fong, F. K., Triplet-state decay kinetics of hydrated chlorophyll complexes. The Journal of Chemical Physics 1985, 82 (2), 765.
74. L. J. Curtis, H. G. B., J. Bromander, Analysis of Muti exponential decay curves. Phisica scripta 1970, 2.
75. Enderlein, J.; Erdmann, R., Fast fitting of multi-exponential decay curves. Opt. Commun. 1997, 134 (1-6), 371-378.
76. White, T. A.; Arachchige, S. M.; Sedai, B.; Brewer, K. J., Emission Spectroscopy as a Probe into Photoinduced Intramolecular Electron Transfer in Polyazine Bridged Ru(II),Rh(III) Supramolecular Complexes. Materials 2010, 3 (8), 4328-4354.
77. Fukuzumi, S.; Doi, K.; Itoh, A.; Suenobu, T.; Ohkubo, K.; Yamada, Y.; Karlin, K. D., Formation of a long-lived electron-transfer state in mesoporous silica-alumina composites enhances photocatalytic oxygenation reactivity. Proc Natl Acad Sci U S A 2012, 109 (39), 15572-7.
78. Zheng, F.; Tan, L. Z.; Liu, S.; Rappe, A. M., Rashba Spin-Orbit Coupling Enhanced Carrier Lifetime in CH(3)NH(3)PbI(3). Nano Lett. 2015, 15 (12), 7794-800.
79. Feng, S. W.; Liao, P. H.; Leung, B.; Han, J.; Yang, F. W.; Wang, H. C., Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes. Journal of Applied Physics 2015, 118 (4), 043104.
80. Dai, Q.; Shan, Q. F.; Wang, J.; Chhajed, S.; Cho, J.; Schubert, E. F.; Crawford, M. H.; Koleske, D. D.; Kim, M. H.; Park, Y., Carrier recombination mechanisms and efficiency droop in GaInN/GaN light-emitting diodes. Applied Physics Letters 2010, 97 (13), 133507.
81. Pivrikas, A.; Ullah, M.; Sitter, H.; Sariciftci, N. S., Electric field dependent activation energy of electron transport in fullerene diodes and field effect transistors: Gill′s law. Applied Physics Letters 2011, 98 (9), 092114.
82. Becker, J.; Fretwurst, E.; Klanner, R., Measurements of charge carrier mobilities and drift velocity saturation in bulk silicon of 〈1 1 1〉 and 〈1 0 0〉 crystal orientation at high electric fields. Solid·State Electron. 2011, 56 (1), 104-110.
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2016-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明