博碩士論文 100324027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.191.174.168
姓名 褚雅婷(Ya-ting Chu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米金觸媒在對氯硝基苯氫化反應的研究
(noun)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 奈米金觸媒於對-氯硝基苯氫化反應上有極佳的反應活性及選擇性。本研究中,首先探討奈米金擔載於不同擔體上在對-氯硝基苯氫化反應上活性的差異。再來比較金與不同金屬形成雙金屬擔載於二氧化鈦後,用於對-氯硝基苯氫化反應上活性的差異。最後比較不同比例之金鈀形成雙金屬擔載於二氧化鈦上,探討其在對-氯硝基苯氫化反應上活性的影響。不同擔體方面,以沉積沉澱法將金擔載於擔體上。而雙金屬觸媒部分,先以沉積沉澱法分別加入金與不同金屬,最後以硼氫化鈉還原之。製作不同金屬與不同比例之金鈀觸媒,探討最佳比例的反應觸媒。以X光繞射儀、穿透式電子顯微鏡、高解析度穿透式電子顯微鏡、X光能譜散佈分析儀、X光光電子能譜儀和程式升溫還原分析法等儀器鑑定觸媒之物理、化學特性和表面性質;利用液相選擇性對-氯硝基苯氫化反應來測試觸媒的活性與選擇性,反應條件設定為:反應器為半批式反應器(Parr Reactor 4842);反應溫度為373 K與室溫;壓力為1.1 MPa與0.55 MPa;攪拌速率300 rpm;反應溶劑為甲醇;反應時間180分鐘;反應起始之p-CNB濃度為0.2M (2.54 g p-CNB溶於80 ml甲醇);反應觸媒為0.5 g。結果顯示,不同擔體中以二氧化鈦反應活性最佳,雙金屬中則以加入鈀的觸媒反應活性與選擇性為最好,且加入少量的鈀,可以提升反應活性與選擇性。在金與鈀不同比例的觸媒比較中,相同反應條件下p-CNB轉化率都能在短時間內達到100%,甚至可降低反應環境條件,達到低壓且常溫下發生反應。根據鑑定結果分析,可看出加入鈀金屬之後可降低金觸媒的氧化態、增加反應活性基點且硼的氧化物可保護金顆粒避免氧化。因此,利用金觸媒的良好選擇性與鈀觸媒提高轉化率可使觸媒應用更將廣泛。
摘要(英) Nano-gold catalyst has been reported to have high activity and selectivity for liquid phase hydrogenation reaction. In this study, gold was loaded on different supports. The gold-containing bimetals were loaded on titanium-oxide. The catalyst was then optimize the molar ratio of Pd to Au on TiO2 for p-CNB hydrogenation reaction to have high activity.The monometallic Au catalysts were made by deposition-precipitation method. For bimetallic catalysts, gold and different metal solutions were added by the deposition-precipitation method, using NaBH4 to reduce them. Different metals and different molar ratios of Pd/Au were tested to find the high activity for p-CNB hydrogenation reaction. These catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy(XPS) and temperature programmed reduction (TPR). The catalytic properties of these catalysts were studied for hydrogenation of p-chloronitrobenzene (p-CNB). The conditions for hydrogenation reaction were 1.1 MPa and 0.55 MPa as H2 pressure, 373 K and room temperature as reaction temperature and 300 rpm stirring speed. Methanol was used as the solvent, the concentration of p-CNB was 0.2 M (2.54 g p-CNB in 80 ml methanol) and the amount of gold based catalyst was 0.5g. As results, titanium-oxide had a higher reaction activity than others, and adding palladium into gold base catalysts showed the high activity and selectivity. Comparing with different metals, adding palladium showed obviously a higher activity and selectivity. All of Pd/Au catalysts could reach 100% conversion of p-CNB on the same reaction conditions in short times. The reaction even It also could take place at room temperature and low hydrogen pressure. Only very small amount of palladium could improve the reaction activity and selectivity. According to the characteristics of the catalysts, adding palladium could reduce gold-valence state, increase reaction active sites. Therefore, gold and palladium catalysts could promote conversion and selectivity for hydrogenation reaction.
關鍵字(中) ★ 奈米金觸媒
★ 二氧化鈦
★ 液相氫化反應
★ 對氯硝基苯
關鍵字(英) ★ Nanoalloy gold catalyst
★ titanium-oxide
★ hydrogenation
★ chloronitrobenzene
論文目次 中文摘要…………………………………………………………………………….…I
Abstract………………………………………………………………………………..II
Table of Contents…………………………………………………………………….IV
List of Tables………………………………………………………………………VIII
List of Schemes……………………………………………………………………....IX
List of Figures………………………………………………………………………...X
Chapter 1 Introduction………………………………………………………………...1
Chapter 2 Literature Review…………………………………………………………..5
2.1 Nano-gold catalysts………………………………………………………..5
2.1.1 Reactions of gold catalysts……………………………………………5
2.1.2 Applications of gold catalysts………………………………………...6
2.2 Nanogold-containing bimetallic catalysts…………………………………7
2.2.1 Gold-containing bimetallic catalysts………………………………….7
2.2.2 Pd-Au bimetallic catalysts…………………………………………….7
2.2.3 Application of gold-based bimetallic catalysts………………………..8
2.3 Preparation of bimetallic catalysts………………………………………...9
2.3.1 Deposition precipitation method……………………………………...9
2.3.2 Impregnation method………………………………………………...11
2.3.3 Coprecipitation method……………………………………………...11
2.3.4 Chemical vapor deposition (CVD) method………………………….12
2.3.5 Photo-deposition method…………………………………………….12
2.4 Hydrogenation……………………………………………………………13
2.4.1 Liquid phase hydrogenation of p-CNB……………………………...14
2.4.2 Hydrogenation over gold catalysts…………………………………..18
Chapter 3 Experimental………………………………………………………………25
3.1 Chemicals………………………………………………………………...25
3.2 Preparation of catalysts…………………………………………………..25
3.2.1 Preparation of Au/X catalysts………………………………………25
3.2.2 Preparation of M-Au/TiO2 catalysts………………………………..25
3.2.3 Preparation of PdAu/TiO2 catalysts………………………………..26
3.3 The characterization of catalysts…………………………………………26
3.3.1 X-ray diffraction (XRD)……………………………………………27
3.3.2 Transmission electron microscopy (TEM)…………………………27
3.3.3 High resolution transmission electron microscopy & energy dispersive spectrometer (HRTEM & EDS)…………………………27
3.3.4 X-ray photoelectron spectroscopy (XPS)…………………………..28
3.3.5 Temperature-programmed reduction (TPR)………………………..28
3.4 Catalytic activity testing………………………………………………….29
Chapter 4 Hydrogen of p-chloronitrobenzene on Au catalysts: Effects of Support…………………………………………………………………….33
4.1 Introduction………………………………………………………………33
4.2 Results and discussion……………………………………………………33
4.2.1 XRD ………………………………………………………………...33
4.2.2 TEM………………………………………………………………….33
4.2.3 XPS…………………………………………………………………..34
4.2.4 Reaction Test………………………………………………………...35
4.2.5 Reaction rate constant……………………………………………….37
4.3 Conclusion……………………………………………………………….38
Chapter 5 Hydrogen of p-chloronitrobenzene on M-Au/TiO2 catalysts……………..50
5.1 Introduction………………………………………………………………50
5.2 Results and discussion……………………………………………………50
5.2.1 XRD………………………………………………………………..50
5.2.2 TEM………………………………………………………………...50
5.2.3 XPS…………………………………………………………………51
5.2.4 Reaction Test……………………………………………………….52
5.2.5 Reaction rate constant……………………………………………...54
5.3 Conclusion………………………………………………………………..55
Chapter 6 Hydrogen of p -chloronitrobenzene on Pd-Au/TiO2………………………69
6.1 Introduction………………………………………………………………69
6.2 Results and discussion……………………………………………………69
6.2.1 XRD………………………………………………………………..69
6.2.2 TEM………………………………………………………………...69
6.2.3 HRTEM…………………………………………………………….70
6.2.4 XPS…………………………………………………………………71
6.2.5 TPR…………………………………………………………………73
6.2.6 Reaction Test……………………………………………………….74
6.2.7 Reaction rate constant……………………………………………...76
6.3 Conclusion…………………………………………………………………77
Chapter 7 Summary…………………………………………………………………..98
7.1 Hydrogenation of p-chloronitrobenzene on Au/X catalysts………………99
7.2 Hydrogenation of p -chloronitrobenzene on M-Au/TiO2 catalysts………99
7.3 Hydrogenation of p -chloronitrobenzene on modified Pd-Au/TiO2……………………………………………………………..100
Appendix A Reaction rate constant…………………………………………………102
A.1 Au/X catalysts…………………………………………………………...103
A.2 M-Au/TiO2 catalysts……………………………………………………..105
A.3 Pd-Au/TiO2 catalysts…………………………………………………….107
Appendix B Mass transfer effect on liquid phase hydrogenation of p-chloronitrobenzene…………………………………………………109
B.1 Introduction…………………………………………………………..109
B.2 The mass transfer effect theory………………………………………..110
B.2.1The approach to evaluate gas-holdup effect……………………..110
B.2.2 The approach to evaluate the external mass transfer effect……112
B.2.3The approach to evaluate the intra-particle (pore diffusion) mass transfer effect………………………………………………….116
B.3 The estimations for the hydrogenation of p-CNB over the Au-based catalysts………………………………………………………………119
B.3.1The estimations for the hydrogenation of p-CNB over the Au/TiO2 catalyst under 373 K, 1.1 MPa and 0.2M p-CNB…119
B.3.2The estimations for the hydrogenation of p-CNB over the PdAu/TiO2 catalyst under 298 K, 0.55 MPa and 0.2 M p-CNB………………………………………………………...125
B.4 Conclusion…………………………………………………………...130
Appendix C Other catalysts test…………………………………………………….136
C.1 Pt/C catalysts for activity test…………………………………………136
C.2 NiMoB catalysts for DSC test…………………………….…………..137
C.3 La-NiMoB (0.2) catalysts for TGA test……………………………….138
C.4 PdAu/TiO2 (0.5:3) catalyst for activity test…………………………..138
Literature Cited……………………………………………………………………..139
參考文獻 Literature Cited
Bailie J. E., Hutching G. J.,“Promotion by Sulfur of Gold Catalysts for Crotyl Alcohol Formation from Crotonaldehyde Hydrogenation”, Chem. Commun. (1999) 2151–2152
Binns C., “Nanoclusters Deposited on Surfaces”, Surf. Sci. Rep. 44 (2001) 1–49
Bond G. C., Louis C., Thompson D. T., “A New Mixing of Hartree–Fock and Local Density‐Functional Theories”, Catalysis by Gold, Imperial College press, (2006)
Bond G. C., Sermon P. A., Webb G., Buchanan D. A., Wells P. B., “Hydrogenation over Supported Gold Catalysts”, J Chem. Soc. Commun. (1973) 444–445
Bond G. C., Thompson D. T.,“Catalysis by Gold”, Catal. Rev. 41 (1999) 319–388
Boronat M., Concepcion P., Corma A., “Unravelling the Nature of Gold Surface Sites by Combining IR Spectroscopy and DFT Calculations. Implications in Catalysis”, J Phys. Chem. C 113 (2009) 16772–16784
Boronat M., Illas F., Corma A., “Active Sites for H2 Adsorption and Activation in Au/TiO2 and the Role of the Support”, J Phys. Chem. A 113 (2009) 3750–3757
Bus E., Miller J. T., van Bokhoven J. A., “Hydrogen Chemisorption on Al2O3-Supported Gold Catalysts”, J Phys Chem. B 109 (2005) 14581–14587
Busca G., “The Surface Acidity of Solid Oxides and Its Characterization by IR Spectroscopic Methods. An Attempt at Systematization”, Phys. Chem. Chem. Phys 1 (1999) 723–736
Caballero C., Valencia J., Barrera M., Gil A., “Selective Hydrogenation of Citral over Gold Nanoparticles on Alumina”, Powder Technol. 203 (2010) 412–414
Campo B., Ivanova S., Gigola C., Petit C., Volpe M. A., “Crotonaldehyde Hydrogenation on Supported Gold Catalysts”, Catal. Today 133 (2008) 661–666
Cárdenas-Lizana F., Gomez-Quero S., Baddeley C. J., Keane M. A., ”Tunable Gas Phase Hydrogenation of m-Dinitrobenzene over Alumina Supported Au and Au-Ni”, Appl. Catal. A: Gen. 387 (2010) 155–165
Cárdenas-Lizana F., Gomez-Quero S., Hugon A., Delan- noy L., Louis C., Keane M. A., “Pd-Promoted Selective Gas Phase Hydrogenation of p-Chloronitrobenzene over Alumina Supported Au,” J Catal. 262 (2009) 235–243
Cárdenas-Lizana F., Gomez-Quero S., Keane M. A., “Ultra-Selective Gas Phase Catalytic Hydrogenation of Aromatic Nitro Compounds over Au/Al2O3”, Catal. Commun. 9 (2008) 475–481
Cárdenas-Lizana F., Gomez-Quero S., Keane M. A., “Gas Phase Hydrogenation of m- Dinitrobenzene over Alumina Supported Au and Au-Ni Alloy”, Catal. Lett. 127 (2009) 25– 32
Cárdenas-Lizana F., Gomez-Quero S., Keane M. A.,” Exclusive Production of Chloroaniline from Chloronitrobenzene over Au/TiO2 and Au/Al2O3.”, ChemSusChem 1 (2008) 215– 221
Cárdenas-Lizana F., Keane M. A., “The Development of Gold catalysts for Use in Hydrogenation Reactions”, J Mater. Sci. Review 48 (2013) 543–564.
Carrettin S., McMorn P., Johnston P., Griffin K., Hutchings G. J., “Selective Oxidation of Glycerol to Glyceric Acid Using a Gold Catalyst in Aqueous Sodium Hydroxide”, Chem. Commun. (2002) 696–697
Claus P., “Heterogeneously Catalysed Hydrogenation Using Gold Catalysts”, Appl. Catal. A: Gen., 291 (2005) 222–229
Claus P., Brückner A., Mohr C., Hofmeister,” Supported Gold Nanoparticles from Quantum Dot to Mesoscopic Size Scale:  Effect of Electronic and Structural Properties on Catalytic Hydrogenation of Conjugated Functional Groups”, J Am. Chem. Soc. 122 (2000)11430–11439
Chambers R. P., Boudart M.,“ Selectivity of Gold for Hydrogenation and Dehydrogenation of Cyclohexene”, J Catal. 5 (1966) 517–528
Chen Y. J., Yeh C. T., “Deposition of Higher Dispersed Gold on Alumina Support”, J Catal. 200 (2001) 59
Chen Y. W., Lee D. S., “Liquid Phase Hydrogenation of p-Chloronitrobenzene on Au-Pd/TiO2 Catalysts: Effects of Reduction Method”, Modern Research in Catalysis 2 (2013) 25 –34
Chen Y. W., Lee D. S., Chen H. J., “Preferential Oxidation of CO in H2 Stream on Au/ZnO-TiO2 Catalysts”, Int. J. Hydrogen Energy 37, (2012) 15140–15155
Choudhary T. V., Sivadinarayana C., Datye A. K., Kumar D., Goodman D. W., “Acetylene Hydrogenation on Au-based Catalysts”, Catal. Lett. 86 (2003) 1−8
Conner W. C., Falconer J. L., “Spillover in Heterogeneous Catalysis”, Chem. Rev. 95 (1995) 759–788
Corma A., Boronat M., González S., Illas F., “On the Activation of Molecular Hydrogen by Gold: A Theoretical Approximation to the Nature of Potential Active Sites”, Chem. Commun. (2007) 3371–3373
Corma A., Garcia H.,” Supported Gold Nanoparticles as Catalysts for Organic Reactions”, Chem. Soc. Rev. 37 (2008) 2096–2126
Crook R., Deering J., Fussell S. J., Happe A. M., Mulvihill S., “Enhance Reactivity of Silver- and Gold-Catalysted Hydrogenations Using Silver(I) Salts”, Tetrahedron Lett. 51 (2010) 5181–5184
Díaz G., Antonio G.C., Orlando H.C., Julie J. M., Borda G., Rojas H.,“Hydrogenation of Citral over IrAu/TiO2 Catalysts. Effect of the Preparation Method”, Top Catal. 54 (2011) 467–473
Edwards J. K., Solsona B. E., Landon P., Carley A. F., Herzing A., Kiely C.J., Hutchings G. J., “Direct Synthesis of Hydrogen Peroxide from H2 and O2 Using TiO2-Supported Au-Pd catalysts”, J Catal. 236 (2005) 69–79
Ferrer V., Moronta A., Sanchez J., Solano R., Bernal R., Finol D., “Effect of the Reduction Temperature on the Catalytic Activity of Pd-Supported Catalysts
”, Catal. Today 107-108 (2005) 487–492
Fujitani T., Nakamura I., Akita T., Okumura M., Haruta M., “Hydrogen Dissociation by Gold Clusters”, Angew. Chem., Int. Ed. 48 (2009) 9515–9518
Gluhoi A. C., Vreeburg H. S., Bakker J. W., Nieuwenhuys B. E.,“Activation of CO, O-2 and H-2 on Gold-Based Catalysts”, Appl. Catal. A 291 (2005) 145–150
Gomez S., Torres C., Jose Luis G. F., Carlos R. Reyes A, P.,“Hydrogenation of Nitrobenzene on Au/ZrO2 Catalysts”, J Chil. Chem. Soc 57 N°2 (2012) 1194–1198
Guan Y., Hensen E. J. M., “Cyanide Leaching of Au/CeO2: Highly Active Gold Clusters for 1,3-Butadiene Hydrogenation”, Phys. Chem. Chem. Phys. 11 (2009) 9578–9582
Guo X., Liu Q., Wang L., Huang H., Yang D., Cheng M. L., “Synthesis, Morphology and Optical Properties of Multi-pods Au/FeO(OH) and Au/Fe2O3 Nanostructures”, Mater. Sci. and Eng. B 177 (2012) 321–326
Liu Y. C., Huang C. Y., Chen Y. W., ”Hydrogenation of p-Chloronitrobenzene on Ni-B Nanometal Catalysts”, J. Nanopart. Res. 8 (2006) 223–230
Liu Y. C., Huang C. Y., Chen Y. W.,” Liquid-Phase Selective Hydrogenation of p-Chloronitrobenzene on Ni-P-B Nanocatalysts”, Ind. Eng. Chem. Res. 45 (2006) 62 −69
Luengnaruemitchai A., Osuwan S., Gulari E., “Comparative Studies of Low-Temperature Water-Gas Shift Reaction over Pt/CeO2, Au/CeO2, and Au/Fe2O3 catalysts”, Catal. Commun. 4 (2003) 215–221
Hammer B., Norskov J. K., “Why Gold Is the Noblest of All the Metals”, Nature 376 (1995) 238–240
Hao J., Xi C., Cheng H., Liu R., Cai S., Arai F., Zhao F.,” Influence of Compressed Carbon Dioxide on Hydrogenation Reactions in Cyclohexane with a Pd/C Catalyst”, Ind. Eng. Chem. Res. 47 (2008) 6796–6800
Hartfelder U., Kartusch, C., Makosch M., Rovezzi M., Sá J., van Bokhoven J. A., “Particle Size and Support Effects in Hydrogenation over Supported Gold Catalysts”, Catal. Sci. Technol. 3 (2013) 454–461
Haruta M., Kobayashi T., Sano H., Yamada N., “Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C ”, Chem. Lett. 16 (1987) 405–408
Hashmi A. S. K., “Gold-Catalyzed Organic Reactions”, Chem. Rev., 107 (2007) 3180–3211
Hugon A., Delannoy L., Louis C., “Supported Gold Catalysts for Selective Hydrogenation of 1,3-Butadiene in the Presence of an Excess of Alkenes”, Gold Bull. 41 (2008) 127–138.
Hutchings G. J., “Vapor Phase Hydrochlorination of Acetylene: Correlation of Catalytic Activity of Supported Metal Chloride Catalysts”, J Catal. 96 (1985) 292–295
Hosseini M., Siffert S., Tidahy H. L., Cousin R., Lamonier J. F., Aboukais A., Vantomme A., Su B. L., “Promotional Effect of Gold Added to Palladium Supported on a New Mesoporous TiO2 for Total Oxidation of Volatile Organic Compounds”, Catal. Today 122 (2007) 391–396
Jia J., Haraki K., Kondo J. N., Domen K., Tamaru K., “Selective Hydrogenation of Acetylene over Au/Al2O3 Catalyst”, J Phys. Chem. B 104 (2000) 11153–11156
Koeppel R. A., Baiker A., Schild C., Wokaun A., “Carbon Dioxide Hydrogenation over Au/ZrO2 Catalysts from Amorphous Precursors: Catalytic Reaction Mechanism “, J Chem. Soc. Faraday Trans. 87(1991) 2821–2828.
Liao S., Yu Z., Xu Y., Yang B., Yu D., “A Remarkable Synergic Effect of Polymer-Anchored Bimetallic Palladium-Ruthenium Catalysts in the Selective Hydrogenation of p-Chloronitrobenzene”, J Chem. Soc. Chem. Commun. (1995) 1155 –1156
Milone C., Crisafulli C. Ingoglia R., Schipilliti L., Galvagno S., “A Comparative Study on the Selective Hydrogenation of α,β Unsaturated Aldehyde and Ketone to Unsaturated Alcohols on Au Supported Catalysts”, Catal. Today 122 (2007) 341–351
Milone C., Ingoglia R., Schipilliti L., Crisafulli C., Neri G., Galvagno S., “Selective Hydrogenation of α,β-Unsaturated Ketone to α,β-Unsaturated Alcohol on Gold-Supported Iron Oxide Catalysts: Role of the Support”, J Catal. 236 (2005) 80–90
Milone C., Tropeano M. L., Ingoglia G. N. R., Galvagno S., “Selective Liquid Phase Hydrogenation of Citral on Au/Fe2O3 catalysts”, Chem. Commun. (2002) 868–869
Mohr C., Hofmeister H., Claus P., “The Influence of Real Structure of Gold Catalysts in the Partial Hydrogenation of Acrolein”, J Catal. 213 (2003) 86–94
Mohr C., Hofmeister H., Radnik J., Claus P., “Identification of Active Sites in Gold-Catalyzed Hydrogenation of Acrolein”, J Am. Chem. Soc. 125 (2003) 1905–1911
Nakamura I., Mantoku H., Furukawa T., Fujitani T., “Active Sites for Hydrogen Dissociation over TiOx/Au(111) Surfaces”, J Phys. Chem. C 115 (2011) 16074–16080
Nikolaev S. A., Smirnov V. V., “Synergistic and Size Effects in Selective Hydrogenation of Alkynes on Gold Nanocomposites”, Catal. Today 147 (2009) S336–S341
Nikolaev S. A., Permyakov N. A., Smirnov V. V., Vasil’kov AY, Lanin SN, “Selective Hydrogenation of Phenylacetylene into Styrene on Gold Nanoparticles”, Kinet. Catal. 51 (2010) 288–292
Nutt M. O., Heck K.N., Alvarez P., Wong M. S., “Improved Pd-on-Au Bimetallic Nanoparticle Catalsts for Aqueous-Phase Trichloroethene Hydrodechlorination”, Appl. Catal. B: Environ. 69 (2006) 115–125
Nutt M. O., Hughes J. B., Wong M. S., “Designing Pd-on-Au Bimetallic Nanoparticle Catalysts for Trichloroethene Hydrodechlorination”, Environ. Sci. Technol. 39 (2005) 1346–1353
Pan M., Brush A. J., Pozun Z. D., Ham H. C., Yu W. Y., Graeme Henkelman, Gyeong S. Hwang, C. Buddie Mullins, “Model Studies of Heterogeneous Catalytic Hydrogenation Reactions with Gold”, Chem. Soc. Rev. 2013, Advance Article
Panayotov D. A., Burrows S. P., Yates J. T., Morris J. R., “Mechanistic Studies of Hydrogen Dissociation and Spillover on Au/TiO2: IR Spectroscopy of Coadsorbed CO and H-Donated Electrons”, J Phys. Chem. C 115 (2011) 22400–22408
Pawelec B., Cano-Serrano E., Campos-Martin J. M., Navarro R. M., Thomas S., Fierro J. L. G.,” Deep Aromatics Hydrogenation in the Presence of DBT over Au–Pd/γ-Alumina Catalysts”, Appl. Catal. A 275 (2004) 127–139
Piccinini M., Edwin N.N., Edwards J. K., Carley A. F., Moulijn J. A., Hutchings G.J., “Effect of Reaction Conditions on the Performance of Au-Pd/TiO2 Catalyst for the Direct Synthesis of hydrogen Peroxide”, Phys. Chem. Chem. Phys. 12 (2010) 2488–2492
Radnik J., Mohr C., Claus P., “On the Origin of Binding Energy Shifts of Core Levels of Supported Gold Nanoparticles and Dependence of Pretreatment and Material Synthesis”, Phys. Chem. Chem. Phys. 5 (2003) 172–177
Rousset J. L., Cadete-Santos-Aires F. J., Sekhar B. R., Melinon P., Prevel B., Pellarin M., “Comparative X-ray Photoemission Spectroscopy Study of Au, Ni, and AuNi Clusters Produced by Laser Vaporization of Bulk Metals”, J Phys. Chem. B 104 (2000) 5430–5435
Sakurai H, Tsubota S, Haruta M, “Hydrogenation of CO2 over Gold Supported on Metal Oxides”, Appl. Catal. A 102 (1993) 125–136
Sandoval A., Aguilar A., Louis C., Traverse A., Zanella R.,”Bimetallic Au-Ag/TiO2 Catalst Prepared by Deposition-Precipitation: High Activity and Stability in CO Oxidation”, J Catal. 281 (2011) 40–49
Sandoval A., Gomez-Cortes A., Zanella R., Diaz G., Saniger J. M., “Gold Nanoparticles: Support Effects for the WGS Reaction”, J Mol. Catal. A Chem. 278 (2007) 200–208
Sarkany A., Geszti O., Safran G., “Preparation of Pd Shell–Au Core/SiO2 Catalyst and Catalytic Activity for Acetylene Hydrogenation”, Appl. Catal. A 350 (2008) 157–163
Sarkany A., Horvath A., Beck A.,” Hydrogenation of Acetylene over Low Loaded Pd and Pd-Au/SiO2 Catalysts ”, Appl. Catal. A 229 (2002) 117–125
Serna P., Concepción P., Corma A.,“Design of Highly Active and Chemoselective Bimetallic Gold–Platinum Hydrogenation Catalysts through Kinetic and Isotopic Studies”, J Catal. 265 (2009) 19–25
Stakheev A.Y., Kustov L. M., “Effects of the Support on the Morphology and Electronic Properties of Supported Metal Clusters: Modern Concepts and Progress in 1990s”, Appl. Catal. A: Gen., 188 (1999) 3–35
Steiner P., Hüfner S.,“Core Level Binding Energy Shifts in Ni on Au and Au on Ni Overlayers”, Solid State Commun. 37 (1981) 279–283
Stobinski L., Zommer L., Dus R.,“Molecular Hydrogen Interactions with Discontinuous and Continuous Thin Gold Films”, Appl. Surf. Sci. 141 (1999) 319–325.
Tabakova T., Idakiev V., Andreeva D., Mitov I., “Influence of the Microscopic Properties of the Support on the Catalytic Activity of Au/ZnO, Au/ZrO2, Au/Fe2O3, Au/Fe2O3-ZnO, Au/Fe2O3-ZrO2 Catalysts for the WGS Reaction”, Appl. Catal. A 202 (2000) 91–97
Vasil’kov A.Y., Nikolaev S. A., Smirnov V. V., Naumkin A. V., Volkov I. O., Podshibikhin V. L.,” An XPS Study of the Synergetic Effect of Gold and Nickel Supported on SiO2 in the Catalytic Isomerization of Allylbenzene”, Mendeleev Commun. 17 (2007) 268–270
Venezia A. M., La Parola V., Deganello G., Pawelec B., Fierro J. L. G.,“Synergetic Effect of Gold in Au/Pd Catalysts during Hydrodesulfurization Reactions of Model Compounds”, J Catal. 215 (2003) 317–325
Wang X., Perret N., Delgado J. J., Blanco G., Hhen X., Olmos C. M., Bernal S., Keane M. A., “Reducible Support Efects in the Gas Phase Hydrogenation of p-Chloronitrobenzene over Gold”, J Phys. Chem. C 117 (2013) 994–1005
Wu Z., Zhao Z., Zhang M., “Synthesis by Replacement Reaction and Application of TiO2-Supported Au-Ni Bimetallic Catalyst”, Chem. Cat. Chem. 2 (2010) 1606–1614
Yuan G., Louis C., Delannoy L., Keane M. A., “Silica- and Titania-supported Ni-Au: Application in Catalytic Hydrodechlorination”, J Catal. 247 (2007) 256–268
Yan X., Liu M., Liu H., Liew K. Y., “Role of Boron Species in the Hydrogenation of o-Chloronitrobenzene over Polymer-Stabilized Ruthenium Colloidal Catalysts”, J Mol. Catal. A: Chem. 169 (2001) 225–233
Zafeiratos S., Kennou S., “Photoelectron Spectroscopy Study of Surface Alloying in the Au/Ni (s) 5 (100)x(111) System”, Appl. Surf. Sci. 173 (2001) 69–75
Zhang X., Shi H., Xu B. Q., “Catalysis by Gold: Isolated Surface Au3+ Ions are Active Sites for Selective Hydrogenation of 1,3-Butadiene over Au/ZrO2 Catalysts”, Angew Chem. Int. Ed. 44 (2005) 7132–7135
Zhang X., Shi H., Xu B. Q., “Comparative Study of Au/ZrO2 Catalysts in CO Oxidation and 1,3-Butadiene Hydrogenation”, Catal. Today 122 (2007) 330–337
指導教授 陳郁文(Yu-wen Chen) 審核日期 2013-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明