博碩士論文 100324028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:18.224.59.192
姓名 蔡雅茵(Ya-yin Tsai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 具界面活性溶質之蒸發殘留圖形研究
(Evaporation stain formed by surface-active solutes)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 奈米自泳動粒子之擴散行為★ 抗氧化奈米銅粒子的製備及分析
★ 柱狀自泳動粒子之擴散行為與沉降平衡★ 過氧化氫的界面性質與穩定性
★ 液橋分離與液面爬升物體之研究★ 電潤濕動態行為探討
★ 表面粗糙度對接觸角遲滯影響之效應★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象
★ 低溫還原氧化石墨烯薄膜★ 雙離子型磺基甜菜鹼基材之潤濕現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 以往的科學家在進行咖啡漬圈環效應的研究時,多選用微米等級的微粒作為溶質,本論文選用不同尺寸的溶質,研究對咖啡漬圈環表現圖形的影響。溶質方面選擇奈米粒子、小分子(金屬鹽類溶液與界面活性劑)以及高分子。
  經過實驗後發現,無論是奈米粒子、小分子或是高分子溶質,溶液形成類環狀圖形與否的重要因素皆為接觸角遲滯的大小,若接觸角遲滯小,接觸線不斷內縮,溶質將隨著接觸線撤退最後形成點狀圖形;反之,若接觸角遲滯大,溶質就能被outflow帶往液滴邊緣,最終形成類環狀圖形。我們可以藉由選擇接觸角遲滯大的基材,或是使用具有界面活性的溶質來控制類環狀圖形的出現,反之則可消除類環狀圖形。
  在高分子與奈米粒子溶液中,有部分的溶質會在不同濃度時表現出不同的蒸發殘留圖形,這種特殊的現象稱為濃度效應。濃度效應有兩種成因:(1)NaPSS型:溶液之後退角隨著溶質濃度的上升而大幅度地下降,在溶液於低濃度時,蒸發時接觸角角度下降速率高於後退角下降的速率,使接觸角角度能夠到達後退角,接觸線depinning,最終形成點狀圖形;反之形成類環狀圖形。(2) PEG、銳鈦礦奈米二氧化鈦溶液型:液滴蒸發過程中溶質濃度到達飽和析出。故越高濃度的液滴越有可能在接觸線來不及內縮時到達飽和,形成看似接觸線不會退縮的類環狀圖形。
  值得注意的是,如NaPSS一般會因為濃度改變而其活性亦隨之改變的溶液,不同接觸角的量測方法所得到的結果將有所差異。如果使用蒸發法,因為隨著蒸發,溶液的濃度不斷地上升,溶液的後退角隨之改變,蒸發法將不能量出一開始欲量測濃度的後退角。但是微量針頭法、平板法與傾斜板法因為量測時所耗用的時間短暫,對於溶液濃度的影響不大,仍可使用。
摘要(英) Drying of a droplet containing non-volatile solutes, initially dispersed over the entire drop, is an everyday phenomenon and it commonly leaves a ring of solute deposit on a surface, rather than a uniform spot. Although droplet drying is often observed, it gives rise to surprisingly rich morphologies, which depend on the contact line geometry, solute size and chemistry, and substrate-solvent interaction.
The formation of the well-known coffee-ring pattern after the liquid drop evaporation has been successfully explained by Deegan et al. The radial outward flow is thus induced by the differential evaporation rates across the drop. Contact line pinning of the drying drop on the surface leads to liquid flow from the interior to replenish the liquid evaporating from the edge. The resulting edgeward flow can carry nearly all the dispersed solutes toward the edge and deposit them in the vicinity of the contact line to form a ring-like stain. Evidently, the appearance of the coffee-ring effect involves three ingredients for a drying droplet: non-volatile solute, outward flow, and contact line pinning.
Contact angle hysteresis dominates the formation of ring-like stain and there are two factors to influence the contact angle hysteresis: substrate and solutes. In our study, the drying process and drying patterns are observed on the substrate of low contact angle hysteresis with different sizes solutes.
From the observation of our experiments, we generalize some conclusions in the following:
(1) In order to acquire a ring-like stain on a hydrophilic substrate with weak CAH, the wetting property of the liquid drop on the substrate must be modified and it can be achieved by surface-active solute. The separation of a mixture can be achieved on evaporation stain based on their difference of surface-activity. The pattern of evaporation stain can be determined by the competition between contact line receding and small-sized solute precipitation.
(2) There are three types of solutes :
(i) No surface-activity. The addition of some solutes, such as Dextran and PDDC, has no influence on the surface tension of solution. Therefore, the dot pattern is observed.
(ii) Weak surface-activity. The surface tension will decrease slowly with increasing the concentration of some solutes such as NaPSS. Hence, the formation of dot pattern is found at low concentration while the ring-like pattern takes place at high concentration.
(iii) Strong surface-activity. The presence of a small amount of some solutes, such as PVP and PVA may result in a rapid decrement of surface tension of solution. As a result, the ring-like pattern is formed.
(3)By using nanoparticle solution, stick-slip pattern is observed and particle size may affect the evaporation stain.
關鍵字(中) ★ 咖啡漬圈環
★ 咖啡漬圈環效應
★ 具界面活性溶質
★ 接觸角遲滯
★ 蒸發殘留圖樣
★ 潤濕現象
關鍵字(英) ★ coffee ring
★ coffee ring effect
★ surface-active solutes
★ contact angle hysteresis
★ evaporation stain
★ wetting phenomenon
論文目次 摘要 I
目錄 VIII
圖目錄 XI
第一章 緒論 1
1-1 咖啡漬圈環(Coffee ring) 1
1-2 咖啡漬圈環效應相關文獻回顧 2
1-3 研究動機與目的 5
第二章 理論背景 7
2-1 潤濕現象(Wetting phenomenon) 7
2-2 潤濕現象的定義 10
2-2-1 楊式方程式(Young’s equation) 10
2-2-2 溫佐方程式( Wenzel’s equation ) 12
2-2-3 卡西方程式(Cassie’s equation) 14
2-3 接觸角遲滯現象(Contact angle hysteresis) 16
2-3-1 接觸角遲滯的定義 17
2-3-2 遲滯現象的原理 18
2-4 動態接觸角(Dynamic contact angle) 20
2-5 潤濕現象的量測方式 21
2-5-1 微量針頭法( Needle-Syringe ) 21
2-5-2 蒸發法(Evaporation method) 22
2-5-3 Wilhelmy 平板法( Plate Method ) 24
2-5-4 傾斜法 ( Inclined plate ) 25
第三章 實驗介紹 27
3-1 實驗藥品及材料 27
3-2 實驗儀器介紹 28
3-2-1 影像式接觸角量測儀(Software-Controlled Multi Dosing System-DSA10) 28
3-2-2 巨觀放大顯微測量系統 (OPTEM Zoom 125C Microscope) 31
3-2-3 相機 31
3-3 實驗步驟 32
3-3-1 乾燥圖形 32
3-3-2 蒸發過程圖 32
第四章 小分子溶質對蒸發殘留圖形之影響 33
4-1 小分子溶質造成的點狀圖形 33
4-2 小分子溶質造成的類環狀圖形 35
4-3 金屬鹽類溶質與界面活性劑混合 37
4-3-1 Brij35加CoSO4/CuSO4 37
4-3-2 Brij35加CoCl2/CuCl2 40
第五章 高分子溶質對蒸發殘留圖形之影響 43
5-1 高分子溶質造成的點狀圖形 43
5-2 高分子溶質造成的類環狀圖形 45
5-3 高分子溶質造成的濃度效應 46
5-3-1 聚對苯乙烯磺酸鈉(Polystyrene sulfonate,NaPSS) 47
5-3-2 聚乙二醇(Polyethylene glycol,PEG) 49
5-3-3 具濃度效應的溶液對接觸角量測之影響 53
第六章 奈米粒子溶質對蒸發殘留圖形之影響 60
6-1 奈米粒子溶質造成的點狀圖形 60
6-2 奈米粒子溶質造成的類環狀圖形 61
6-3 奈米粒子溶質造成的濃度效應 62
第七章 結論 64
第八章 參考文獻 66
圖目錄
Fig. 1 1液滴滴落於固體表面上與其蒸發後之環狀圖形 1
Fig. 1 2液滴邊緣的蒸發示意圖。J為蒸發速率,h為液滴高度,V表示outflow的速度分佈及流場方向。圖中表示液滴外緣的蒸發速率較快,液滴中央有液體向外補充。 2
Fig. 1 3 不同溶質形成的特殊蒸發殘留圖形。 4
Fig. 1 4 球型溶質易被outflow帶去液滴外緣,而橢球型溶質不易於滾動最後整片沉積。 6
Fig. 2 1日常生活中的潤濕現象 7
Fig. 2 2水珠在不同固體表面之潤濕行為示意圖 8
Fig. 2 3 Young’s equation示意圖 10
Fig. 2 4 Wenzel’s theory示意圖 12
Fig. 2 5粗糙因子示意圖 13
Fig. 2 6 Cassie’s theory示意圖 14
Fig. 2 7水珠接觸角大小所分別代表之潤濕行為 15
Fig. 2 8水珠接觸角大小所分別代表之潤濕行為 16
Fig. 2 9(a)前進角定義示意圖;(b)後退角定義示意圖 17
Fig. 2 10 de Gennes提出之親水缺陷現象示意圖,上圖為三相線之俯視圖,下圖為水珠之側視圖 19
Fig. 2 11黏遲力遲滯現象之示意圖 19
Fig. 2 12以微量針頭法量測接觸角遲滯示意圖 21
Fig. 2 13以蒸發法量測接觸角遲滯示意圖 23
Fig. 2 14以Wilhelmy平板法量測接觸角遲滯示意圖 24
Fig. 2 15以傾斜法量測接觸角遲滯示意圖 26
Fig. 3 1影像式接觸角量測儀DSA10示意圖 29
Fig. 3 2測量水珠在壓克力表面的接觸角示意圖 29
Fig. 3 3巨觀放大顯微測量系統與量測軟體 31
Fig. 4 1圖形由左往右依次是1wt% CoCl2、1wt% CoSO4、1wt% CuCl2與1wt% CuSO4的蒸發殘留圖形。 33
Fig. 4 2 1wt% CoCl2、1wt% CoSO4、1wt% CuCl2與1wt% CuSO4之前進角與後退角角度。 34
Fig. 4 3多種界面活性劑的蒸發殘留圖形。由左至右依序是1cmc SDS、1cmc TTAB、1cmc DTAB以及1cmcCTAB。 35
Fig. 4 4 界面活性劑的前進角與後退角角度。 36
Fig. 4 5左圖為0.05% Brij35 + 1% CuSO4、右圖為0.05% Brij35 + 1% CoSO4的蒸發殘留圖形。 37
Fig. 4 6 0.05% Brij35 + 1% CoSO4的蒸發過程圖。 38
Fig. 4 7圖(a)為1% Brij35 + 1% CoSO4自然蒸發的殘留圖形;圖(b)是等10μl的1% Brij35 + 1% CoSO4液滴蒸發到只剩2μl時,將尚未蒸發的液體抽除;圖(c)為1% Brij35 + 1% CuSO4自然蒸發的殘留圖形;而圖(d)是等10μl的1% Brij35 + 1% CuSO4液滴蒸發到只剩2μl時,將尚未蒸發的液體抽除。 39
Fig. 4 8左圖為0.5% Brij35 + 0.5% CoCl2、右圖為1% Brij35 + 1% CuCl2的蒸發殘留圖形 40
Fig. 4 9 0.05% Brij35 + 1% CuCl2的蒸發過程示意圖。 40
Fig. 4 10 Brij35與氯根金屬鹽類的混合溶液,蒸發經過一段時間後,將剩餘液體抽除。 41
Fig. 5 1左圖為1wt% Dextran 500K的蒸發殘留圖形,右圖為1wt% PDDC 100~200K 的蒸發殘留圖形,虛線為初始液滴位置。 43
Fig. 5 2 0.02% Dextran 500K以及0.02wt% PDDC 100~200K的前進角、後退角與蒸發殘留圖形類型。 44
Fig. 5 3圖形由左而右依次是0.02% PVA 130K、0.02% PVP 360K以及0.02% PVP 1300K。 45
Fig. 5 4 0.02% PVA 1300K及0.02wt% PVP 360K的前進角、後退角與蒸發殘留圖形類型。 45
Fig. 5 5 不同溶質不同濃度的蒸發殘留圖形示意圖。虛線為初始液滴位置。 46
Fig. 5 6 (a)為分子量70K的NaPSS不同濃度時的蒸發殘留圖形。(b) 為分子量1000K的NaPSS不同濃度時的蒸發殘留圖形。。虛線為初始液滴位置。θa代表前進角,θr代表後退角。 47
Fig. 5 7不同濃度的NaPSS 70K及NaPSS 1000K之前進角與後退角。 48
Fig. 5 8不同分子量的PEG蒸發殘留圖形隨濃度改變的高分子溶液示意圖。 49
Fig. 5 9 不同濃度的PEG 1K及PEG 35K之前進角與後退角。 50
Fig. 5 10 0.5% PEG 35K的蒸發過程圖。圖(1)~圖(10)為其蒸發過程的時間順序,虛線為液體接觸線位置,虛線外白色區域為已經析出之PEG。 51
Fig. 5 11第一橫列是分子量35K的PEG,濃度為0.05%、0.5%、1%、5%、10%以及20%時的蒸發殘留俯視圖;第二橫列是對應的蒸發殘留側視圖。 51
Fig. 5 12 PEG濃度效應原理示意圖。 52
Fig. 5 13左右圖皆是0.5% NaPSS 70K 在PC上。左為滴10μl的液滴,使用微量針頭每次抽取0.5μl作圖。右為使用蒸發法作圖。 54
Fig. 5 14不同濃度NaPSS 70K於PC上,分別使用微量針頭法與斜板法量得的前進角與後退角。 55
Fig. 5 15微量針頭法量測PC上不同濃度NaPSS 70K的前進角與後退角,將濃度對後退角作圖。 56
Fig. 5 16 PC片上不同濃度NaPSS 70K體積對接觸角及接觸面直徑作圖。(a)(b)(c)(d)使用逐次微量抽取液滴法,(e)(f)(g)(h)使用蒸發法。(a)(e)為0.05%、(b)(f)為0.5%、(c)(g)為1%以及(d)(h)為5%的NaPSS 70K。 58
Fig. 5 17圖為液滴蒸發到6μl時,停止蒸發法改用逐次微量抽取液滴法。 59
Fig. 6 1 1% 210nm SiO2以及1% 1500nm TiO2的蒸發殘留圖形。 60
Fig. 6 2 10μl 的1% 210nm SiO2以及1% 1500nm TiO2蒸發至體積剩下9μl時,將殘留液體抽乾。 61
Fig. 6 3 1% 150nm TiO2之蒸發殘留圖形。 61
Fig. 6 4不同濃度2nm TiO2之蒸發殘留圖形。 62
Fig. 6 5不同濃度2nm TiO2之前進角與後退角。 62
Fig. 6 6 10μl液滴蒸發至不同體積時,將剩餘液體抽除之殘留圖形。 63
參考文獻 [1] R. D. Deegan, O. Bakajin, T. F. Dupont, et al., “ Capillary flows the cause of ring stains from dried liquid drops” , Nature, 389, 827 (1997)
[2] R. D. Deegan, O. Bakajin, T. F. Dupont, et al., “ Contact line deposits in an evaporating drop” , Physical Review E, 62, 756 (2000)
[3] R. Bhardwaj, X. Fang, Daniel, et al., “ Attinger pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study” , New Journal of Physics, 11, 33 (2009)
[4] X. Xu, J. Luo, D. Guo, “ Radial-velocity profile along the surface of evaporating liquid droplets” Soft Matter, 8, 5797 (2012)
[5] L. Xu, S. Davies, A. B. Schofield, et al., “ Dynamics of Drying in 3D Porous Media” PRL, 101, 094502 (2008)
[6] A. S. Sangani, C. Lu, K. Su, J. A. Schwarz, “ Capillary force on particles near a drop edge resting on a substrate and a criterion for contact line pinning” , Physical Review E, 80, 011603 (2009)
[7] P. A. Kralchevsky, N. D. Denkov, “ Capillary forces and structuring in layers of colloid particles” , Current Opinion in Colloid & Interface Science, 6, 383 (2001)
[8] R. D. Leonardo, F. Saglimbeni, G. Ruocco, “ Very-Long-Range Nature of Capillary Interactions in Liquid Films” , Physical Review L, 100, 106103 (2008)
[9] X. Shen, C. M. Ho, T. S. Wong, “Minimal Size of Coffee Ring Structure” , J. Phys. Chem. B, 114, 5269 (2010)
[10] H. M. Gorr, J. M. Zueger, J. A. Barnard, “ Lysozyme Pattern Formation in Evaporating Drops” , Langmuir, 28, 4039 (2012)
[11] J. Park, J. Moon, “ Control of Colloidal Particle Deposit Patterns within Picoliter Droplets Ejected by Ink-Jet Printing” , Langmuir, 22, 3506 (2006)
[12] R. Bhardwaj, X. Fang, P. Somasundaran, et al., “ Self-Assembly of Colloidal Particles from Evaporating Droplets: Role of DLVO Interactions and Proposition of a Phase Diagram” , Langmuir, 26, 7833 (2010)
[13] I. I. Smalyukh, O. V. Zribi, J. C. Butler, et al., “ Structure and Dynamics of Liquid Crystalline Pattern Formation in Drying Droplets of DNA” , Physical Review L, 96, 177801 (2006)
[14] L. Zhang, S. Maheshwari, H. C. Chang, Y. Zhu, “ Evaporative Self-Assembly from Complex DNA - Colloid Suspensions” , Langmuir, 24, 3911 (2008)
[15] S. Maheshwari, L. Zhang, Y. Zhu, H. C. Chang, “ Coupling Between Precipitation and Contact-Line Dynamics: Multiring Stains and Stick-Slip Motion” , Physical Review L, 100, 044503 (2008)
[16] N. N. Jason, R. G. Chaudhuri,S. Paria, “ Self-assembly of colloidal sulfur particles influenced by sodium oxalate salt on glass surface from evaporating drops” , Soft Matter, 8, 3771 (2012)
[17] S. Choi, S. Stassi,A. P. Pisano,T. I. Zohdi, “ Coffee-Ring Effect-Based Three Dimensional Patterning of Micro/ Nanoparticle Assembly with a Single Droplet” , Langmuir, 26, 11690 (2010)
[18] M. C. Lensen, K. Takazawa, J. A. A. W. Elemans, C. R. L. P. N. Jeukens, P. C. M. Christianen, et al., “ Aided Self-Assembly of Porphyrin Nanoaggregates into Ring-Shaped Architectures” , Chem. Eur. J., 10, 831 (2004)
[19] K. J. Stebe, “Assembly of Colloidal Particles by Evaporation on Surfaces with Patterned Hydrophobicity” , Langmuir, 20, 3062 (2004)
[20] H. Y. Ko, J. Park, H. Shin, J. Moon, “Rapid Self-Assembly of Monodisperse Colloidal Spheres in an Ink-Jet Printed Droplet” , Chem. Mater., 16, 4212 (2004)
[21] J. Xu, J. Xia, S. W. Hong, Z. Lin, Feng Qiu, et al., “Self-Assembly of Gradient Concentric Rings via Solvent Evaporation from a Capillary Bridge” , Physical Review L, 96, 066104 (2006)
[22] A. Denneulin, J. Bras, F. Carcone, et al., “ Impact of ink formulation on carbon nanotube network organization within inkjet printed conductive films” , Carbon, 49, 2603 (2011)
[23] M. Layani, M. Gruchko, O. Milo, et al., “ Transparent Conductive Coatings by Printing Coffee Ring Arrays Obtained at Room Temperature” , ACS Nano, 3, 3537 (2009)
[24] F. C. Krebs, “ Fabrication and processing of polymer solar cells: A review of printing and coating techniques” , Solar Energy Materials & Solar Cells, 93, 394 (2009)
[25] Y. T. Gizachew, L. Escoubas, J. J. Simon, M. Pasquinelli, et al., “ Towards ink-jet printed fine line front side metallization of crystalline silicon solar cells” , Solar Energy Materials & Solar Cells, 95, S70 (2011)
[26] F. C. Chen, J. P. Lu, W. K. Huang., “ Using Ink-Jet Printing and Coffee Ring Effect to Fabricate Refractive Microlens Arrays” , IEEE, 21, 648 (2009)
[27] D. Zhang, Y. Xie, M. F. Mrozek, et al., “ Raman Detection of Proteomic Analytes” , Anal. Chem, 75, 5703 (2003)
[28] J. Filik, N. Stone, “ Drop coating deposition Raman spectroscopy of protein mixtures” , Analyst, 132, 544 (2007)
[29] D. Soltman, V. Subramanian, “ Inkjet-Printed Line Morphologies and Temperature Control of the Coffee Ring Effect” , Langmuir, 24, 2224 (2008)
[30] C. T. Chen, F. G. Tseng, C. C. Chieng, “ Evaporation evolution of volatile liquid droplets in nanoliter wells” , Sensors and Actuators A, 130, 12 (2006)
[31] W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, H. A. Stone, “Influence of Substrate Conductivity on Circulation Reversal in Evaporating Drops” , Physical Review L, 99, 234502 (2007)
[32] H. Hu, R. G. Larson, “ Marangoni Effect Reverses Coffee-Ring Depositions” , J. Phys. Chem. B, 110, 7090 (2006)
[33] T. Still, P. J. Yunker, A. G. Yodh, “ Surfactant-Induced Marangoni Eddies Alter the Coffee-Rings of Evaporating Colloidal Drops” , Langmuir, 28, 4984 (2012)
[34] B. M. Weon, J. H. Je, “ Capillary force repels coffee-ring effect” , Physical review E, 82, 015305 (2010)
[35] P. J. Yunker, T. Still, M. A. Lohr, A. G. Yodh, “ Suppression of the coffee-ring effect by shape-dependent capillary interactions” , Nature, 476, 308 (2011)
[36] H. B. Eral, D. M. Augustine, M. H. G. Duits, F. Mugele, “ Suppressing the coffee stain effect: how to control colloidal self-assembly in evaporating drops using electrowetting” , Soft Matter, 7, 4954 (2011)
[37] G. Huber. “ Rush hour in a drop of coffee” , Physics, 4, 65 (2011)
[38] 葉銘智, “ 分子構型對濕透行為之影響研究” , 國立台灣大學化學工程學研究所博士論文 (2003)
[39] J. S. Rowlinson, B. Widom, “ Molecular Theory of Capillarity” , Oxford., 66, 816 (1982).
[40] R. N. Wenzel, “ Resistance of solid surfaces to wetting by water” , Industrial & Engineering Chemistry, 28, 988 (1936).
[41] A. B. D. Cassie, S. Baxter, “ Wettability of porous surfaces” , Trans. Faraday Soc. , 40, 546 (1944).
[42] J. F. Joanny and P. G. de Gennes, “ A model for contact angle hysteresis” , Journal of Chemical Physics, 81, 552 (1984)
[43] S. J. Hong, F. M. Chang et al., “ Anomalous Contact Angle Hysteresis of a Captive Bubble: Advancing Contact Line Pinning” , Langmuir, 27, 6890 (2011).
[44] R. E. Johnson, R. H. Dettre et al., “ Contact angle hysteresis. Contact angle, wettability, and adhesion” , Advances in Chemistry, 43, 112 (1964).
[45] F. M. Chang, S. J. Hong et al., “ High contact angle hysteresis of superhydrophobic surfaces: Hydrophobic defects” , Applied physics letters, 95, 064102 (2009).
[46] E. Rame, “ The interpretation of dynamic contact angles measured by the Wilhelmy plate method” , Journal of colloid and interface science, 185, 245 (1997).
指導教授 曹恆光(Heng-kwong Tsao) 審核日期 2013-6-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明