博碩士論文 100324034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.226.248.180
姓名 黃伯彥(Bo-yan Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究★ 新穎太陽能電池基板表面粗糙化結構之研究
★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究
★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究
★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究
★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究
★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究★ 尖針狀鈷矽化物/矽單晶異質奈米線陣列結構之製備及其性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用陽極氧化鋁奈米模板結合電化學沉積法,成功地製備出長度可調
控的一維銅金屬奈米線與奈米管。經由場發射性質量測可得知銅金屬奈米線與奈
米管皆具有優異的場發射性質,其啟動電場分別為 0.283 V/μm 與 0.367 V/μm。
除此之外,我們發現銅金屬奈米線的場增強因子(β)的數值比銅金屬奈米管大,
推測造成此現象的原因為遮蔽效應的影響。
本研究利用陽極氧化鋁模板結合脈衝電電鍍法成功的製備出具有雙晶結構
的一維銅金屬奈米線。此銅金屬奈米線的直徑大約為 50 奈米,且深寬比可高達
1000。此外,我們可藉由調整脈衝電電鍍的條件來簡單地調控銅金屬奈米線中的
雙晶密度。
本研究發現,若將自製具有 50 奈米孔洞直徑的陽極氧化鋁模板結合脈衝電
流進行電鍍,可鍍製直徑約為 50 奈米且具有雙晶結構的一維銅金屬奈米線,其
奈米線的深寬比可高達 1000,本研究將調整各種實驗參數,如電流形式、電壓
與電極間距等等,並利用 TEM 觀察在不同電鍍參數下的雙晶晶面密度的變化。
本研究將銅金屬奈米線與奈米管在 250
0
C 的大氣氛圍下進行不同熱氧化時
間的處理,並且利用 SEM、TEM、SAED 與 EDS 對氧化銅奈米結構的形貌、晶
體結構與生成機制進行有系統性的研究
摘要(英) In this study, we have demonstrated that length-tunable copper nanowires and nanotubes
were successfully produced by using the anodic aluminum oxide (AAO) nanotemplate
combined with the electrodeposition process. Field emission measurements showed that the
copper nanowires and nanotubes have excellent field emission properties. The turn-on fields
of Cu nanowire and nanotube are 0.283 V/μm and 0.367 V/μm, respectively. Moreover, the
field enhancement factor(β) of Cu nanowires was found to be larger than that of Cu nanotubes,
the result might be attributed to the so-called screen effect.
By combining the AAO template and pulse electrodeposition technique, single crystal Cu
nanowires with twinned structures were successfully fabricated in this study. The diameter of
twinned Cu nanowires was about 50 nm, and their aspect ratio can be reached to as high as
1000. Furthermore, the density of twins formed in the Cu nanowires can be readily tuned and
controlled by adjusting the pulse electrodeposition conditions.
In this work, oxidation of Cu nanowires and nanotubes was carried out at 250 ℃ for
different time in air. The morphology, crystal structure, and formation mechanism of the Cu
oxide nanostructures formed have been systematically investigated by SEM, TEM, SAED,
and EDS analyses.
關鍵字(中) ★ 陽極氧化鋁模板
★ 銅金屬奈米線
★ 電化學沉積法
★ 場發射性質
★ 銅金屬奈米線氧化機制
★ 雙晶結構
關鍵字(英) ★ AAO
★ copper nanowire
★ electrodeposition
★ Field emission
★ copper oxide
★ twinned copper nanowire
論文目次 第 1 章簡介 ........................................................................................................................ 1
1-1 前言 ............................................................................................................................. 1
1-2 奈米材料 ..................................................................................................................... 2
1-3 微影技術 ..................................................................................................................... 3
1-4 陽極氧化鋁奈米模板 ................................................................................................. 5
1-5 一維銅金屬與銅金屬氧化物奈米結構 ...................................................................... 7
1-5-1 一維雙晶銅金屬奈米線 ................................................................................ 8
1-5-2 一維銅金屬奈米管 ........................................................................................ 9
1-5-3 一維銅金屬奈米結構之氧化機制 .............................................................. 11
1-6 場發射電極原件 ........................................................................................................ 12
1-6-1 場發射理論
1-6-2 場發射元件發展 ......................................................................................... 14
1-6-3 以銅為基材的場發射元件研究 ................................................................. 15
1-7 研究動機 ................................................................................................................... 16
第 2 章實驗步驟 .............................................................................................................. 18
2-1 陽極氧化鋁模板製備一維銅金屬奈米結構 ........................................................... 18
2-1-1 陽極氧化鋁奈米模板之製程 ....................................................................... 18

2-1-2 電化學沉積法製備一維銅金屬奈米線/管陣列 .......................................... 19
2-2 一維氧化銅奈米結構製備 ....................................................................................... 20
2-3 實驗設備 ................................................................................................................... 20
2-3-1 氧化鋁模板製備系統 ................................................................................. 21
2-3-2 蒸鍍系統 ..................................................................................................... 21
2-3-3 退火爐系統 ................................................................................................. 21
2-3-4 電沉積系統 ................................................................................................. 21
2-4 實驗分析儀器 ........................................................................................................... 21
2-4-1 掃描式電子顯微鏡 ..................................................................................... 22
2-4-2 穿透式電子顯微鏡 ..................................................................................... 22
2-4-3 真空場發射特性量測系統 ......................................................................... 22
2-4-4 影像式接觸角量測儀 ................................................................................. 23

第 3 章結果與討論 .......................................................................................................... 24
3-1 陽極氧化鋁模板法結合電化學沉積法製備一維銅金屬奈米線/管 ..................... 24
3-1-1 一維銅金屬奈米線/管之形貌與結構分析 ................................................ 25
3-2 一維銅金屬奈米線/管之場發射性質量測 ............................................................. 26
3-3 電化學沉積法製備一維雙晶銅金屬奈米線 ........................................................... 28
3-3-1 陽極氧化鋁模板與一維銅金屬奈米線之形貌與結構分析 ..................... 28

3-3-2 一維雙晶銅金屬奈米線之形貌與結構分析 ............................................. 29
3-4 一維銅金屬奈米結構之氧化機制 ........................................................................... 31
3-4-1 一維銅金屬奈米線之氧化機制 ................................................................. 32
3-4-2 一維銅金屬奈米管之氧化機制 ................................................................. 33
3-5 一維銅金屬與氧化銅奈米結構之水滴接觸角量測 ................................................ 35
第 4 章結論 ...................................................................................................................... 37
4-1 結論 ........................................................................................................................... 37
4-2 未來展望 ................................................................................................................... 38
參考文獻 .......................................................................................................................... 40
表目錄 .............................................................................................................................. 52
圖目錄 .............................................................................................................................. 54
參考文獻 參考文獻
[1] Z. Yao, Y. W. Lu, and S. G. Kandlikar, “Direct growth of copper nanowires on a
substrate for boiling applications,” Micro. Nano. Lett. 6 (2011) 563-566.
[2] L. Zhang and M. Fang, “Nanomaterials in pollution trace detection and environmental
improvement,” Nano Today 5 (2010) 128-142.
[3] L. Simon, L Ann, L. Goran, and W. Lars, “Single-paper flexible Li-ion battery cells
through a paper-making process based on nano-fibrillated cellulose,” J. Mater. Chem. A 1
(2013) 4671-4677.
[4] K. V. Klitzing, G. Dorda, and Pepper, ”New method for high-accuracy determination of
the fine-structure constant base on quantized hall resistance,” Phys. Rev. Lett. 45 (1980)
494-497.
[5] 白春禮,“Nanometer scale science and technology,”凡異出版社
[6] H. Sepehri-Amin, T. Ohkubo, and K. Hono, “The mechanism of coercivity enhancement
by the grain boundary di ff usion process of Nd–Fe–B sintered magnets,” Acta. Mater. 61
(2013) 1982–1990.
[7] B. Ghazaleh, H. Mansor, S. Nayereh, I. Ismayadi, V. Parisa, N. Manizheh, N. Maryam,
and K. Samikannu, “High coercivity sized controlled cobalt-gold core-shell nano-crystals
prepared by reverse microemulsion,” MRB 13 (2013) 1-22.
[8] F. Pavia and W. A. Curtin, “Molecular modeling of cracks at interfaces in nanoceramic
composites,” J. Mech. Phys. Solids 13 (2012) 1-34.
[9] H. Gong, J. Q. Hu, J. H. Wang, C. H. Ong, and F. R. Zhu, “Nano-crystalline cu-doped
ZnO thin film gas sensor for CO,” Sensor. Actuat. B-Chem. 115 (2006) 247-251.
[10] P. Serbun, F. Jordan, A. Navitski, G. M¨uller, I. Alber, M.E. Toimil-Molares, and C.
Trautmann, “Copper nanocones grown in polymer ion-track membranes as field emitters,”
Appl. Phys. 58 (2012) 10402.
[11] I. Chang, T. Huang, H. Lin, Y. Tzeng, C. Peng, F. Pan, C. Lee, and H.Chiu, “Growth of
pagoda-topped tetragonal copper nanopillar arrays,” Acs. Appl. Mater. Inter. 1 (2009)
1375-1378.
[12] J. Yu and J. Ran, “Facile preparation and enhanced photocatalytic H 2 -production activity
of Cu 2 cluster modified TiO 2 ,” Energy Environ. Sci. 4 (2011) 1364-1371.
[13] S. Xu, Y. F. Guo, and Z. D. Wang, “Deformation mechanism of the single-crystalline
nano-Cu films: Molecular dynamics simulation,” Comp. Mater. Sci. 67 (2013) 140–145.
[14] W. E. Fu, C. C. Chen, K. W. Huang, Y. Q. Chang, T. Y. Lin, C. S. Chang, and J. S.
Chen“Nano-scratch evaluations of copper chemical mechanical polishing,” Thin Solid
Films 529 (2013) 306–311.
41

[15] Y. Lin, Z. Xu, D. Shen, and B. GuO, “Molecular Dynamics study on the equal biaxial
tension of Cu/Ag bilayer films,” Appl. Surf. Sci. 150 (2013) 1-6.
[16] G. E. Moore, “Cramming more components onto integrated circuits,” EDN 38 (1965)
56-59.
[17] D. Tomus, M. Qian,C. A. Bricec, and B. C. Muddlea, “Electron beam processing of
Al–2Sc alloy for enhanced precipitation hardening,” Scripta. Mater. 63 (2010) 151-154.
[18] T. Edura, H. Takahashi, M. Nakata, K. Tsutsui, K. Itaka, H. Koinuma, J.Mizunoa, and Y.
Wadaa, “Electrical characterization of single grain and single grain boundary of
pentacene thin film by nano-scale electrode array,” Thin Solid Films 518 (2010)
2555-2561.
[19] V. Furin, A. Martucci, M. Guglielmi, C. C. Wong, and F. Romanato, “Electrodeposition
of CdSe on nanopatterned pillar arrays for photonic and photovoltaic applications,”
Condens. Matter. Phys. 6 (1998) 22-30.
[20] W. Chu, H. I. Smith, and M. L. Schattenburg, “Replication of 50-nm-linewidth device
patterns using proximityx‐ray lithography at large gaps,” Appl. Phys. Lett. 59 (1991)
1641.
[21] R. F. Pease, “Semiconductor technology: Imprints offer moore,” Nature 417 (2002)
802-803.
[22] F. Dinelli, C. Menozzi, P. Baschieri, P. Facci, and P. Pingue, “Scanning probe
nanoimprint lithography,” Nanotechnology 21 (2010) 075305 1-6.
[23] A. Pimpin and W. Srituravanich, “Review on micro- and nanolithography techniques and
their applications,” Eng. J. AISC 16 (2012) No 1.
[24] J. Byun, Y. Kim, G. Jeon, and J. K. Kim, “Ultrahigh density array of free-standing
poly(3-hexylthiophene)nanotubes on conducting substrates via solution wetting,”
Macromolecules 44 (2011) 8558-8562.
[25] X. Ren, C. H. Jiang , D. D. Li, and L. He, “Fabrication of ZnO nanotubes with ultrathin
wall by electrodeposition method,” Mater. Lett. 62 (2008) 3114-3116.
[26] F. Tao, M. Guan, Y. Jiang, J. Zhu, Z. Xu, and Z. Xue “An easy way to construct an
ordered array of nickel nanotubes: the triblock-copolymer-assisted hard-template
Method,” Ad. Mater. 18 (2006) 2161-2164.
[27] J. H. Tian, J. Hu, F. Zhang, X. Li, J. Shi, J. Liu, Z. Q. Tian, and Y. Chen, “Fabrication of
high density metallic nanowires and nanotubes for cell culture studies,” Microelectron.
Eng. 88 (2011) 1702-1706.
[28] M. T. Wu, I. C. Leu, J. H. Yen, and M. H. Hon, “Preparation of Ni nanodot and nanowire
arrays using porous alumina on silicon as a template without a conductive interlayer,”
Electrochem.. Solid. St. 7 (2004) C61.
[29] X. W. Wang, Z. H. Yuan, and B. C. Fanga, “Template-based synthesis and magnetic
42

properties of Ni nanotube arrays with different diameters,” Mater. Chem. Phys. 125
(2011) 1-4.
[30] A. A. Agrawal, B. J. Nehilla, K. V. Reisig, T. R. Gaborski, D. Z. Fang,C. C. Striemer, P.
M. Fauchet, and J. L. McGrath, “Porous nanocrystalline silicon membranes as highly
permeable and molecularly thin substrates for cell culture,” Biomaterials 31 (2010)
5408-5417.
[31] N. Chiboub, R. Boukherroub, N. Gabouze, S. Moulay, N. Naar, S. Lamouri, and S. Sam,
“Covalent grafting of polyaniline onto aniline-terminated porous silicon,” Opt. Mater. 32
(2010) 748-752.
[32] P. N. Vinod, “Specific contact resistance and metallurgical process of the silver based
paste for making ohmic contact structure on the porous silicon/p-Si surface of the silicon
solar cell,” J. Mater. Sci. Lett. 21 (2010) 730-736.
[33] K. R. Wigginton and P. J. Vikesland, “Gold-coated polycarbonate membrane filter for
pathogen concentration and SERS-based detection,”Analyst 135 (2010) 1320-1326.
[34] N. Baltes and J. Heinze, “Imaging local proton fluxes through a polycarbonateMembrane
by using scanning electrochemical microscopyand functionalized alkanethiols,” Phys.
Chem. Chem. Phys. 10 (2009) 174-179.
[35] Y. S. Li, F. Y. Liang, H. Bux, A. Feldhoff, W. S. Yang, and J. Caro, “Molecular sieve
membrane: Supported metal-organic frameworkwith high hydrogen selectivity,” Angew.
Chem. Int. Edit. 49 (2010) 548-551.
[36] D. Ramíreza, H. Gómeza, and D. Lincotb, “Polystyrene sphere monolayer assisted
electrochemical deposition of ZnO nanorods with controlable surface density,”
Electrochim. Acta. 55 (2010) 2191-2195.
[37] C. P. Chang, C. C. Tseng, J. L. Ou, W. H. Hwu, and M. D. Ger, “Growth mechanism of
gold nanoparticles decoratedon polystyrene spheres via self-regulated reduction,”
Colloid Polym. Sci. 288 (2010) 395-403.
[38] J. Ye, P. V. Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar
anti-bonding mode in silver nanoring structures, ” Nanotechnology 20 (2009) 465203
1-6.
[39] S. J. Lee, J. S. Choi, K. S. Park, G. Khang, Y. M. Lee, and H. B. Lee, “Response of
MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different
micropore sizes,” Biomaterials 25 (2004) 4699–4707
[40] C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered anodic alumina nanochannels on
focused-ion-beam pre patterned aluminum Surfaces,” Appl. Phys. Lett. 78
(2001)120-122.
[41] C. R. Martin, “Nanomaterials: a membrane-based synthetic approach,” Science 266
(1994) 1961–6.
43

[42] H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step
replication of honeycombstructures of anodic alumina,” Science 268 (1995) 1466-8.
[43] H. Masuda, F. Hasegwa, and S. Ono, “Self-ordering of cell arrangement of anodic porous
alumina formed insulfuric acid solution,” J. Electrochem. Soc. 144 (1997) L127-30.
[44] O. Jessensky, F. Muller, and U. Go¨sele, “Self-organized formation of hexagonal pore
arrays in anodic alumina,” Appl. Phys. Lett. 72 (1998) 1173-5.
[45] A. P. Li, F. A. Birner, K. Nielsch, and U. Go¨sele, “Hexagonal pore arrays with a 50-420
nm interporedistance formed by self-organization in anodic alumina,” J. Appl. Phys. 84
(1998) 6023-6.
[46] C. R. Martin, “Membrane-based synthesis of nanomaterials,” Chem. Mater. 8 (1996)
1739–46.
[47] D. Routkevitch, A. A. Tager., J. Haruyama, D. Almawlawi, M. Moskovits, and J. M. Xu,
“Nonlithographic nano-wirearrays: fabrication, physics, and device applications,” IEEE
T. electron. Dev. 43 (1996) 1646-58.
[48] H. Masuda, H. Yamada, M. Satoh, and H. Asoh, “Highly ordered nanochannel-array
architecture in anodic alumina,” Appl. Phys. Lett. 71 (1997) 2770-2.
[49] J. C. Hulteen and C. R. Martin, “A general template-based method for the preparation of
nanomaterials,” J. Mater. Chem. 7 (1997) 1075–87.
[50] F. Li, L. Zhang, and R. M. Metzger “On the growth of highly ordered pores in anodized
aluminum oxide,” Chem. Mater. 10 (1998) 2470-80.
[51] O. Jessensky, F. Muller, and U. Gösele,“Self-organized formation of hexagonal pore
arrays in anodic alumina,” Appl. Phys. Lett. 72 (1998) 1173-1175.
[52] F. Li, L. Zhang, and R. M. Metzger, “On the growth of highly ordered pores in anodized
aluminum oxide,” Chem. Mater. 10 (1998) 2470-2480.
[53] H. Masudaand and K. Fukuda, “Ordered metal nanohole Arrays by two-step replication
of honeycombstructure of anodic alumina,” Science 268 (1995) 1466-1468.
[54] A. Belwalkara, E. Grasinga, W. V. Geertruydenb, Z. Huangc, and W. Z. Misioleka,
“Effect of processing parameters on pore structure and thickness of anodic aluminum oxide
(AAO) tubular membranes,” J. Membrane Sci. 319 (2008) 192–198
[55] H. Masudaand and K. Fukuda, “Ordered metal nanohole Arrays by two-step replication
of honeycombstructure of anodic alumina,” Science 268 (1995) 1466-1468.
[56] X. Y. Mei, D. Kim, H. E. Ruda, and Q. X. Guo, “Molecular-beam epitaxial growth of
GaAs and InGaAs/GaAs nanodot arrays using anodic Al 2 O 3 nanohole array template
masks,” Appl. Phys. Lett. 81 (2002) 361-3.
[57] X. Mei, M. Blumin, D. Kim, Z. Wu, and E. Ruda, “Molecular beam epitaxial growth
studies of ordered GaAs nanodot arrays using anodic alumina masks,” J. Crys. Growth
251(2003) 253-7.
44

[58] X. Y. Mei, M. Blumin, M. Sun, D. Kim, Z. H. Wu, and H. E. Ruda, “Highly ordered
GaAs/AlGaAs quantum-dotarrays on GaAs (001) substrates grown by molecular-beam
epitaxy using nanochannel alumina masks,” Appl. Phys. Lett. 82 (2003) 967-9.
[59] N. Kouklin, H. , J. Liang, M. Tzolov, J. M. Xu, and J. B. Heroux, ”Highly periodic,
three-dimensionallyarranged InGaAsN:Sb quantum dot arrays fabricated
nonlithographically for optical device,” J. Phys. D. Appl.Phys. 36 (2003) 2634-8.
[60] K. Liu, J. Nogués, C. Leighton, H. Masuda, K. Nishio, and I. V. Roshchin,
“Fabrication and thermal stability of arrays of Fe nanodots,” Appl. Phys. Lett. 81(2002)
4434-6.
[61] Y. Lei and W. K. Chim, “Highly ordered arrays of metal/semiconductor core–shell
nanoparticles with tunablenanostructures and photoluminescence,” J. Am. Chem.
Soc.127(2005) 1487–92.
[62] Y. Lei, W. K. Chim, H. P. Sun, and G. Wilde, “Highly ordered CdS nanoparticle arrays
on silicon substrates andphotoluminescence properties,” Appl. Phys. Lett. 86 (2005)
103106.
[63] Z. Chen, Y. Lei, H. G. Chew, L. W. Teo, W. K. Choi, and W. K. Chim, “Synthesis of
germanium nanodots on silicon using an anodic alumina membrane mask,” J. Cryst.
Growth 268 (2004) 560-3.
[64] Y. Lei, W. K. Chim, J. Weissmueller, G. Wilde, H. P. Sun, and X. Q. Pan, “Ordered
arrays of highly oriented single-crystal semiconductor nanoparticles on silicon
substrates,” Nanotechnology 16 (2005) 1892-8.
[65] S. M. Park, C. H. Bae, W. Nam, S. C. Park, and J. S. Ha, “Array of luminescent Er-doped
Si nanodots fabricated by pulsed laser deposition,” Appl. Phys. Lett. 86 (2005) 023104.
[66] W. L. Xu, M. J. Zheng, G. Q. Ding, and W. Z. Shen, “Fabrication and optical properties
of highly ordered ZnO nanodot arrays,” Chem. Phys. Lett. 411 (2005) 37-42.
[67] P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, and P. M. Alsing,
“Electric field tuning ofplasmonic response of nanodot array in liquid crystal matrix,”
Nano Lett. 5 (2005) 1978-81.
[68] G. S. Cheng and M. Moskovits, “A highly regular two-dimentional array of Au quantum
dots deposited in aperiodically nanoporous GaAs epitaxial layer,” Adv. Mater. 14 (2002)
1567-70.
[69] J. Liang, H. Luo, R. Beresford, and J. M. Xu, “A growth pathway for highly ordered
quantum dot arrays,” Appl. Phys. Lett. 85 (2004) 5974-6.
[70] J. Y. Liang, H. Chik, A. J. Yin, and J. Xu, “Two-dimensional lateral superlattices of
nanostructures: nonlithographicformation by anodic membrane template,” J. Appl. Phys.
91(2002) 2544-6.
[71] A. J. Bennett and J. M. Xu, “Simulating collective magnetic dynamics in nanodisk
45

arrays,” Appl. Phys. Lett. 82 (2003) 2503-5.
[72] S. G. Cloutier, R. S Guico, and J. M. Xu, “Phonon localization in periodic uniaxially
nanostructured silicon,” Appl. Phys. Lett. 87(2005) 222104.
[73] G. Q. Ding, W. Z. Shen, M. J. Zheng, W. L. Xu, Y. L. He, and Q. X. Guo, “Fabrication of
highly ordered nanocrystallineSi:H nanodots for the application of nanodevice arrays,” J.
Crys. Growth 283 (2005) 339-45.
[74] S. H. Jeong, Y. K. Cha, I. K. Yoo, Y. S. Song, and C. W. Chung, “Synthesis of Si
nanostrutures via self-organized pillarmask,” Chem. Mater. 16 (2004) 1612-4.
[75] I. H. Park, J. W. Lee, and C. W. Chung, “Formation of silicon nanodot arrays by reactive
ion etching using self-assembled tantalum oxide mask.” J. Ind. Eng. Chem. 11 (2005)
590-3.
[76] A. Mozalev, M. Sakairi, I. Saeki, and H. Takahashi, “Nucleation and growth of the
nanostructured anodic oxideson tantalum and niobium under the porous alumina film,”
Electrochim. Acta 48 (2003) 3155–70.
[77] A. Mozalev, A. Surganov, and S. Magaino “Anodic process for forming nanostructured
metal-oxide coatings forlarge-value precise microfilm resistor fabrication,” Electrochim.
Acta 44 (1999) 3891–8.
[78] A. Mozalev, G. Gorokh, M. Sakairi, and H. Takahashi, “The growth and electrical
transport properties of self-organized metal/oxide nanostructures formed by anodizing
Ta–Al thin-film bilayers,” J. Mater. Sci. 40 (2005) 6399–407.
[79] H. Masuda, K. Yasui, and K. Nishio, “Fabrication of ordered arrays of multiple nanodots
using anodic porous alumina as an evaporation mask,” Adv. Mater. 12 (2000) 1031-3.
[80] B. Yan, H. T. M. Pham, M. Yue, Y. Zhuang, and P.M. Sarro, “Fabrication of in-situ
ultra-thin anodic aluminum oxide layers for nanostructuring on silicon substrate”, Appl.
Phys. Lett. 91 (2007) 053117.
[81] J. Y. Son, Y. S. Shin, Y. H. Shin, and H. M. Janga, “Fabrication of ultrathin Nb nanopin
arrays,” Electrochem. Solid St. 14 (3) (2001) D33-D35.
[82] G. Cao and D. Liu, “Template-based synthesis of nanorod, nanowire, and nanotube
arrays,” Adv. Colloid Interfac. 136 (2008) 45–64.
[83] T. Chowdhury, D. P. Casey, and J. F. Rohan, “Additive influence on Cu nanotube
electrodepositionin anodised aluminium oxide templates,” Electrochem. Commun. 11
(2009) 1203–1206.
[84] P. L. Taberna, S. Mitra, P. Poizot, P. Simon, and J. M. Tarascon, “High rate capabilities
Fe 3 O 4 -based Cu nano-architectured electrodes for lithium-ion battery applications,” Nat.
Mater. 5 (2006) 567-573.
[85] F. Caruso, “Nanoengineering of particle surfaces,” Adv. Mater. 13 (2001) 11.
[86] P. M. Ajayan, “Nanotubes from carbon,” Chem. Rev. 99 (1999) 1787.
46

[87] C. J. Brumlik and C. R. Martin, “Template synthesis of metal microtubules,” J.
Am.Chem. Soc. 113 (1991) 113.
[88] B. Liu and H. C. Zeng, “Hydrothermal synthesis of ZnO nanorods in the diameter regime
of 50 nm,” JACS 125 (2003) 4430-4431.
[89] Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, and Y. Tang, “Electrochemically induced
sol – gel preparation of single-crystalline TiO 2 Nanowires,” Nano Lett. 2 (2002) 717-720.
[90] M. P. Zach, K. H. Ng, and R. M. Penner, ”Molybdenum nanowires by electrodeposition,”
Science 290 (2000) 2120.
[91] F. Tao, M. Guan, Y. Jiang, J. Zhu, Z. Xu, and Z. Xue, “ An easy way to construct an
ordered array of nickel nanotubes: the triblock‐ copolymer‐ assisted hard‐ template
method” Adv. Mater. 18 (2006) 2161–2164.
[92] C. J. Brumlik, C. R. Martin, and J. Am. “ Template synthesis of metal microtubules,”
Chem. Soc. 113 (1991) 3174.
[93] C. J. Brumlik, V. P. Menon, and C. R. Martin, “Template synthesis of metal microtubule
ensembles utilizing chemical, electrochemical, and vacuum deposition techniques” Mater.
Res. 9 (1994) 1174.
[94] K. B. Jirage, J. C. Hulteen, and C. R. Martin, “Nanotubule-based molecular-filtration
membranes” Science 278 (1997) 655.
[95] Y. F. Shen, L. Lu, Q. H. Lu, Z. H. Jin, and K. Lu, “Tensile properties of copper with
nano-scale twins,” Scripta Mater. 52 (2005) 989-994.
[96] E. Ma, Y. M. Wang, Q. H. Lu, M. L. Sui, L. Lu, and K. Lu, “Strain hardening and large
tensile elongation in ultrahigh-strength nano-twinned copper,” Appl. Phys. Lett. 85 (2004)
4932-4934.
[97] C. Hu, L. Gignac, and R. Rosenberg, “Electromigration of Cu/low dielectric constant
interconnects,” Microelectron. Reliab. 46 (2006) 213-231.
[98] K. C. Chen, W. W. Wu, C. N. Liao

, L. J. Chen, and K. N. Tu, “Observation of atomic
diffusion at twin-modified grain boundaries in copper,” Science 321 (2008) 1066-1069.
[99] T. C. Liu, C. M. Liu, H. Y. Hsiao, J. L. Lu, Y. S. Huang, and C. Chen, “Fabrication and
characterization of (111)-oriented and nanotwinned Cu by dc electrodeposition ,”Cryst.
Growth Des. 12 (2012) 5012-5016.
[100] S. Zhong, T. Koch, M. Wang, T. Scherer, S. Walheim, H. Hahn, and T. Schimmel,
“Nanoscale twinned copper nanowire formation by direct electrodeposition ,” Small 5
(2009) 2265-2270.
[101] X. Zhang, K. N. Tu, Z. Chen, Y. K. Tan, C. C. Wong, S. G. Mhaisalkar , X. M. Li, C. H.
Tung, and C. K. Cheng, “Pulse electroplating of copper film:a study of process and
microstructure ,” J. Nanosci. Nanotechnol. 8 (2008) 2568-2574.
[102] T. Chowdhury, D. P. Casey, and J. F. Rohan, “Additive influence on Cu nanotube
47

electrodepositionin anodised aluminium oxide templates,” Electrochem. Commun. 11
(2009) 1203–1206.
[103] P. L. Taberna, S. Mitra, P. Poizot, P. Simon, and

J. M. Tarascon, “High rate capabilities
Fe 3 O 4 -based Cu nano-architectured electrodes for lithium-ion battery applications,” Nat.
Mater. 5 (2006) 567-573.
[104] F. Caruso, “Nanoengineering of particle surfaces,” Adv. Mater. 13 (2001) 11-22
[105] P. M. Ajayan, “Nanotubes from carbon,” Chem. Rev. 99 (1999) 1787-1799
[106] C. J. Brumlik and C. R. Martin, “Template synthesis of metal microtubules,” J. Am.
Chem. Soc. 113 (1991) 3174-3175
[107] M. Wirtz and C. R. Martin, “Template-fabricated gold nanowires and nanotubes” Adv.
Mater. 15 (2003) 455.
[108] H. Q. Cao, L. D. Wang, Y. Qiu., Q. Z. Wu, G. W., L. Z., and X. W. Liu, “Generation and
growth mechanism of metal (Fe, Co, Ni) nanotube Arrays,” Chem. Phys. Phys. Chem. 7
(2006) 1500-1504.
[109] T. Chowdhury, D. P. Casey, and J. F. Rohan, “Additive influence on Cu nanotube
electrodepositionin anodised aluminium oxide templates,” Electrochem. Commun. 11 (2009)
1203–1206
[110] G. Song, X. She, Z. Fu, and J. Li, “Preparation of good mechanical property
polystyrenenanotubes with array structure in anodic aluminum oxide template using
simple physical techniques,” J. Mater. Res. 19 (2004) 11.
[111 ] G. Zou, H. Li, D. Zhang, K. Xiong, C. Dong, and Y. Qian, “Well-aligned arrays of CuO
nanoplatelets,” J. Phys. Chem. B 110 (2006) 1632-1637.
[112] J. Li, J. W. Mayer, and E. G. Colgan, “Oxidation and protection in copper and copper
alloy thin films,” J. Appl. Phys. 70 (1991) 2820-2827.
[113] P. Raksa, A. Gardchareon, T. Chairuangsri, P. Mangkorntong, N. Mangkorntong,
and S. Choopun, “Ethanol sensing properties of CuO nanowires prepared by an
oxidation reaction,” Ceram. Int. 35 (2009) 649-652.
[114] Y. S. Kim, I. S. Hwang, S. J. Kim, C. Y. Lee, and J. H. Lee, “CuO nanowire gas sensors
for air quality control in automotive cabin,” Sens. Actuators B 135 (2008) 298-303.
[115] P. Samarasekara, R. N. Kumara, and N. U. S. Yapa, “Sputtered copper oxide (CuO) thin
films for gas sensor devices,” J. Phys. Condens. Matter 18 (2006) 2417-2420.
[116] S. Rackauska, A. G. Nasibulin, H. Jiang, Y. Tian, V. I. Kleshch, J. Sainio, E. D.
Obraztsova, S. N. Bokova, A. N. Obraztsov, and E. I. Kauppinen, “A novel method for
metal oxide nanowire synthesis,” Nanotechnology 20 (2009) 165603 1-8.
[117] C. T. Hsieh, J. M. Chen, H. H. Lin, and H. C. Shih, “Field Emission from Various CuO
Nanostructures,” Appl. Phys. Lett. 83 (2003) 3383-3385.
[118] S. C. Yeon, W. Y. Sung, W. J. Kim, S. M. Lee, H. Y. Lee, and Y. H. Kim, “Field
48

emission characteristics of CuO nanowires grown on brown-oxide-coated Cu films on
Si substrates by conductive heating in Air,” J. Vac. Sci. Technol. B 24 (2006) 940-944.
[119] J. Y. Xiang, J. P. Tu, X. H. Huang, and Y. Z. Yang, “A comparison of anodically grown
CuO nanotube film and Cu 2 O film as anodes for lithium ion batteries,” J. Solid State
Electrochem. 12 (2008) 941-945.
[120] S. Grugeon, S. Laruelle, R. H. Urbina, L. Dupont, P. Poizot, and J. M.
Tarascon,“Particle size effects on the electrochemical performance of copper oxide
toward lithium,” J. Electrochem. Soc. 148 (2001) A285-A292.
[121] L. B. Chen, N. Lu, C. M. Xu, H. C. Yu, and T. H. Wang, “Electrochemical performance
of polycrystalline CuO nanowires as anode material for Li ion batteries,” Electrochim.
Acta 54 (2009) 4198-4201.
[122] Y. K. Su, C. M. Shen, H. T. Yang, H. L. Li, and H. J. Gao, “Controlled synthesis of
highly ordered CuO nanowire Arrays by template-based sol-gel route,” Trans.
Nonferrous Met. Soc. China 17 (2007) 783-786.
[123] R. Yang and L. Gao, “Novel way to synthesize CuO nanocrystals with various
morphologies,” Chem. Lett. 33 (2004) 1194-1195.
[124] X. G. Wen, W. X. Zhang, and S. H. Yang, “Synthesis of Cu(OH) 2 and CuO nanoribbon
arrays on a copper surface,” Langmuir 19 (2003) 5898-5903.
[125] F. R. N. Nabarro, and P. J. Jackson, “Growth of crystal whiskers, in growth and
perfection of crystal growth,” R. H. Doremus, B. W. Roberts, and D. Turnbull pp.
13-120, 1958, Wiley.
[126] R. Nakamura, G. Matsubayashi, H. Tsuchiya, S. Fujimoto, and H. Nakajima,
“Formation of oxide nanotubes via oxidation of Fe, Cu and nanowires and their
structural stability: difference in formation and shrinkage behavior of interior pores,”
Acta Mater. 57 (2009) 5046-5052 .
[127] R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” Proc. R.
Soc. Lond. A 119 (1928) 173-181.
[128] V. M. Aguero and R. C. Adamo, “Space applications of spindt cathode field emission
arrays,” Spacecraft Charging Technology Conference 6 (2000) 347-352.
[129] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, and Y. W. Jin, “Fully sealed,
high-brightness carbon-nanotube field-emission display,” Appl. Phys. Lett. 75 (1999)
3129-3131.
[130] P. Serbun, F. Jordan, A. Navitski, G. Muller, I. Alber, M. E. Toimil-Molares, and C.
Trautmann, “Copper nanocones grown in polymer ion-track membranes as field
emitters,” Eur. Phys. J. Appl. Phys. 58 (2012) 10402-p1 – 10402-p5
[131] B. R. Huang, C. S. Yeh, D. C. Wang, J. T. Tan, and J. Sung, “Field emission studies of
amorphous carbon deposited on copper nanowires grown by cathodic arc plasma
49

deposition,” New. Carbon. Mater. 24 (2009) 97-101.
[132] I. C. Chang, T. K. Huang, K. L. Huang, Y. F. Tzeng, C. W. Peng, F. M. Pan, C. Y. Lee,
and H. T. Chiu, “Growth of pagoda-topped tetragonal copper nanopillar arrays,” ACS
Appl. Mater. Inter. 1 (2009) 1375-1378.
[133] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, and E. Schaller, “Scanning field
emission from patterned carbon nanotube films,” Appl. Phys. Lett. 76 (2000)
2071-2073.
[134] H. Y. Jung, S. M. Jung, G. H. Gu, and J. S. Suh, “Anodic aluminum oxide membrane
bonded on a silicon wafer for carbon nanotube field emitter arrays,” Appl. Phys. Lett. 89
(2006) 013121-1 - 013121-3.
[135] P. Serbun, F. Jordan, A. Navitski, G. Muller, I. Alber, M. E. T. Molares, and C.
Trautmann, “Copper nanocones grown in polymer ion-track membranes as field
emitters,” Eur. Phys. J. Appl. Phys. 58 (2012) 10402p1-10402p5.
[136] G. S. Sekhon, S. Kumar, C. Kaur, N. K. Verma, C.H. Lu, and S. K. Chakarvarti, “An
efficient novel low voltage field electron emitter with cathode consisting of template
synthesized copper microarrays,” J. Mater. Sci. 22 (2011) 1725–1729.
[137] H. Y. Hsieh, S. H. Huang, K. F. Liao, S. K. Su, C. H. Lai, and L. J. Chen, “High-density
ordered triangular Si nanopillars with sharp tips and varied slopes: one-step fabrication
and excellent field emission properties,” Nanotechnology 18 (2007) 505305.
[138] L. Xu, W. Li, J. Xu, J. Zhou, L. Wu, X. G. Zhang, Z. Y. Ma, and K. J. Chen,
“Morphology control and electron field emission properties of high-ordered Si
nanoarrays fabricated by modified nanosphere lithography,” Appl. Surf. Sci. 255 (2009)
5414–5417.
[139] A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40
(1944) 546-551.
[140] F. M. Chang, S. L. Cheng, S. J. Hong, Y. J. Sheng, and H. K. Tsao, “Superhydrophilicity
to superhydrophobicity transition of CuO nanowire films,” Appl. Phys. Lett. 96 (2010)
114101-1 – 114101-3
[141] Z. Song, Y. Xie, S. Yao, and H. Wang, “Field emission properties of electrodeposited
cobalt nanowire arrays grown in anodic aluminum oxide,” Mater. Lett. 65 (2011) 44-45
[142] A. N. Banerjee, S. Qian, and S. W. Joo, “Large field enhancement at electrochemically
grown quasi-1D Ni nanostructures with low-thershold cold-field electron emission,”
Nanotechnology 22 (2011) 1-8
[143] I. Chakraborty and P. Ayyub, “Controlled clustering in metal nanorod arrays leads to
strongly enhanced field emission characteristics,” Nanotechnology 23 (2012) 1-7
指導教授 鄭紹良(S. L. Cheng) 審核日期 2013-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明