博碩士論文 100324037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:87 、訪客IP:3.144.243.83
姓名 胡毓晉(Yu-Jin Hu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 鉍偏析於錫鉍微銲接點之研究
(Study of Bi segregation at the Sn-Bi micro-joint interface)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著微電子構裝技術快速的發展,微銲接點的尺寸不斷縮小,以提供高密度的I/O (input/output) 數目於IC 晶片上。同時,三維積體電路製造技術的出現,不僅僅使得摩爾定律得以延續下去,更重要的是能於單位體積中容納更多的電晶體數目以及降低功率耗損,因此,三維積體電路製造技術將會是電子構裝技術的主流。然而,隨著微銲接點的尺寸縮小,直徑大小不到20微米的微接點將會取代以往數百微米尺寸的接點,微銲接點之可靠度將受到極大的挑戰。
由於接點尺寸的大幅縮小,傳統以錫為主的銲料將會在極短的迴焊時間內反應完全形成介金屬化合物充滿在微銲接點鐘,因此介金屬化合物存在於接點之微結構組織以及強度便成為影響電子構裝可靠度的重要議題。本研究以極具發展淺力之低熔點錫鉍共晶銲料,在不經外壓應力下進行接合。首先,我們建構了錫鉍銲料組成與基板表面之粗糙度對微接點之微結構組織的影響,藉由提高錫含量以及基板表面之粗糙度,我們可以使得脆弱的鉍相不連續的偏析於微接點之介面,這種不連續偏析於介面且無孔洞生成的微結構使得脆弱的鉍相被相對高機械性質的介金屬化合物給保護住。最後,於晶片強度以及冷熱衝擊的測試中,我們得知此微結構具有良好的可靠度。
在第二部分的討論中,我們以介金屬化合物成長動力學的探討來了解液態錫鉍銲料的偏析機制於迴焊過程中如何發生。我們發現到在迴焊過程中,當生成之扇貝狀介金屬化合物於介面與基材非常接近時,便能夠能夠阻止因鉍相析出而造成大量孔洞的生成。另外,因為此介金屬化合物於接觸到基材後的於平行晶片方向的持續成長,將液態錫鉍銲料排擠至晶界上造成液態錫鉍銲料不連續的偏析於微接點之介面,隨著鉍含量於液態錫鉍銲料隨著反應而增加,最後鉍相將不連續的偏析於微接點之介面。另外,介金屬化合物的成長速率將會受到液態錫鉍中鉍含量的影響,使得鉍偏析的驅動力大幅下降,造成孔洞於接面生成。
摘要(英) In recent years, the size of interconnections in the electronic devices are continuously shrinkage as the rapidly development of the electronic packaging industry. It can provide much higher I/O (input/output) ratio for the requirement of faster, thinner, and reliable electronic devices. Meanwhile, the three-dimensional integration technique has great potential for the coming decades. The most important issue for the reduction size of the interconnections would be the structural defects in the micro-joints. According to the solder would be consumed in a short reflow time, the mechanical properties of the intermetallic compounds at the micro-joint interface should be concerned.
In the first part of this thesis, we observed that microstructure of the Sn-Bi solders that reflowed on the substrates would be affected by the composition of the solder and the roughness on the surface of the substrate. We could obtain a void-free micro-joint interface when we increase the Sn content in the Sn-Bi solder and the roughness on the substrate surface. Also, the discontinuously segregated Bi phases at the interface would provide good mechanical properties for micro-joint.
Second, we figured out the segregated Bi phase at the micro-joint interface would related to the growth kinetic of the intermetallic compounds at the interface. As the scallop-like IMC grains grow at the interface and approached to the substrate enough, it would prevent the voids formed at the interface. Also, the discontinuously segregated Bi phases at the interface were attributed to the growth of the IMC grains. The growth of the IMC grains would expel the molten Sn-Bi solder away from the IMC grains at the interface. And the driving force that for expelling the molten solder would be inhibited with the increasing Bi content in the Sn-Bi solder.
關鍵字(中) ★ 微電子封裝
★ 錫鉍共晶銲料
★ 三維整合
★ 鉍偏析
★ 冷熱衝擊測試
關鍵字(英) ★ IC packaging
★ Sn-Bi eutectic solder
★ 3D itegration
★ Bismuth segregation
★ thermal shock test
論文目次 Table of contents

Abstract (Chinese).................................................I
Abstract (English)................................................II
Table of contents................................................III
List of figures..................................................IV
Chapter 1: Background................................................1
1.1 Evolution of the electronic IC packaging technology.....1
1.2 Transient liquid phase (TLP) bonding....................4
1.3 Microstructures of the micro-joint interface after TLP bonding....................................................11
1.4 Eutectic Sn-Bi solder as TLP bonding material..........22
Chapter 2: Motivation......................................29
2.1 Establish reliable low-temperature eutectic (LTE) Sn-Bi bonding....................................................29
2.2 Mechanism of the void-free micro-interface formation..................................................32
Chapter 3: Microstructures of the low-temperature Sn-Bi micro-joint interface......................................33
3.1 Effect of Bi content in the solder layers..............33
3.2 Effect of the roughness on the substrate surface.......55
Chapter 4: Mechanism of the Sn-Bi solder segregation.......65
4.1 Growth kinetic of the IMC layer at the micro-joint interface..................................................65
4.2 Segregation of Bi phase at the interface in the Sn-Bi solder joints..............................................79
4.3 Driving force for the Bi segregation at the micro-joint interface..................................................83
Chapter 5: Summary.........................................93
References.................................................95
參考文獻 References
[1] K. C. Otiaba, R. S. Bhatti, S. Mallik, M. O. Alam, E. H. Amalu, and M. Ekpu, Microelectron. Reliab., 52, pp. 1409 (2012).
[2] H. Gan and K. N. Tu, J. Appl. Phys., 97, 063514, (2015).
[3] C. T. Wang, C. I. Kuo, H. T. Hsu, E. Y. Chang, L. H. Hsu, W. C. Lim, C. Y. Chiang, S. P. Tseng, and G. W. Huang, Microelectron. Eng., 88(2), pp. 183 (2011).
[4] J. G. Bai, G. Q. Lu, and X. S. Liu, IEEE T. Adv. Pack., 26(1), pp. 54 (2003).
[5] C. E. Ho, S. C. Yang, and C. R. Kao, J. Mater. Sci: Mater Electrom, 18, pp. 155 (2007).
[6] J. H. Lau, Reliability of RoHS Compliant 2D & 3D IC Interconnects, McGraw-Hill, NY (2011).
[7] J. H. Lau, C. K. Lee, C. S. Premachandran, A. Yu, Advanced MEMS Packaging, McGraw-Hill, NY (2010).
[8] J. H. Lau, IMAPS Transactions, Journal of Microelectronics and Electronic Packaging, First Quarter Issue, pp. 35-43 (2010).
[9] G. Tang, O. Navas, D. Pinjala, J. H. Lau, A. Yu, and V. Kripesh, IEEE T. Adv. Pack., Vol. 33,1 ,pp. 184-195 (2010).
[10] C, Selvanayagam, J. H. Lau, X. Zhang, S. Seah, K. Vaidyanathan, and T. Chai, IEEE T. Adv. Pack., Vol. 32, No. 4, pp. 720-728 (2009).
[11] K. Kumagai, Y. Yoneda, H. Izumino, H. Shimojo, M. Sunohara, and T. Kurihara, IEEE Proceedings of ECTC, Orlando, FL, pp. 571-576 (2008).
[12] J. H. Lau, IEEE, International Symposium on Advanced Packaging Materials, (2011).
[13] T. A. Tollefsen, A. Larsson, O. M. Lovvik, and K. Aasmundtveit, Metall. Mater. Trans. B, vol. 43, pp. 397 (2012).
[14] W. F. Gale and D. A. Butts, Science and Technology of Welding and Joining, Vol. 9, No. 4, pp. 283 (2004).
[15] B. Swinnen, W. Ruythooren, P. De Moor, L. Bogaerts, L. Carbonell, K. De Munck, B. Eyckens, S. Stoukatch, D. Sabuncuoglu Tezcan, Z. Tőkei, J. Vaes, J. Van Aelst, and E. Beyne, IEEE, 2006 International Electron Devices Meeting, pp. 1-4 (2006).
[16] C. S. Tan, D. F. Lim, S. G. Singh, S. K. Goulet, and M. Bergkvist, Appl. Phys. Lett., 95, 192108 (2009).
[17] Q. Y. Tong, J. MICROELECTROMECH. S., Vol. 3, 1, pp. 29-35 (1994).
[18] Q.-Y. Tong, G. Fountain, and P. Enquist, Appl. Phys. Lett., 89, 042110 (2006).
[19] B. Leroy and C. Plougonven, J. Electrochem. Soc., Vol. 127, No. 4, pp. 961-970 (1980).
[20] K. N. Tu, Microelectron. Reliab., vol. 51, pp. 517-523 (2011).
[21] L. Yin, S. J. Meschter, T. J. Singler, Acta Mater. Vol. 52, pp. 2873–2888 (2004).
[22] Y.T. Lai and C.Y. Liu, J. Electron. Mater., Vol. 35, No. 1 (2006).
[23] J. W. Ronnie Teo, F.L. Ng, L.S. Kip Goi, Y.F. Sun, Z.F. Wang, X.Q. Shi, J. Wei, and G.Y. Li, Microelectron. Eng., Vol. 85, pp. 512–517 (2008).
[24] J. Ciulik and M. R. Notis, J. Alloy. Compd., Vol. 191, pp. 71-78 (1993)
[25] S. J. Wang and C. Y. Liu, J. Electron. Mater., Vol. 32, No. 11 (2003).
[26] C. Y. Yu, J. Lee, W. L. Chen, J. G. Duh, Mater. Lett., Vol. 119, pp. 20-23, (2014).
[27] L. R. Garcia, W. R. Osório, L. C. Peixoto, and A. Garcia, Mater. Charact., Vol. 61, pp. 212–220 (2010).
[28] S. K. Kang, D. Y. Shih, D. Leonard, D. W. Henderson, T. Gosselin, S. Cho, J. Yu, and W. K. Choi, JOM., Vol. 56, No. 6, pp. 34 (2004).
[29] J. J. Yu, C. A. Yang, Y. F. Lin, C. H. Hsueh, and C. R. Kao, J. Alloy. Compd., Vol. 629, pp. 16–21 (2015).
[30] T. L. Yang, J. Y. Wu, C. C. Li, S. Yang, C. R. Kao, J. Alloy. Compd., Vol. 647, pp. 681-685 (2015).
[31] Xiang Gao, Xin Wu, Yong Xu, and Sheng Liu, IEEE, 2013 IEEE 63rd Electronic Components and Technology Conference, pp. 2264-2270 (2013).
[32] J. W. Hutchinson, and Z. Suo, Adv. Appl. Mech., Vol. 29, pp. 63-191 (1992).
[33] C. Yu, Y. Yang, H. Lu, J. M. Chen, J. Electron. Mater., Vol. 39, pp. 1309 (2010).
[34] K. Weinberg, and T. Bohme, IEEE. T. Compon. Pack. T., Vol. 32, pp. 684 (2009).
[35] M. He, Z. Chen, and G. Qi, Acta Mater., Vol. 52, pp.2047 (2004).
[36] T. Laurila, V. Vuorinen, and M. PaulastoKrockel, Mater. Sci. and Eng. R., Vol. 68, pp. 1 (2010).
[37] T. S. Huang and C. Y. Liu, Intermetallic compound formation at Sn/Cu interface and Kirkendall voids formation at Sn/Cu interface, National Central University, Department of Chemical and Material Engineering (2012).
[38] H. Y. Chuang, T. L. Yang, M. S. Kuo, Y. J. Chen, J. J. Yu, C. C. Li, and C. R. Kao, IEEE Trans. Device Mater. Reliab., Vol. 12, No. 2 (2012).
[39] S. K. Lin, C. L. Cho, and H. M. Chang, J. Electron. Mater., Vol. 43, No. 1 (2014).
[40] J. F. Li, P. A. Agyakwa, and C. M. Johnson, Acta Mater., Vol. 59, pp. 1198–1211 (2011).
[41] F. Hua, Z. Mei, and J. Glazer, IEEE. Electronic Components and Technology Conference (2008
[42] C. B. Lee, S. B. Jung, Y. E. Shin, and C. C. Shur, Mater. Trans., Vol. 42, No. 5, pp. 751-755 (2001).
[43] Wislei R. Osório, Leandro C. Peixoto , Leonardo R. Garcia , Nathalie Mangelinck-Noël, and Amauri Garcia, J. Alloy. Compd., 572, pp. 197-106 (2013).
[44] U. B. Kang and Y. H. Kim, J. Electron. Mater., Vol. 33, No. 1 (2004).
[45] Gonzalo Gutiérrez and Eduardo Menéndez-Proupin, J. Appl. Phys., 99, 103504 (2006).
[46] B. Z. LEE and D. N. LEE, Acta mater., Vol. 46, No. 10, pp. 3701-3714 (1998).
[47] R.R. Chromik, D-N. Wang, A. Shugar, L. Limata, M.R. Notis, and R.P. Vinci, J. Mater. Res., Vol. 20, No. 8, pp. 2161-2172 (2005)
[48] M. G. Cho, K. W. Paik, H. M. Lee, S. W. Booh, and T. G. Kim, J. Electron. Mater., Vol. 35, No. 1 (2006).
[49] C.C. Chi, L.C. Tsao, C.W. Tsao, and T.H. Chuang, JMEPEG, 17, pp. 134–140 (2008).
[50] T. Y. Kang, Y. Y. Xiu, C. Z. Liu, L. Hui, J. J. Wang, W. P. Tong, J. Alloy. Compd., 509, pp. 1785-1789 (2011).
[51] P. J. Shang, Z. Q. Liu, D. X. Li and J. K. Shang, Scr. Mater., 58, pp. 409–412 (2008).
[52] T. Y. Kang, Y. Y. Xiu, L. Hui, J. J. Wang, W. P. Tong, and C. Z. Liu, J. Mater. Sci. Technol., 27(8), pp. 741-745 (2011).
[53] H. F. Zou, Q. K. Zhang, and Z. F. Zhang, Sci. Eng. A, 532, pp. 167– 177 (2012).
[54] S. J. Kim, K. S. Kim, S. S. Kim, and K. Suganuma, J. Electron. Mater., Vol. 38, No. 2 (2009).
[55] Khellil Sefiane, Jennifer Skilling, Jamie MacGillivray, Adv. Colloid Interface Sci., 138, pp. 101–120 (2008).
[56] Pierre-Gilles de Gennes, Frangoise Brochard-Wyart, and David Quere, “Capillarity and wetting phenomena: drops, bubbles, pearls, waves”, Springer (2013).
[57] J. H. Lee and D. N. Lee, J. Electron. Mater., Vol. 30, No. 9 (2001).
[58] J. Li, Z. F. Yuan, Z. Y. Qiao, J. F. Fan, Y. K. Xu, and J. J. Ke, J. Colloid Interface Sci., 297, pp. 261–265 (2006).
[59] M. Kucharski and P. Fima, Monatshefte fur Chemie, 136, pp. 1841–1846 (2005).
[60] C. K. Hu, H. B. Huntington, and G. R. Gruzalski, Phys. Rev. B, 28, 579 (1983).
[61] G. K. White, J. Phys. D: Appl. Phys., Vol. 6 (1973).
[62] T. D. Blake and J. De Coninck, Adv. Colloid Interface Sci., 96, pp. 2136 (2002).
[63] S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B, Vol. 33, No. 8, (1986).
[64] Yu. Plevachuk, V. Sklyarchuk, G. Gerbeth, S. Eckert, and R. Novakovic, Surf. Sci., 605, pp. 1034-1042 (2011).
[65] T. Pinnington, D. D. Koleske, J. M. Zahler, C. Ladous, Y. B. Park, M. H. Crawford, M. Banas, G. Thaler, M. J. Russell, S. M. Olson, and H. A. Atwater, J. Cryst. Growth, 310, pp. 2514–2519 (2008).
[66] K. N. Tu, T. Y. Lee, J. W. Jang, L. Li, D. R. Frear, K. Zeng, and J. K. Kivilahti, J. Appl. Phys., Vol. 89, No. 9 (2001).
[67] H. K. Kim and K. N. Tu, Phys. Rev. B, Vol. 53, No. 23 (1996).
[68] J.F. Li, S.H. Mannan, M.P. Clode, D.C. Whalley, and D.A. Hutt, Acta Mater., 54, pp. 2907-2922 (2006).
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2016-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明