博碩士論文 100324043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.226.93.209
姓名 陳鈺忠(Yu-chung Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
(Film Instability in Solvent-Annealed Block Copolymer Thin Films)
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用
★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構
★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為
★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質
★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究
★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構★ 極性/非極性共溶劑退火法調控雙團鏈共聚物薄膜奈米微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究在探討雙團鏈高分子PS-b-P4VP薄膜旋鍍在矽基材SiOx/Si以及透過表面改質的聚苯乙烯毛刷基材PS-SiOx/Si,利用THF溶劑蒸氣退火刺激後,其除潤現象、奈微米結構對於薄膜不穩定性間的相依關係。首先PS-b-P4VP團鏈共聚高分子在基材效應的實驗中,在親水性的矽基材上,由於極性基材易吸附P4VP鏈段,造成在退火過程中,該鏈段受到基材錨定作用而形成潤濕層,部分微胞移動受限於錨定影響,聚變過程發生緩慢,薄膜穩定度高。相對於極性基材,對於接有毛刷層的改質基板上,此毛刷層扮演著阻隔層的角色,隔絕極性基材對於P4VP鏈段間的吸引力。在溶劑蒸氣退火下,微胞聚變過程中所釋出的間隙將會在薄膜上造成孔洞,孔洞形成造成薄膜上洞與鄰近地區薄膜以及大小洞間有壓力差存在,使得薄膜上為趨於表面能最小,洞與洞間的彼此融合或增長驅使薄膜推擠而形成梯田式堆疊,同時微胞上PS與接枝層PS同種鏈段間自除潤發生,驅使液滴形貌的形成。結合影像定量分析統整出對於薄膜上的孔洞覆蓋率變化之趨勢,階段性地呈現薄膜除潤行為的演化過程。最後探討在溶劑退火過程中,對稱型PS22k-b-P4VP22k及非對稱型PS19k-b-P4VP22k之PS鏈段分子量不同反映出迥然不同的表徵。將利用混掺不同分子量的PS均聚物修飾鏈長差異及提升毛刷層接枝密度以改善薄膜不穩定性之現象。
摘要(英) In this study, I investigate PS-b-P4VP thin films spin-coated on bare (SiOx/Si) and PS-grafted(PS-SiOx/Si) silicon substrates and observe the relationship between film instability and internal nanostructures during solvent annealing in THF solvent vapor. The first experiment is to study the substrate effect. The hydrophilic of bare silicon substrates preferentially adsorbs P4VP segments in the annealing process, causing block copolymer chains to form a wetting layer at the substrate interface. At early stages, micellar movement is restricted by the anchoring effect, which induced slow fusion process. Hence, the film did not rupture. Compared to micellar films on polar substrates, fusion of PS-b-P4VP micelles on the PS-grafted substrate occurs quickly upon solvent annealing. This is because the PS-grafted brush layer obstructs the attractive interaction between SiOx/Si and P4VP chains. Furthermore, micellar fusion leads to micro-sized holes in the film. Because of the formation of holes, there exists pressure difference(Laplace pressure)between holes and their surrounding areas. In order to reduce the surface free energy, the holes grew by merging with their neighboring analog. At intermediate stages of solvent annealing, terraced structures start to form whereas at final stages droplets form. The driving force for film instability on PS-SiOx/Si is the auto phobic behavior between PS segments within micelles and the PS-grafted substrate. In addition, we find different molecular weights of PS segments between symmetric and asymmetric PS-b-P4VP induced different surface characterizations upon solvent annealing. Dewetting behavior of asymmetric PS-b-P4VP thin films is more serious than that of symmetric PS-b-P4VP ones. The last section, I attempt to improve the film instability of PS-b-P4VP by blending PS homopolymers of various molar masses.
關鍵字(中) ★ 團鏈共聚物
★ 溶劑退火
★ 薄膜不穩定性
關鍵字(英) ★ PS-b-P4VP
★ solvent annealing
★ film instability
論文目次 目錄
摘要 i
Abstract ii
目錄 iii
圖目錄 vii
表目錄 xv
第一章 緒  論 1
第二章 簡  介 3
2-1 雙親性團鏈共聚物 3
2-2 薄膜試樣的微觀相分離 7
2-2-1 外界效應誘導高分子薄膜型態變化 8
2-2-2 雙團鏈高分子薄膜微相分離型態 10
2-2-3 薄膜之膜厚相稱性與厚度效應 12
2-3 薄膜不穩定性 14
2-4均聚物薄膜的除潤行為 18
2-4-1分子間作用力 19
2-4-2 自除潤(亂度效應) 22
2-4-3 殘餘應力 24
2-5 團鏈共聚物薄膜除潤行為 25
2-5-1 團鏈共聚物薄膜內移動機制 26
2-6 異質成核與成長的薄膜除潤行為 30
2-7 混摻均聚物對於團鏈共聚物薄膜之影響 31
2-7-1 均聚物混摻於團鏈共聚物間的空間分布 31
2-7-2混摻均聚物降低packing frustration energy 33
2-8 實驗動機 35
第三章 實 驗 36
3-1 高分子材料 36
3-2 溶劑藥品與基材 37
3-3 實驗儀器 37
3-4 樣品製備與實驗步驟 38
3-4-1 基材清洗 38
3-4-2 基材表面改質 38
3-4-3 薄膜的製備及退火處理 39
3-4-4 薄膜表面覆蓋率影像軟體分析 40
3-5 儀器分析 40
3-5-1 原子力顯微鏡 (AFM) 40
3-5-2 光學顯微鏡 (OM) 42
3-5-3小角度X光散射 (Small-angle X-ray scattering, SAXS) 44
第四章 結果與討論 45
4-1 旋鍍成膜後PS-b-P4VP微胞在溶劑退火過程型態變化 45
4-1-1 微胞的形成 45
4-1-2 聚苯乙烯-聚4乙烯吡啶之聚變/裂變 47
4-2 對稱型/非對稱型聚苯乙烯-聚4乙烯吡啶除潤現象 53
4-3聚苯乙烯-聚4乙烯吡啶薄膜表面變化定量分析 55
4-3-1 非對稱型PS-b-P4VP系統薄膜表面變化定量分析 55
4-3-2對稱型PS-b-P4VP系統薄膜表面變化定量分析 59
4-4非對稱系統之微胞濃度對於除潤結構演變的影響 61
4-4-1 高覆蓋率PS-b-P4VP薄膜系統 61
4-4-2 低覆蓋率PS-b-P4VP薄膜系統 66
4-5 基材對於薄膜穩定性的影響 67
4-5-1 矽基材上非對稱型PS-b-P4VP薄膜除潤行為 67
4-5-2 矽基材上非對稱型PS-b-P4VP薄膜表面變化定量分析 70
4-6 混摻均聚物後團鏈共聚物薄膜的除潤現象 71
4-6-1 混摻後之微胞形成 71
4-6-2 混摻均聚物重量比6.8%在溶劑退火過程中薄膜穩定度及型態變化 73
4-6-2-1 混摻均聚物在溶劑退火過程薄膜型態變化 73
4-6-2-2混摻均聚物在溶劑退火過程薄膜表面變化定量分析 76
4-6-3混摻均聚物重量比15%在溶劑退火過程薄膜穩定度及型態變化 78
4-6-3-1 混摻均聚物在溶劑退火過程薄膜型態變化 78
4-6-3-2混摻均聚物在溶劑退火過程薄膜表面變化定量分析 80
4-7基材對於混摻均聚物薄膜穩定性的影響 82
4-7-1重量比6.8%混摻系統在溶劑退火過程薄膜型態變化及表面定量分析 82
4-7-2重量比15%混摻系統在溶劑退火過程薄膜型態變化及表面定量分析 85
第五章 結  論 88
參考文獻 90
附錄 102
參考文獻 [1] S. B. Darling, ’’Directing the self-assembly of block copolymers’’. Prog. Polym. Sci., 32, 1152-1204 (2007).
[2] E. P. Chan, J. J. Walish, E. L. Thomas, C. M. Stafford, ’’Block Copolymer Photonic Gel for Mechanochromic Sensing’’. Adv. Mater., 23, 4702-4706 (2011).
[3] E. Haladjova, S. Rangelov, C. B. Tsvetanova, S. Pispasb, ’’DNA encapsulation via nanotemplates from cationic block copolymer micelles’’. Soft matter, 8, 2884-2889 (2012).
[4] S. B. Jo, W. H. Lee, L. Qiu, K. Cho, ’’Polymer blends with semiconducting nanowires for organic electronics’’. J. Mater. Chem., 22, 4244-4260 (2012).
[5] P. Kang, S. O. Ogunbo, D. Erickson, ’’High Resolution Reversible Color Images on Photonic Crystal Substrates’’. Langmuir, 27, 9676-9680 (2011).
[6] Y. Kang, J. J. Walish, T. Gorishnyy, E. L. Thomas, ’’Broad-wavelength-
range chemically tunable block-copolymer photonic gels’’. nature
materials, 6, 957-960 (2007).
[7] M. P. Kim, D. J. Kang, D. W. Jung, A. G. Kannan, K. H. Kim, K. H. Ku, S. G. Jang, W. S. Chae, G.-R. Yi, B. J. Kim, ’’Gold-Decorated Block Copolymer Microspheres with Controlled Surface Nanostructures’’. ACS nano, 6, 2750-2757 (2012).
[8] G. Y. Liu, X. S. Liu, S. S. Wang, C. J. Chen, J. Ji, ’’Biomimetic Polymer-
somes as Carriers for Hydrophilic Quantum Dots’’. Langmuir, 28, 557-562
(2012).
[9] X. Mei, D. Chen, N. Li, Q. Xu, J. Ge, H. Li, B. Yang, Y. Xu, J. Lu, ’’Facile preparation of coating fluorescent hollow mesoporous silica nanoparticles with pH-sensitive amphiphilic diblock copolymer for controlled drug release and cell imaging’’. Soft matter, 8, 5309-5316 (2012).
[10] T. Rao, X.-H. Dong, B. C. Katzenmeyer, C. Wesdemiotis, S. Z. D. Chenga, M. L. Becker, ’’High-fidelity fabrication of Au–polymer Janus nanoparticles using a solution template approach’’. Soft matter, 8, 2965-2971 (2012).
[11] E. Seo, T. Lee, K. T. Lee, H. K. Song, B.-S. Kim, ’’Versatile double hydrophilic block copolymer: dual role as synthetic nanoreactor and ionic and electronic conduction layer for ruthenium oxide nanoparticle supercapacitors’’. J. Mater. Chem., 22, 11598-11604 (2012).
[12] W. Wang, H. Sun, F. Meng, S. Ma, H. Liub, Z. Zhong, ’’Precise control of intracellular drug release and anti-tumor activity of biodegradable micellar drugs via reduction-sensitive shell-shedding’’. Soft matter, 8, 3949-3956 (2012).
[13] C. M. Chen, C. M. Liu, K. H. Wei, U. S. Jengb, C. H. Su, ’’Non-volatile organic field-effect transistor memory comprising sequestered metal nanoparticles in a diblock copolymer film’’. J. Mater. Chem., 22, 454-461 (2012).
[14] W. J. Cho, Y. Kim, J. K. Kim, ’’Ultrahigh-Density Array of Silver Nanoclusters for SERS Substrate with High Sensitivity and Excellent Reproducibility’’. ACS nano, 6, 249-255 (2012).
[15] A. J. Hong, C. C. Liu, Y. Wang, J. Kim, F. Xiu, S. Ji, J. Zou, P. F. Nealey, K. L. Wang, ’’Metal Nanodot Memory by Self-Assembled Block Copolymer Lift-Off’’. Nano Letters, 10, 224-229 (2010).
[16] Y. H. Jang, X. Xin, M. Byun, Y. J. Jang, Z. Lin, D. H. Kim, ’’An Unconventional Route to High-Efficiency Dye-Sensitized Solar Cells via Embedding Graphitic Thin Films into TiO2 Nanoparticle Photoanode’’. Nano Letters, 12, 479-485 (2012).
[17] Y. Liu, H. Hu, W. Ye, F. Zhou, J. Hao, ’’Block copolymer nanolithography to manufacture nanopatterned gold substrate for surface-initiated polymerization’’. J. Mater. Chem. C, 1, 902-907 (2013).
[18] J. H. Park, K. M. Choi, J. H. Choi, D. K. Lee, H. J. Jeon, H. Y. Jeong, J. K. Kang, ’’Fabrication of heterogeneous exposed core–shell catalyst array using the space specificity of an embodied micelle and their application to a high performance photocatalyst’’. Chem. Commun, 48, 11002–11004 (2012).
[19] C. Renaud, S. J. Mougnier, E. Pavlopoulou, C. Brochon, G. Fleury, D. Deribew, G. Portale, E. Cloutet, S. Chambon, L. Vignau, G. Hadziioannou, ’’Block Copolymer as a Nanostructuring Agent for High-Efficiency and Annealing-Free Bulk Heterojunction Organic Solar Cells’’. Adv. Mater., 24, 2196-2201 (2012).
[20] J. K. Bosworth, M. Y. Paik, R. Ruiz, E. L. Schwartz, J. Q. Huang, A. W. Ko, D.-M. Smilgies, C. T. Black, C. K. Ober, ’’Control of Self-Assembly of Lithographically Patternable Block Copolymer Films’’. Nano Letters, 2, 1396-1402 (2008).
[21] C. C. Chao, R. M. Ho, P. Georgopanos, A. Avgeropoulos, E. L. Thomas, ’’Silicon oxy carbide nanorings from polystyrene-b-polydimethylsiloxane diblock copolymer thin films’’. Soft matter, 6, 3582-3587 (2010).
[22] V. P. Chuang, J. Y. Cheng, T. A. Savas, C. A. Ross, ’’Three-Dimensional Self-Assembly of Spherical Block Copolymer Domains into V-Shaped Grooves’’. Nano Letters, 6, 2332-2337 (2006).
[23] T. Ghoshal, T. Maity, J. F. Godsell, S. Roy, M. A. Morris, ’’Large Scale Monodisperse Hexagonal Arrays of Superparamagnetic Iron Oxides Nanodots: A Facile Block Copolymer Inclusion Method’’. Adv. Mater., 24, 2390-2397 (2012).
[24] S. M. Jeon, S. H. Lee, S. I. Yoo, B. H. Sohn, ’’Ordered Complex Nanostructures from Bimodal Self-Assemblies of Diblock Copolymer Micelles with Solvent Annealing’’. Langmuir, 27, 12191-12196 (2011).
[25] H. Jung, D. Hwang, E. Kim, B. J. Kim, W. B. Lee, J. E. Poelma, J. Kim, C. J. Hawker, J. Huh, D. Y. Ryu, J. Bang, ’’Three-Dimensional Multilayered Nanostructures with Controlled Orientation of Microdomains from Cross-Linkable Block Copolymers’’. ACS nano, 5, 6164-6173 (2011).
[26] S. H. Kim, M. J. Misner, T. P. Russell, ’’Controlling Orientation and Order in Block Copolymer Thin Films’’. Adv. Mater., 20, 4851-4856 (2008).
[27] S. H. Kim, M. J. Misner, L. Yang, O. Gang, B. M. Ocko, T. P. Russell, ’’Salt Complexation in Block Copolymer Thin Films’’. Macromolecules, 39, 8473-8479 (2006).
[28] M. M. Kulkarni, K. G. Yager, A. Sharma, A. Karim, ’’Combinatorial Block Copolymer Ordering on Tunable Rough Substrates’’. Macromolecules, 45, 4303-4314 (2012).
[29] G. Liu, C. S. Thomas, G. S. W. Craig, P. F. Nealey, ’’Block Copolymer–Homopolymer Blends’’. Adv. funct. Mater., 20, 1251-1257 (2010).
[30] T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, T. P. Russell, ’’Local Control of Microdomain Orientation in Diblock Copolymer Thin Films with Electric Fields’’. Science, 273, 931-933 (1996).
[31] C. Park, C. D. Rosa, E. L. Thomas, ’’Large Area Orientation of Block Copolymer Microdomains in Thin Films via Directional Crystallization of a Solvent’’. Macromolecules, 34, 2602-2606 (2001).
[32] S. Park, B. Kim, J. Xu, T. Hofmann, B. M. Ocko, T. P. Russell, ’’Lateral Ordering of Cylindrical Microdomains Under Solvent Vapor’’. macromolecules, 42, 1278-1284 (2009).
[33] S. Park, D. H. Lee, B. K. Ji Xu, S. W. Hong, U. Jeong, T. Xu, T. P. Russell, ’’Macroscopic 10-Terabit–per–Square-Inch Arrays from Block Copolymers with Lateral Order’’. Science, 323, 1030-1033 (2009).
[34] M. P. Stoykovich, M. Muller, S. O. Kim, H. H. Solak, E. W. Edwards, J. J. d. Pablo, P. F. Nealey, ’’Directed Assembly of Block Copolymer Blends into Nonregular Device-Oriented Structures’’. Science, 308, 1442-1446 (2005).
[35] A. Verma, A. Sharma, ’’Self-organized nano-lens arrays by intensified dewetting of electron beam modified polymer thin-films’’. Soft matter, 7, 11119-11124 (2011).
[36] S. I. Yoo, S. H. Yun, H. KiKim, B.-H. Sohn, ’’Highly Ordered Hexagonal Arrays of Hybridized Micelles from Bimodal Self- Assemblies of Diblock Copolymer Micelles’’. Macromol. Rapid Commun, 31, 645-650 (2010).
[37] F. Brochard-Wyart, G. Debregeas, R. Fondecave, P. Martin, ’’Dewetting of Supported Viscoelastic Polymer Films: Birth of Rims’’. Macromolecules, 30, 1211-1213 (1997).
[38] J. L. Masson, O. Olufokunbi, P. F. Green, ’’Flow instabilities in Entangled Polymer Thin Films’’. Macromolecules, 35, 6992-6996 (2002).
[39] G. Reiter, ’’Dewetting of Thin Polymer Films’’. Phys. Rev. Lett., 68, 75-78 (1992).
[40] G. Reiter, ’’Unstable Thin Polymer Films: Rupture and Dewetting’’. Langmuir, 9, 1344-1351 (1993).
[41] G. Reiter, ’’Dewetting of Highly Elastic Thin Polymer Films’’. Phys. Rev. Lett., 87, 186101 (2001).
[42] T. G. Stange, D. F. Evans, ’’Nucleation and Growth of Defects Leading to Dewetting of Thin Polymer Films’’. Langmuir, 13, 4459-4465 (1997).
[43] T. Vilmin, E. Raphael, ’’Dewetting of thin viscoelastic polymer films on slippery substrates’’. Europhys. Lett., 72, 781-787 (2005).
[44] R. Xie, A. Karim, J. F. Douglas, C. C. Han, R. A. Weiss, ’’Spinodal Dewetting of Thin Polymer Films’’. Phys. Rev. Lett., 81, 1251-1254 (1998).
[45] M. H. Yang, S. Y. Hou, Y. L. Chang, A. C.-M. Yang, ’’Molecular Recoiling in Polymer Thin Film Dewetting’’. Phys. Rev. Lett., 96, 066105 (2006).
[46] R. Limary, P. F. Green, ’’Dewetting Instabilities in Thin Block Copolymer Films: Nucleation and Growth’’. Langmuir, 15, 5617-5622 (1999).
[47] P. F. Green, R. Limary, ’’Nucleation mechanism of rupture of newtonian black films : II. Experiment’’. Adv. Colloid Interface Sci., 94, 53 (2001).
[48] 簡士偉, 孫亞賢. "除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構".國立中央大學化學暨材料工程學系碩士論文, (2010).
[49] M. W. Matsen, F. S. Bates, ’’Unifying Weak- and Strong-Segregation Block Copolymer Theories’’. Macromolecules, 29, 1091-1098 (1996).
[50] A. K. Khandpur, S. Foerster, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras, K. Almdal, K. Mortensen, ’’Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition’’. Macromolecules, 28, 8796-8806 (1995).
[51] J. C. Meiners, A. Quintel-Ritzi, J. Mlynek, ’’Adsorption of Block-Copolymer Micelles from a Selective Solvent’’. Macromolecules, 30, 4945-4951 (1997).
[52] 張智堯, 孫亞賢. "聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚. 變與裂變動態結構演化之研究".國立中央大學化學暨材料工程學系碩士論文, (2011).
[53] N. Ali, S. Y. Park, ’’Micellar Structures of Poly(styrene-b-4-vinylpyridine) in THF/Toluene Mixtures and Their Functionalization with Gold’’. Langmuir, 24, 9279-9285 (2008).
[54] K. W. Gotrik, A. F. Hannon, J. G. Son, B. Keller, A. Alexander-Katz, C. A. Ross, ’’Morphology Control in Block Copolymer Films Using Mixed Solvent Vapors’’. ACS nano, 6, 8052-8059 (2012).
[55] C. Y. Chang, Y. C. Lee, P. J. Wu, J. Y. Liou, Y. S. Sun, B. T. Ko, ’’Micellar Transitions in Solvent-Annealed Thin Films of an Amphiphilic Block Copolymer Controlled with Tunable Surface Fields’’. Langmuir, 27, 14545–14553 (2011).
[56] G. B. Webber, E. J. Wanless, S. P. Armes, Y. Tang, Y. Li, S. Biggs, ’’Nano-Anemones: Stimulus-Responsive Copolymer-Micelle Surfaces’’. Adv. Mater., 16, 1794-1798 (2004).
[57] T. H. Kim, J. Huh, J. Hwang, H. C. Kim, S. H. Kim, B. H. Sohn, C. Park, ’’Ordered Arrays of PS-b-P4VP Micelles by Fusion and Fission Process upon Solvent Annealing’’. Macromolecules, 14, 6688-6697 (2009).
[58] W. Gu, S. W. Hong, T. P. Russell, ’’Orienting Block Copolymer Microdomains with Block Copolymer Brushes’’. ACS nano, 6, 10250-10257 (2012).
[59] H. S. Moon, D. O. Shin, B. H. Kim, H. M. Jin, S. Lee, M. G. Lee, S. O. Kim, ’’Large-area, highly oriented lamellar block copolymer nanopatterning directed by graphoepitaxially assembled cylinder nanopatterns’’. J. Mater. Chem., 22, 6307-6310 (2012).
[60] G. Singh, K. G. Yager, B. Berry, H.-C. Kim, A. Karim, ’’Dynamic Thermal Field-Induced Gradient Soft-Shear for Highly Oriented Block Copolymer Thin Films’’. ACS nano, 6, 10335-10346 (2012).
[61] A. Knoll, A. Horvat, K. S. Lyakhova, G. Krausch, G. J. A. Sevink, A. V. Zvelindovsky, R. Magerle, ’’Phase behavior in thin films of cylinder-forming block copolymers’’. Phys. Rev. Lett., 89, 035501 (2002).
[62] I. W. Hamley, ’’Ordering in thin films of block copolymers: Fundamentals to potential applications’’. Polymer, 34, 1161-1210 (2009).
[63] P. G. de Gennes, ’’Wetting: statics and dynamics’’. Rev. Mod. Phys., 57, 827 (1985).
[64] S. Harkema, Capillary instabilities in thin polymer films : mechanism of structure formation and pattern replication. (2006).
[65] A. Sharma, R. Khanna, ’’Pattern Formation in Unstable Thin Liquid Films’’. Phys. Rev. Lett., 81, 3463-3466 (1998).
[66] P. C. M. Grim, I. A. Nyrkova, A. N. Semenov, G. t. Bride, G. Aadziioannou, ’’The Free Surface of Thin Diblock Copolymer Films: Experimental and Theoretical Investigations on the Formation and Growth of Surface Relief Structures’’. Macromolecules, 28, 7501-7513 (1995).
[67] J. Heier, E. J. Kramer, J. Groenewold, G. H. Fredrickson, ’’Kinetics of Individual Block Copolymer Island Formation and Disappearance near an Absorbing Boundary’’. Macromolecules, 33, 6060-6067 (2000).
[68] J. Heier, E. Sivaniah, E. J. Kramer, ’’Anisotropic Coarsening of Two-Dimensional Surface Domains in Copolymer Thin Films’’. Macromolecules, 32, 9007-9012 (1999).
[69] R. A. Segalman, K. E. Schaefer, G. H. Fredrickson, E. J. Kramer, ’’Topographic Templating of Islands and Holes in Highly Asymmetric Block Copolymer Films’’. Macromolecules, 36, 4498-4506 (2003).
[70] A. VRIJ, ’’Possible Mechanism for the Spontaneous Rupture of Thin, Free Liquid Films’’. 23-33 (1966).
[71] F. B. Wyart, P. Martin, C. Redon, ’’Liquid/Liquid Dewetting’’. Langmuir, 9, 3682-3690 (1999).
[72] G. Reiter, A. Sharma, A. Casoli, M. O. David, R. Khanna, P. Auroy, ’’Thin Film Instability Induced by Long-Range Forces’’. Langmuir, 15, 2551-2558 (1999).
[73] J. Visser, ’’On Hamaker constants: A comparison between Hamaker constants and Lifshitz-van der Waals constants’’. Adv. Colloid. Interf. Sci., 3, 331 (1972).
[74] H. C. Hamaker, ’’The London—van der Waals attraction between spherical particles’’. Physica, 4, 1058-1072 (1937).
[75] I. E. Dzyaloshinskii, E. M. Lifshitz, L. P. Pitaevskii, ’’GENERAL THEORY OF VAN DER WAALS’ FORCES’’. SOVIE T PHYSICS, 73, (1961).
[76] G. Debregeas, P. Martin, F. Brochard-Wyart, ’’Viscous Bursting of Suspended Films’’. Phys. Rev. Lett., 75, 3886-3889 (1995).
[77] J. Jopp, R. Yerushalmi-Rozen, ’’Autophobic Behavior of Polymers at the Melt-Elastomer Interface’’. Macromolecules, 32, 7269-7275 (1999).
[78] S. R. Edgecombe, J. M. Gardiner, M. W. Matsen, ’’Suppressing Autophobic Dewetting by Using a Bimodal Brush’’. Macromolecules, 35, 6475-6477 (2002).
[79] L. S. Fisher, A. A. Golovin, ’’Nonlinear stability analysis of a two-layer thin liquid film: Dewetting and autophobic behavior’’. Journal of Colloid and Interface Science, 291, 515-528 (2005).
[80] T. Kerle, R. Yerushalmi-Rozen, J. Klein, ’’Wetting and Autophobicity of a Polymer Melt on a Network of Itself’’. Macromolecules, 31, 422-429 (1998).
[81] G. Reiter, ’’Auto-Optimization of Dewetting Rates by Rim Instabilities in Slipping Polymer Films’’. Phys. Rev. Lett., 87, 166103 (2001).
[82] G. Reiter, R. Khanna, ’’Negative Excess Interfacial Entropy between Free and End-Grafted Chemically Identical Polymers’’. Phys. Rev. Lett., 85, 5600-5602 (2000).
[83] G. Reiter, R. Khanna, ’’Kinetics of Autophobic Dewetting of Polymer Films’’. Langmuir, 16, 6351-6357 (2000).
[84] G. Reiter, R. Khanna, ’’Real-Time Determination of the Slippage Length in Autophobic Polymer Dewetting’’. Phys. Rev. Lett., 85, 2753-2756 (2000).
[85] K. R. Shull, ’’Wetting Behavior of Polymer Melts on Polydisperse Grafted Polymer Layers’’. Macromolecules, 29, 8487-8491 (1996).
[86] G. Reiter, M. Hamieh, P. Damman, S. Sclavons, S. Gabriele, T. Vilmin, E. Raphael, ’’Residual stresses in thin polymer films cause rupture and dominate early stages of dewetting’’. Nature materials, 4, 654-758 (2005).
[87] P. Zhang, Z. Wang, H. Huang, T. He, ’’Direct Observation of the Relief Structure Formation in the Nearly Symmetric Poly(styrene)-block-poly(ε-caprolactone) Diblock Copolymer Thin Film’’. Macromolecules, 45, 9139-9146 (2012).
[88] X. C. Chen, H. Yang, P. F. Green, ’’Tethered-Polymer Structures in Thin Film Polymer Melts’’. Macromolecules, 44, 5758-5763 (2011).
[89] K. E. Sohn, K. Kojio, B. C. Berry, A. Karim, R. C. Coffin, G. C. Bazan, E. J. Kramer, M. Sprung, J. Wang, ’’Surface Effects on the Thin Film Morphology of Block Copolymers with Bulk Order-Order Transitions’’. Macromolecules, 43, 3406-3414 (2010).
[90] A. Rivera- Atomic Force Microscopy in Microbiology. http://www.sci.sdsu.edu/~smaloy/Research/Atomic%20Force%20Microscopy.htm
[91] 原子力顯微鏡基本原理. http://www.knvs.tp.edu.tw/AFM/ch2.htm
[92] 國立中興大學土壤傳播性病害研究室暨病害診斷服務站. http://web.nchu.edu.tw/~rootdis/plant%20pathology/97Session/002-970926/ch4microscope.pdf
[93] 維基百科-光學顯微鏡 http://zh.wikipedia.org/wiki/光學顯微鏡.
[94] 鄭有舜, ’’X光小角度散設在軟物質研究上的應用’’. 物理雙月刊, 26, 416-424 (2004).
[95] S. R. Kline, ’’Reduction and analysis of SANS and USANS data using IGOR Pro’’. J. Appl. Crystallogr, 39, 895-900 ( 2006).
[96] J. Brandrup, E. H. Immergut, E. A. Grulke, Polymer Handbook. (John Wiley & Sons, New York, 1999).
[97] A. F. Marton, ’’Solubility Parameters’’. Chem. Rev., 75, 731 (1975).
[98] 李育綺, 孫亞賢, ’’Hierarchical Structures of P(S-b-4VP) Thin Films Fabricated through a Combination of Solvent Annealing and Micro-Contact Imprinting’’. 國立中央大學化學暨材料工程學系碩士論文, (2012).
[99] C. Y. Chang, P. J. Wu, Y. S. Sun, ’’Kinetically controlled self-assembly of monolayered micelle films of P(S-b-4VP) on bare and PS-grafted substrates’’. Soft matter, 7, 9140-9147 (2011).
指導教授 孫亞賢(Ya-sen Sun) 審核日期 2013-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明