博碩士論文 100324044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.141.41.187
姓名 吳巽彥(Xun-yan Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 超分子側鏈型液晶團鏈共聚物自組裝薄膜
(Self-assembled Thin Film of Supramolecular Dendron-jacketed Block Copolymer)
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構
★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用
★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構
★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為
★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質
★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究
★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構★ 極性/非極性共溶劑退火法調控雙團鏈共聚物薄膜奈米微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究探討PS24k-P4VP9.5k(TOB)0.7於o-xylene溶液之相行為。藉由調控溶液濃度,觀察PS24k-P4VP9.5k(TOB)0.7於溶液中結構之演變。在SAXS圖中,發現低濃度[0.12.5 wt%]PS24k-P4VP9.5k(TOB)0.7溶液為微胞結構,中濃度[5wt%-10wt%]時PS24k-P4VP9.5k(TOB)0.7微胞結構相轉變為單一鏈超分子複合物,高濃度[>10wt%]時,單一鏈超分子複合物因彼此產生糾纏而形成有序結構。由FTIR數據顯示,PS24k-P4VP9.5k(TOB)0.7溶液濃度越高,形成P4VP(TOB)x之比例越高,導致χPS – P4VP值下降,因而使微胞結構崩解形成單一鏈超分子複合物。根據PS24k-P4VP9.5k(TOB)0.7溶液相之結果,發現5wt% PS24k-P4VP9.5k(TOB)0.7溶液為單一鏈之結構,因此有利於自組裝形成奈米有序陣列。使用PS選擇性良溶劑於飽合蒸氣壓下,對5wt% PS24k-P4VP9.5k(TOB)0.7薄膜溶劑退火,發現隨著蒸氣壓的提高,P4VP(TOB)0.7液晶相會形成強垂直錨定效應,進而引導奈米陣列的有序性,因此由實驗結果可得到12x12μm2之長程有序奈米陣列。若將不同濃度PS24k-P4VP9.5k(TOB)0.7薄膜以非選擇性溶劑於非飽和蒸氣壓下溶劑退火,發現液晶相P4VP(TOB)0.7會形成柱狀結構(液晶相column),因為液晶相column偏好平坦的材料内界面(IMDS),因此主導PS24k-P4VP9.5k(TOB)0.7形成六角柱階層結構。因為液晶相column偏好平坦的IMDS而不易彎曲,當形成缺陷時圓柱易發生斷裂,導致晶粒尺寸變小而形成短程有序奈米陣列。在應用端的部份,我們利用剪應力的方式塗佈高濃度PS24k-P4VP9.5k(TOB)0.7溶液於基材上,搭配高溫熱回火的方式,誘導刮膜形成高度有序奈米陣列。有趣的是,若使用非選擇性溶劑於非飽和蒸氣壓下溶劑退火此高度有序之刮膜,則可得到六方堆積垂直六角柱陣列。
摘要(英) In this study, we have investigated the solution behaviours of PS24k-P4VP9.5k(TOB)0.7 in o-xylene by means of small-angle X-ray scattering. We found three regions of structural evolution depending on polymer concentrations in o-xylene. At low concentrations (0.12.5 mass%) PS24k-P4VP9.5k(TOB)0.7 forms micelles whereas at medium concentrations (510 mass%), single chains comprised of supramolecular PSP4VP/TOB complex are dispersed in o-xylene. By contrast, as PS24k-P4VP9.5k(TOB)0.7 becomes higher than a critical concentration (> 10 mass%), the single chains of supramolecular complex can self-assemble to form an ordered structure. FTIR data demonstrate that TOB molecules exhibit a high tendency to selectively bind with the P4VP block because of hydrogen bonds. As a result, the selective addition of TOB within the P4VP block reduces the χPS – P4VP (the Flory-Huggins interaction between the PS and P4VP) so that the molecular micelles (formed by the aggregation of the whole PS-b-P4VP chain molecules) dissolute to form free single chains comprised of supramolecular PSP4VP/TOB complex. Because the free single chains add flexibility in self-assembly in thin film nano-structures, spin-coating from an o-xylene solution of 5 mass% of PS24k-P4VP9.5k(TOB)0.7 followed by solvent annealing in saturated vapour of a PS-selective solvent can lead to an ordered array of nanodomains in thin films. The reason is that at high vapor pressure, TOB molecules preferentially form homeotropic-oriented nematic phase within the P4VP domain, which improves the long-ranged ordering of self-assembled nanodomains in thin films. By contrast, upon solvent annealing in unsaturated vapour of a non-selective solvent, TOB molecules intend to form a column phase within the P4VP matrix. Since the column phase of TOB causes planar inter-domain interfaces between PS and P4VP blocks, the PS nanocylinders embedded with the P4VP9.5k(TOB)0.7 matrix exhibit a hexagonal shape. Moreover, the formation of the TOB column phase also increases rigidity in the PS cylinders. As a result, any defects, such as dislocations as well as disclinations, may cause high entropic penalty. In order to release this penalty around the effects, the PS nanocylinders tend to rupture, giving rise to polygrains of short PS cylinders within the P4VP/TOB matrix.
For potential applications, we used deposit and scrape wet polymer solutions onto substrates under shearing fields to form thick films. Then isothermal annealing at a high temperature was imposed onto the films to induce highly-oriented arrays of parallel nanocylidrical nanodomains. Interestingly, after the scraped films were subjected to solvent annealing in vapor of a non-selective solvent,we obtained high arrays of hexagonal-packing perpendicularly-oriented hexagonal-shaped cylinders.
關鍵字(中) ★ 超分子複合物
★ 溶劑退火
★ 奈米薄膜
★ 熱回火
★ 長程有序奈米陣列
★ 液晶相
關鍵字(英) ★ supramolecular complex
★ solvent anneal
★ thin film
★ thermal anneal
★ long range order nanoarray
★ liquid crystal phase
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 ix
表目錄 xvii
第一章 簡介 1
1-1團鏈共聚物的自組裝行為 1
1-2超分子聚合物的液晶相形態 2
1-3側鏈型液晶之超分子團鏈共聚物 5
1-4團鏈共聚物於溶液中之相行為 10
1-5高度有序之奈米陣列 12
1-6剪應力(shear force)對團鏈共聚物微結構有序性的影響 13
1-7實驗動機 14
第二章 實驗 16
2-1高分子材料 16
2-2 溶劑藥品與基材 17
2-3 實驗儀器 17
2-4 試片製備與實驗步驟 18
2-4-1 塊材超分子團鏈共聚物(將PS24k-P4VP9.5k (TOB)0.7)的製備 18
2-4-2 清洗基材 18
2-4-3 基材改質 18
2-4-4 雙團鏈共聚物及超分子團鏈共聚物溶液之製備 19
2-4-5 超分子團鏈共聚物薄膜之製備 19
2-4-6 超分子團鏈共聚物刮膜之製備 20
2-5儀器分析 21
2-5-1光學顯微鏡 21
2-5-2原子力顯微鏡 22
2-5-3低掠角X光散射儀 23
2-5-4散射模型理論 24
第三章 結果與討論 27
3-1超分子團鏈共聚物在溶液相之相行為 27
3-1-1 PS24k-P4VP9.5k在o-Xylene溶劑之微胞結構 27
3-1-2 PS24k-P4VP9.5k(TOB)0.7 超分子團鏈共聚物之溶液相行為 30
3-2超分子團鏈共聚物薄膜在不同溶劑退火條件下之奈米結構 41
3-2-1 Nematic-based 階層有序結構 : PS選擇性良溶劑蒸鍍 41
3-2-2 Column-based 階層有序結構 : 非選擇性溶劑蒸鍍 49
3-2-3薄膜在不同極性基材之形貌表現 59
3-3利用剪應力誘導超分子團鏈共聚物形成高度有序之奈米陣 61
3-3-1液晶相對於奈米陣列有序性之影響 61
3-3-2 垂直六角柱陣列 71
第四章 結論 74
參考文獻 76
附錄 82
參考文獻 1. Matsen, M.W. and F.S. Bates, Unifying weak- and strong-segregation block copolymer theories. Macromolecules, 1996, 29(4),1091-1098.
2. Bates, F.S. and G.H. Fredrickson, Block copolymers - Designer soft materials. Physics Today, 1999, 52(2),32-38.
3. Chuang, W.T., Y.C. Huang, C.J. Su, U.S. Jeng, and H.S. Sheu, Successive order-order transitions of the hierarchical morphology of a dendron-jacketed block copolymer via subsequent stretching alignment and self-assembly. Soft Matter, 2012, 8(43),11163-11168.
4. Zhang, X. and C. Wang, Supramolecular amphiphiles. Chemical Society Reviews, 2011, 40(1),94-101.
5. Ciferri, A., Supramolecular polymers. 2nd ed2005, Boca Raton: Taylor & Francis. xiii, 761 p.
6. Valkama, S., T. Ruotsalainen, A. Nykanen, A. Laiho, H. Kosonen, G. ten Brinke, O. Ikkala, and J. Ruokolainen, Self-assembled structures in diblock copolymers with hydrogen-bonded amphiphilic plasticizing compounds. Macromolecules, 2006, 39(26),9327-9336.
7. Huang, W.H., P.Y. Chen, and S.H. Tung, Effects of Annealing Solvents on the Morphology of Block Copolymer-Based Supramolecular Thin Films. Macromolecules, 2012, 45(3),1562-1569.
8. Kao, J., J. Tingsanchali, and T. Xu, Effects of Interfacial Interactions and Film Thickness on Nonequilibrium Hierarchical Assemblies of Block Copolymer-Based Supramolecules in Thin Films. Macromolecules, 2011, 44(11),4392-4400.
9. van Zoelen, W., T. Asumaa, J. Ruokolainen, O. Ikkala, and G. ten Brinke, Phase behavior of solvent vapor annealed thin films of PS-b-P4VP(PDP) supramolecules. Macromolecules, 2008, 41(9),3199-3208.
10. Tung, S.H. and T. Xu, Templated Assembly of Block Copolymer toward Nonequilibrium Nanostructures in Thin Films. Macromolecules, 2009, 42(15),5761-5765.
11. Ruokolainen, J., M. Saariaho, O. Ikkala, G. ten Brinke, E.L. Thomas, M. Torkkeli, and R. Serimaa, Supramolecular routes to hierarchical structures: Comb-coil diblock copolymers organized with two length scales. Macromolecules, 1999, 32(4),1152-1158.
12. Ruokolainen, J., R. Makinen, M. Torkkeli, T. Makela, R. Serimaa, G. ten Brinke, and O. Ikkala, Switching supramolecular polymeric materials with multiple length scales. Science, 1998, 280(5363),557-560.
13. Perepichka, I.I., Q. Lu, A. Badia, and C.G. Bazuin, Understanding and Controlling Morphology Formation in Langmuir-Blodgett Block Copolymer Films Using PS-P4VP and PS-P4VP/PDP. Langmuir, 2013, 29(14),4502-4519.
14. Lee, C.H. and S.H. Tung, Microdomain control in block copolymer-based supramolecular thin films through varying the grafting density of additives. Soft Matter, 2011, 7(12),5660-5668.
15. Ikkala, O. and G. ten Brinke, Hierarchical self-assembly in polymeric complexes: Towards functional materials. Chemical Communications, 2004(19),2131-2137.
16. Ikkala, O. and G. ten Brinke, Functional materials based on self-assembly of polymeric supramolecules. Science, 2002, 295(5564),2407-2409.
17. Hanski, S., N. Houbenov, J. Ruokolainen, D. Chondronicola, H. Iatrou, N. Hadjichristidis, and O. Ikkala, Hierarchical ionic self-assembly of rod-comb block copolypeptide-surfactant complexes. Biomacromolecules, 2006, 7(12),3379-3384.
18. Soininen, A.J., A. Rahikkala, J.T. Korhonen, E.I. Kauppinen, R. Mezzenga, J. Raula, and J. Ruokolainen, Hierarchical Structures of Hydrogen-Bonded Liquid-Crystalline Side-Chain Diblock Copolymers in Nanoparticles. Macromolecules, 2012, 45(21),8743-8751.
19. Soininen, A.J., I. Tanionou, N. ten Brummelhuis, H. Schlaad, N. Hadjichristidis, O. Ikkala, J. Raula, R. Mezzenga, and J. Ruokolainen, Hierarchical Structures in Lamellar Hydrogen Bonded LC Side Chain Diblock Copolymers. Macromolecules, 2012, 45(17),7091-7097.
20. Korhonen, J.T., T. Verho, P. Rannou, and O. Ikkala, Self-Assembly and Hierarchies in Pyridine-Containing Homopolymers and Block Copolymers with Hydrogen-Bonded Cholesteric Side-Chains. Macromolecules, 2010, 43(3),1507-1514.
21. Rancatore, B.J., C.E. Mauldin, J.M.J. Frechet, and T. Xu, Small Molecule-Guided Thermoresponsive Supramolecular Assemblies. Macromolecules, 2012, 45(20),8292-8299.
22. Rancatore, B.J., C.E. Mauldin, S.H. Tung, C. Wang, A. Hexemer, J. Strzalka, J.M.J. Frechet, and T. Xu, Nanostructured Organic Semiconductors via Directed Supramolecular Assembly. Acs Nano, 2010, 4(5),2721-2729.
23. Bohme, M., B. Kuila, H. Schlorb, B. Nandan, and M. Stamm, Thin films of block copolymer supramolecular assemblies: Microphase separation and nanofabrication. Physica Status Solidi B-Basic Solid State Physics, 2010, 247(10),2458-2469.
24. Nandan, B., B.K. Kuila, and M. Stamm, Supramolecular assemblies of block copolymers as templates for fabrication of nanomaterials. European Polymer Journal, 2011, 47(4),584-599.
25. Nandan, B., M.K. Vyas, M. Bohme, and M. Stamm, Composition-Dependent Morphological Transitions and Pathways in Switching of Fine Structure in Thin Films of Block Copolymer Supramolecular Assemblies. Macromolecules, 2010, 43(5),2463-2473.
26. Sidorenko, A., I. Tokarev, S. Minko, and M. Stamm, Ordered reactive nanomembranes/nanotemplates from thin films of block copolymer supramolecular assembly. Journal of the American Chemical Society, 2003, 125(40),12211-12216.
27. Tokarev, I., R. Krenek, Y. Burkov, D. Schmeisser, A. Sidorenko, S. Minko, and M. Stamm, Microphase separation in thin films of poly(styrene-block-4-vinylpyridine) copolymer-2-(4 ’-hydroxybenzeneazo)benzoic acid assembly. Macromolecules, 2005, 38(2),507-516.
28. Kao, J., P. Bai, V.P. Chuang, Z. Jiang, P. Ercius, and T. Xu, Nanoparticle Assemblies in Thin Films of Supramolecular Nanocomposites. Nano Letters, 2012, 12(5),2610-2618.
29. Chuang, W.T., H.S. Sheu, U.S. Jeng, H.H. Wu, P.D. Hong, and J.J. Lee, Tetragonally Perforated Layer Structure via Columnar Ordering of 4 ’-(3,4,5-Trioctyloxybenzoyloxy)benzoic Acid in a Supramolecular Complex with Polystyrene-block-Poly(4-vinylpyridine). Chemistry of Materials, 2009, 21(6),975-978.
30. Canilho, N., E. Kasemi, A.D. Schluter, and R. Mezzenga, Comblike liquid-crystalline polymers from ionic complexation of dendronized polymers and lipids. Macromolecules, 2007, 40(8),2822-2830.
31. Mezzenga, R., J. Ruokolainen, N. Canilho, E. Kasemi, D.A. Schluter, W.B. Lee, and G.H. Fredrickson, Frustrated self-assembly of dendron and dendrimer-based supramolecular liquid crystals. Soft Matter, 2009, 5(1),92-97.
32. Rosen, B.M., C.J. Wilson, D.A. Wilson, M. Peterca, M.R. Imam, and V. Percec, Dendron-Mediated Self-Assembly, Disassembly, and Self-Organization of Complex Systems. Chemical Reviews, 2009, 109(11),6275-6540.
33. Wang, J.B., W.H. de Jeu, P. Muller, M. Moller, and A. Mourran, Thin Film Structure of Block Copolymer-Surfactant Complexes: Strongly Ionic Bonding Polymer Systems. Macromolecules, 2012, 45(2),974-985.
34. Leung, K.C.F., P.M. Mendes, S.N. Magonov, B.H. Northrop, S. Kim, K. Patel, A.H. Flood, H.R. Tseng, and J.F. Stoddart, Supramolecular self-assembly of dendronized polymers: Reversible control of the polymer architectures through acid-base reactions. Journal of the American Chemical Society, 2006, 128(33),10707-10715.
35. Tenneti, K.K., X.F. Chen, C.Y. Li, Y.F. Tu, X.H. Wan, Q.F. Zhou, I. Sics, and B.S. Hsiao, Perforated layer structures in liquid crystalline rod-coil block copolymers. Journal of the American Chemical Society, 2005, 127(44),15481-15490.
36. Ryu, J.H., N.K. Oh, W.C. Zin, and M. Lee, Self-assembly of rod-coil molecules into molecular length-dependent organization. Journal of the American Chemical Society, 2004, 126(11),3551-3558.
37. Gao, Z.S. and A. Eisenberg, A Model of Micellization for Block-Copolymers in Solutions. Macromolecules, 1993, 26(26),7353-7360.
38. Meiners, J.C., A. QuintelRitzi, J. Mlynek, H. Elbs, and G. Krausch, Adsorption of block-copolymer micelles from a selective solvent. Macromolecules, 1997, 30(17),4945-4951.
39. Aissou, K., J. Shaver, G. Fleury, G. Pecastaings, C. Brochon, C. Navarro, S. Grauby, J.M. Rampnoux, S. Dilhaire, and G. Hadziioannou, Nanoscale Block Copolymer Ordering Induced by Visible Interferometric Micropatterning: A Route towards Large Scale Block Copolymer 2D Crystals. Advanced Materials, 2013, 25(2),213-217.
40. Hong, S.W., J. Huh, X.D. Gu, D.H. Lee, W.H. Jo, S. Park, T. Xu, and T.P. Russell, Unidirectionally aligned line patterns driven by entropic effects on faceted surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(5),1402-1406.
41. Hong, S.W., D.L. Voronov, D.H. Lee, A. Hexemer, H.A. Padmore, T. Xu, and T.P. Russell, Controlled Orientation of Block Copolymers on Defect-Free Faceted Surfaces. Advanced Materials, 2012, 24(31),4278-+.
42. Jeong, J.W., W.I. Park, M.J. Kim, C.A. Ross, and Y.S. Jung, Highly Tunable Self-Assembled Nanostructures from a Poly(2-vinylpyridine-b-dimethylsiloxane) Block Copolymer. Nano Letters, 2011, 11(10),4095-4101.
43. Jung, Y.S. and C.A. Ross, Solvent-Vapor-Induced Tunability of Self-Assembled Block Copolymer Patterns. Advanced Materials, 2009, 21(24),2540-+.
44. She, M.S., T.Y. Lo, and R.M. Ho, Long-Range Ordering of Block Copolymer Cylinders Driven by Combining Thermal Annealing and Substrate Functionalization. Acs Nano, 2013, 7(3),2000-2011.
45. Park, S., D.H. Lee, J. Xu, B. Kim, S.W. Hong, U. Jeong, T. Xu, and T.P. Russell, Macroscopic 10-Terabit-per-Square- Inch Arrays from Block Copolymers with Lateral Order. Science, 2009, 323(5917),1030-1033.
46. Albalak, R.J., E.L. Thomas, and M.S. Capel, Thermal annealing of roll-cast triblock copolymer films. Polymer, 1997, 38(15),3819-3825.
47. Angelescu, D.E., J.H. Waller, D.H. Adamson, P. Deshpande, S.Y. Chou, R.A. Register, and P.M. Chaikin, Macroscopic orientation of block copolymer cylinders in single-layer films by shearing. Advanced Materials, 2004, 16(19),1736-+.
48. Singh, G., K.G. Yager, B. Berry, H.C. Kim, and A. Karim, Dynamic Thermal Field-Induced Gradient Soft-Shear for Highly Oriented Block Copolymer Thin Films. Acs Nano, 2012, 6(11),10335-10342.
49. Beaucage, G., Approximations leading to a unified exponential power-law approach to small-angle scattering. Journal of Applied Crystallography, 1995, 28,717-728.
50. Beaucage, G., Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. Journal of Applied Crystallography, 1996, 29,134-146.
51. Degiorgio, V., M. Corti, and Società italiana di fisica., Physics of amphiphiles--micelles, vesicles, and microemulsions : Varenna on Lake Como, Villa Monastero, 19-29 July 1983. Proceedings of the International School of Physics "Enrico Fermi"1985, Amsterdam ; New York.
52. Guinier, A. and G.r. Fournet, Small-angle scattering of X-rays. Structure of matter series1955, New York,: Wiley. 268 p.
53. Sanger, J., W. Gronski, S. Maas, B. Stuhn, and B. Heck, Structural transition in a nematic LC block copolymer induced by the transition to the LC phase. Macromolecules, 1997, 30(22),6783-6787.
54. Yoon, J., S.Y. Jung, B. Ahn, K. Heo, S. Jin, T. Iyoda, H. Yoshida, and M. Ree, Order-order and order-disorder transitions in thin films of an amphiphilic liquid crystalline diblock copolymer. Journal of Physical Chemistry B, 2008, 112(29),8486-8495.
55. Mishra, V., S.M. Hur, E.W. Cochran, G.E. Stein, G.H. Fredrickson, and E.J. Kramer, Symmetry Transition in Thin Films of Diblock Copolymer/Homopolymer Blends. Macromolecules, 2010, 43(4),1942-1949.
指導教授 孫亞賢、莊偉綜
(Ya-sen Sun、Wei-tsung Chuang)
審核日期 2013-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明