博碩士論文 100324058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.238.199.4
姓名 張景量(Jing-liang Zhang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗
★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗
★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬
★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估★ 以變壓吸附法回收水煤氣反應後合成氣中二氧化碳之模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來由於溫室氣體引起的環境問題日益受到重視,溫室氣體減量變得勢不容緩。而溫室氣體中的二氧化碳排放最主要來自於工業上化石燃料的燃燒,因此如何純化及回收煙道氣中的二氧化碳便成為解決此問題的首要之務。
本研究首先利用實驗的方式,使用微量天平(Micro-Balance Thermo D-200)量測PEI/SBA-15固態吸附劑對CO2飽和吸附量,以獲得等溫吸附平衡曲線(isotherm)。接著以單塔進行貫流曲線實驗,藉由改變不同的操作條件(如:塔內溫度、進料壓力及進料流速),觀察其對貫流曲線的影響。
最後本研究以電廠煙道氣的組成,利用變溫吸附程序進行操作變因的探討。模擬進料組成為15.03%CO2和84.97%N2的混合氣體,藉由改變不同的操作條件(如:進料壓力,吸附溫度,脫附溫度),探討塔底產物二氧化碳濃度和回收率的變化,進而找出最佳操作條件。
摘要(英) In recent years, due to the environmental problems caused by greenhouse gases, reducing the emission of greenhouse gases has become urgent. CO2 released into the atmosphere are mainly attributed to fossil fuel combustion, so that the purification and recovery of CO2 from flue gas is the first important step in solving CO2 problem.
This study obtained single component adsorption equilibrium data of CO2 on PEI/SBA-15 solid sorbent by using Micro-Balance Thermo D-200 and established the equilibrium isotherm. Then breakthrough curve experiments wereperformed with single bed by changing the different operating conditions (bed temperature, feed pressure, feed flow rate, etc) to observe their influence on breakthrough curve.
Finally, we experimentally studied the use of temperature swing adsorption process in treating power plant flue gas. We used mixture gas which is composed of 15.03% CO2 and 84.97% N2 to investigate the change of outlet CO2 concentration and recovery by changing the different operating conditions (feed gas pressure, adsorption temperature, desorption temperature, etc), and then found the best operating conditions.
關鍵字(中) ★ 二氧化碳捕獲
★ 變溫吸附
關鍵字(英)
論文目次 摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 viii
表目錄 x
第一章、緒論 1
第二章、簡介及文獻回顧 4
2-1吸附現象簡介 4
2-2變溫吸附法的基本原理 5
2-3吸附劑及其選擇性 6
2-4 再生方法 7
2-5等溫平衡吸附曲線 8
2-6貫流曲線 10
2-7文獻回顧 11
2-7-1胺基表面改質處理技術之相關文獻 11
2-7-2變溫吸附程序處理煙道氣之相關文獻 14
2-8 工研院提供之PEI/SBA-15固態吸附劑簡介 16
第三章、實驗設備及方法 17
3-1等溫吸附平衡曲線實驗 17
3-1-1實驗裝置 17
3-1-2實驗步驟 23
3-1-3天平校正 24
3-1-4空白實驗 25
3-2貫流曲線實驗 26
3.2.1 實驗裝置、各部規格及特性 26
3-2-2實驗系統參數與操作條件 30
3-2-3貫流曲線實驗步驟 31
3-3 變溫吸附實驗 32
3-3-1實驗裝置、各部規格及特性 35
3-3-2 實驗步驟 39
第四章、實驗結果與討論 42
4-1等溫吸附平衡曲線實驗結果與討論 42
4-1-1空白實驗結果 43
4-1-2 平衡吸附曲線實驗結果 47
4-2貫流曲線實驗結果與討論 51
4-2-1進料壓力及流速對貫流行為的影響 52
4-2-2塔內溫度對貫流行為的影響 56
4-3變溫吸附實驗結果與討論 60
4-3-1 吸附、脫附溫度及進料壓力對變溫吸附程序Step3產物中CO2濃度之影響 61
4-3-2 吸附、脫附溫度及進料壓力對變溫吸附程序Step3產物中CO2回收率之影響 64
4-3-3 吸附、脫附溫度及進料壓力對變溫吸附程序Step4產物中CO2濃度之影響 67
4-3-4 吸附、脫附溫度及進料壓力對變溫吸附程序Step4產物中CO2回收率之影響 70
4-3-5 吸附、脫附溫度及進料壓力對變溫吸附程序總產物中CO2濃度之影響 73
4-3-6 吸附、脫附溫度及進料壓力對變溫吸附程序總產物中CO2回收率之影響 76
4-3-7 沖洗時間對變溫吸附程序Step4中CO2濃度和回收率之影響 79
第五章、結論 82
參考文獻 84
附錄A、Thermo Cahn D-200操作流程 90
附錄B GC操作步驟 92
參考文獻 [1] S. Kim, J. Ida, V.V. Guliants and J.Y. Lin, “Tailoring pore properties of MCM-48 silica for selective adsorption of CO2”, J. Phys. Chem. B, vol. 109, pp. 6287–6293, 2005.
[2] M.B. Yue, L.B. Sun, Y. Cao, Z.J. Wang, Y. Wang, Q. Yu and J.H. Zhu, “Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group.” Microporous Mesoporous Mater. vol. 114, pp.74–81, 2008.
[3] S. Lee, T.P. Filburn, M. Gray, J.W. Park and H.J. Song, “Screening test of solid amine sorbents for CO2 capture”, Ind. Eng. Chem. Res., vol. 47, pp. 7419–7423, 2008.
[4] C. Knofel, C. Martin, V. Hornebecq and P.L. Llewellyn, “Study of carbon dioxide adsorption on mesoporous aminopropylsilane-functionalized silica and titania combining microcalorimetry and in situ infrared spectroscopy”, J. Phys. Chem. C , vol. 113, pp. 21726–21734. ,2009.
[5] F. Su, C. Lu, S. Kuo and W. Zeng, “Adsorption of CO2 on an amine-functionalized Y-type zeolite”, Energy Fuels, vol. 24, pp. 1441–1448, 2010.
[6] Cost and performance baseline for fossil energy plants volume 1: bituminous coal and natural gas to electricity,TheUnited States Department of Energy , National Energy Technology Laboratory , DOE/NETL-2010/1397
[7] M.L.Gray, K.J. Champagne, D. Fauth, J.P. Baltrus and H. Pennline, “Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide”, Int. J. Greenhouse Gas Control, vol. 2, pp. 3–8, 2008.
[8] X. Xu, C. Song, J.M. Andersen, B.G. Miller and A.W. Scaroni, “Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture”, Energy Fuels, vol. 16, pp. 1463–1469, 2002
[9] X. Xu, C. Song, B.G. Millerand A.W. Scaroni, “Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41”, Ind. Eng. Chem. Res., vol. 44, pp. 8113–8119,2005.
[10] X. Ma, X. Wang and C. Song, ““Molecular basket” sorbent for separation of CO2 and H2S from various gas streams”, J. Am. Chem. Soc., vol. 131, pp. 5777–5783, 2009.
[11] W.J. Son, J.S. Choi and W.S. Ahn, “Adsorptive removal of carbon dioxide using polyethylenimine-loaded mesoporous materials”, Micropor. Mesopor. Mater.,vol. 113, pp. 31–40, 2008.
[12] C. Chen, S.T. Yang, W.S. Ahn and R. Ryoo, “Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2capture capacity”, Chem. Commun., vol. 24, pp. 3627–3629, 2009.
[13] O. Leal, C. Bolivar, C. Ovalles, J.J. Garcia and Y. Espidel, “Reversible adsorption of carbon dioxide on amine surface-bonded silica gel”, Inorg. Chim. Acta, vol. 240, pp. 183–189, 1995.
[14] H.Y. Huang, R.T. Yang, D. Chinn and C.L. Munson,“Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas”Ind. Eng. Chem. Res., vol. 42, pp. 2427–2433, 2003.
[15] L. Wang, L. Ma, A. Wang, Q. Liu and T. Zhang, “CO2 adsorption on SBA-15 modified by aminosilane”, Chin. J. Catal., vol. 28, pp. 805–810, 2007.
[16] J. Wei, J. Shi, H. Pan, W. Zhao, Q. Ye and Y. Shi, “Adsorption of carbon dioxide on organically functionalized SBA-16”, Micropor. Mesopor. Mater.,vol. 116, pp. 394–399, 2008.
[17] V. Zelenak, M. Badanicova, D. Halamova, J. Cejka, A. Zukal, N. Murafa and G. Goerigk, “Amine-modified ordered mesoporous silica: effect of pore size on carbon dioxide capture”, Chem. Eng. J., vol. 144 , pp. 336–342,2008.
[18] V. Zelenak, D. Halamova, L. Gaberova, E. Bloch and P. Llewellyn, “Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: effect of amine basicity on sorption properties”, Micropor. Mesopor. Mater., vol. 116 , pp. 358–364,2008.
[19] C.W. Jones, J.C. Hicks, D.J. Fauth and M. Gray, “Structures for capturing CO2, methods of making the structures and methods of capturing CO2”,US Patent Application No. US2007/0149398, 2007.
[20] J.C. Hicks, J.D. Drese, D.J. Fauth, M.L. Gray, G. Qi and C.W. Jones, “Designing adsorbents for CO2 capture from flue gas – hyperbranched aminosilicas capable of capturing CO2 reversibly”, J. Am. Chem. Soc., vol. 130 , pp. 2902–2903,2008.
[21] J.H. Drese, S. Choi, R.P. Lively, W.J. Koros, D.J. Fauth, M.L. Gray and C.W. Jones, “Synthesis–structure–property relationships for hyperbranched aminosilica CO2 adsorbents”, Adv. Func. Mater., vol. 19 , pp. 3821–3832,2009.
[22] J. Mérel, M. Clausse and F. Meunier, “Carbon dioxide capture by indirect thermal swing adsorption using 13X zeolite”, Environ. Prog.,vol. 25, pp. 327–333, 2006.
[23] J. Mérel, M. Clausse and F. Meunier, “Experimental investigation on CO2post-combustion capture by indirect thermal swing adsorption using 13X and 5Azeolites”, Ind. Eng. Chem. Res., vol. 47, pp.209–215, 2008.
[24] M. Clausse, J. Mérel and F. Meunier, “Numerical parametric study on CO2capture by indirect thermal swing adsorption”, Int. J. Greenhouse Gas Control, Vol. 5, pp. 1206- 1213, 2011.
[25] N. Tlili, G. Grevillot and C. Vallieres, “Carbon dioxide capture and recovery by means of TSA and/ or VSA”, Int. J. Greenhouse Gas Control, vol. 3, pp. 519-527, 2009.
[26] M.G. Plaza, S. Garcia, F. Rubiera, J.J. Pis, C. Pevida, “Post-combustion CO2capture with a commercial activated carbon: comparison of different regeneration strategies”, Chem. Eng. J., vol. 163, pp. 41-47, 2010.
[27] B. Dutcher, H. Adidharma and M. Radosz, “Carbon filter process for flue-gas carbon capture on carbonaceous sorbents: steam-aided vacuum swing adsorption option”, Ind. Eng. Chem. Res., vol. 50, pp. 9696-9703, 2011
[28] F. Su and C. Lu, “CO2capture from gas stream by zeolite 13X using a dual-column temperature/vacuum swing adsorption”, Energy Environ. Sci., Vol. 5, pp. 9021-9027, 2012
[29] Z. Wang, L. Zhan, Y. Wang, S. Gu andL. Ling,“Adsorption performance of CO2 on spherical macroporous resin loaded polyethylenimine”,Scientia Sinica Chimica, 42(3): 306-312, 2012
[30] N. Gargiulo, A. Peluso, P. Aprea, F. Pepe and D. Caputo“CO2 Adsorption on Polyethylenimine Functionalized SBA-15 Mesoporous Silica: Isotherms and Modeling”,J. Chem. Eng. Data, 59 (3), pp 896–902,2014
[31] H. Ma, S. Chenand Y. Zhang, “Removal of COS from N2 by adsorption on PEI/SBA-15”,Modern Chemical Industry, 31(z1),2011
指導教授 周正堂 審核日期 2014-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明