博碩士論文 100324059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.144.244.44
姓名 黃育立(Yu-Lih, Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 使用分子模擬研究鎳基奈米析出強化合金的塑性變形
(Molecular Dynamics Study for Plastic Deformation of the Nano- Precipitate Strengthened Ni-base Alloy)
相關論文
★ 使用繞射技術研究環境溫度效應對碳碳複材的影響★ 使用即時中子繞射方式分析疲勞裂縫生長之殘餘應變及應力變化
★ 以即時中子繞射量測鎳基合金之應變速率效應★ 使用同步輻射X光與分子動力模擬研究鋯基非晶質合金複合材料之塑性形變機制
★ 使用同步輻射X光掃描研究鎳鋁合金的微量鐵元素添加對機械性能之影響★ 熱處理對鋁銅合金析出相演變及機械性質影響之研究
★ 以即時中子繞射研究鎳基合金Inconel 617 高溫疲勞行為★ 利用小角度中子及X光散射研究聚乙烯二醇化人類副甲狀腺素荷爾蒙(1-34)於溶液之結構
★ 聚(偏氟乙烯-三氟乙烯)薄膜的結構解析與感光壓電性質之研究★ 以聚(偏氟乙烯-三氟乙烯)為基底之單軸/同軸靜電紡絲奈米纖維受張力變形下機械性質與微觀結構之相關性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文利用中子繞射和電子掃瞄式顯微鏡所量測到的數據,建構出分子動力學模擬的系統,並將實驗單軸拉伸後的結果與電腦模擬拉伸的結果進行比較。我們利用了以下幾種分析方式:視覺化及量化分析析出相幾何參數、晶格間距的估計、中心對稱參數的分析。由以上的分析結果,可以證明我們所建構的系統和實驗上的量測有可以比較的依據。藉此了解在拉伸過程中,析出相和基材如何的交互影響,並且透過分子動力學模擬的優勢,檢視在形變過程中所發生的現象,並將現象與分析結果一起進行討論。
摘要(英) We have recently reported an in-situ neutron-diffraction experiments, simultaneously illuminating the diffraction of the matrix and the strengthening nano precipitates. An irreversible neutron-diffraction-profile evolution of the nano precipitates is observed. However, due to the limited measuring time, there is no conclusive trend of the nano-precipitate deformation behavior subjected to the greater stress levels. Hence, in the present work, molecular-dynamics simulations are applied to reveal the deformation mechanisms of the nano precipitate and its interaction with the surrounding matrix. The microstructure size, dislocation content, and structural parameters of the nano precipitates, quantified by X-ray, transmission electron microscopy, and small-angle neutron scattering, are used as the simulation input and reference. The simulation results show that there are two competing deformation mechanisms, which lead to the fluctuation of the nano-precipitate-diffraction widths, occurring during the higher plastic deformation stages. Based on the comparable reported measurements and the current simulated results, we successfully developed a molecular dynamics simulation approach. The development is presented in this paper.
關鍵字(中) ★ 分子動力學
★ 析出強化
★ 中子小角度散射
關鍵字(英) ★ molecular dynamics
★ precipitation hardening
★ small angle neutron scattering
論文目次 中文摘要 i
英文摘要 ii
目次 iii
誌謝辭 v
表次 vii
圖次 viii
第一章-緒論 1
1.1 研究背景 1
1.2 科學議題 1
1.3 動機 2
第二章-模擬方法 4
2.1 分子動力學模擬 4
2.2 週期性邊界 5
2.3 勢能函數 6
2.4 中心對稱參數 7
2.5 模擬流程 8
第三章-結果討論 12
3.1 初始結果的配位數分析 12
3.2 實驗和模擬的比較 15
3.3 晶面間距分析結果 16
3.4 中心對稱參數的結果 18
第四章-結論 22
參考文獻 23
附錄 27
使用軟體介紹 27
ATOMEYE 27
VMD 27
OVITO 28
DXA 29
PARAVIEW 29
LAMMPS Script 31
Yu-Lih Huang 33
參考文獻 1. Cieslak, M., T. Headley, and A. Romig, The welding metallurgy of HASTELLOY alloys C-4, C-22, and C-276. Metallurgical Transactions A, 1986. 17(11): p. 2035-2047.
2. Huang, E., et al., A neutron-diffraction study of the low-cycle fatigue behavior of HASTELLOY< sup>® C-22HS< sup> TM alloy. International Journal of Fatigue, 2007. 29(9): p. 1812-1819.
3. Huang, E.W., et al., Study of nanoprecipitates in a nickel-based superalloy using small-angle neutron scattering and transmission electron microscopy. Applied Physics Letters, 2008. 93(16): p. 161904-3.
4. Manning, P. and J.-D. Schobel, Hastelloy Alloy C-22--a New and Versatile Material for the Chemical Process. Werkst. Korros., 1986. 37(3): p. 137-145.
5. Huang, E.-W., et al., Evolution of microstructure in a nickel-based superalloy as a function of ageing time. Philosophical Magazine Letters, 2011. 91(7): p. 483-490.
6. Pike, L.M. and D.L. Klarstrom, A New Corrosion Resistant Ni-Cr-Mo Alloy with High Strength. CORROSION 2004, 2004.
7. Kumar, M. and V.K. Vasudevan, Deformation-induced pseudo-twinning and a new superstructure in Ni2Mo precipitates contained in a Ni-25Mo-8Cr alloy. Acta Materialia, 1996. 44(9): p. 3575-3583.
8. Kumar, M. and V. Vasudevan, Ordering reactions in an Ni 25Mo 8Cr alloy. Acta materialia, 1996. 44(4): p. 1591-1600.
9. Summers, T.E., R. Rebak, and R. Seeley. Influence of Thermal Aging on the Mechanical and Corrosion Properties of C-22 Alloy Welds. in TMS Fall Meeting, St. Louis, MO. 2000.
10. Arya, A., et al., Effect of chromium addition on the ordering behaviour of Ni–Mo alloy: experimental results vs. electronic structure calculations. Acta materialia, 2002. 50(13): p. 3301-3315.
11. Lu, Y.L., et al., Strengthening domains in a Ni–21Cr–17Mo alloy. Scripta Materialia, 2007. 56(2): p. 121-124.
12. Huang, E.-W., et al., Plastic behavior of a nickel-based alloy under monotonic-tension and low-cycle-fatigue loading. International Journal of Plasticity, 2008. 24(8): p. 1440-1456.
13. Reed-Hill, R.E., Physical metallurgy principles. Vol. 29. 1972: Van Nostrand New York.
14. Chen, Z., N. Kioussis, and N. Ghoniem, Influence of nanoscale Cu precipitates in α-Fe on dislocation core structure and strengthening. Physical Review B, 2009. 80(18): p. 184104.
15. Feng, J., et al., Molecular dynamical simulation of the behavior of early precipitated stage in aging process in dilute Cu–Cr alloy. Journal of Applied Physics, 2010. 107(11): p. 113514-113514-6.
16. Gornostyrev, Y.N., I. Kar’kin, and L. Kar’kina, Interaction of dislocations with nanoprecipitates of the metastable phase and dispersion strengthening of the Fe-Cu alloy. Physics of the Solid State, 2011. 53(7): p. 1388-1396.
17. Singh, C., A. Mateos, and D. Warner, Atomistic simulations of dislocation–precipitate interactions emphasize importance of cross-slip. Scripta Materialia, 2011. 64(5): p. 398-401.
18. Terentyev, D., S. Hafez Haghighat, and R. Schaublin, Strengthening due to Cr-rich precipitates in Fe–Cr alloys: Effect of temperature and precipitate composition. Journal of Applied Physics, 2010. 107(6): p. 061806-061806-8.
19. Yip, S., Handbook of Materials Modeling. 2005: Springer.
20. Zhou, X.W., R.A. Johnson, and H.N.G. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B, 2004. 69(14): p. 144113.
21. Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 1995. 117(1): p. 1-19.
22. Rapaport, D.C., The art of molecular dynamics simulation. 2004: Cambridge university press.
23. Frenkel, D. and B. Smit, Understanding molecular simulation: from algorithms to applications. 2001: Academic press.
24. Chang, J., et al., Molecular dynamics simulations of motion of edge and screw dislocations in a metal. Computational Materials Science, 2002. 23(1–4): p. 111-115.
25. Chandler, D., Introduction to modern statistical mechanics. Introduction to Modern Statistical Mechanics, by David Chandler, pp. 288. Foreword by David Chandler. Oxford University Press, Sep 1987. ISBN-10: 0195042778. ISBN-13: 9780195042771, 1987. 1.
26. Grubmüller, H., et al., Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Molecular Simulation, 1991. 6(1-3): p. 121-142.
27. Allen, M.P. and D.J. Tildesley, Computer simulation of liquids. 1989: Oxford university press.
28. Horstemeyer, M., M. Baskes, and S. Plimpton, Length scale and time scale effects on the plastic flow of fcc metals. Acta Materialia, 2001. 49(20): p. 4363-4374.
29. Landau, D.P. and K. Binder, A guide to Monte Carlo simulations in statistical physics. 2005: Cambridge university press.
30. Daw, M.S. and M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 1984. 29(12): p. 6443.
31. Nørskov, J., Covalent effects in the effective-medium theory of chemical binding: Hydrogen heats of solution in the 3d metals. Physical Review B, 1982. 26(6): p. 2875.
32. Finnis, M. and J. Sinclair, A simple empirical N-body potential for transition metals. Philosophical Magazine A, 1984. 50(1): p. 45-55.
33. Pettifor, D.G. and D. Pettifor, Bonding and structure of molecules and solids. Vol. 193. 1995: Clarendon Press Oxford.
34. Kelchner, C., S.J. Plimpton, and J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation. Physical Review B, 1998. 58(17): p. 11085-11088.
35. Li, J., AtomEye: an efficient atomistic configuration viewer. Modelling and Simulation in Materials Science and Engineering, 2003. 11(2): p. 173-177.
36. Ungar, T., Microstructural parameters from X-ray diffraction peak broadening. Scripta Materialia, 2004. 51(8): p. 777-781.
37. E-Wen Huang, G.C., Yu-Chieh Lo, Bjorn Clausen, Yu-Lih Huang, Wen-Jay Lee Tamas Ungar and Peter K. Liaw, Plastic Deformation of a Nano-Precipitate Strengthened Ni-Base Alloy Investigated by Complementary In Situ Neutron Diffraction Measurements and Molecular-Dynamics Simulations. Advanced Engineering Materials, 2012.
38. Huang, E.-W., et al., Slip-system-related dislocation study from in-situ neutron measurements. Metallurgical and Materials Transactions A, 2008. 39(13): p. 3079-3088.
39. Humphrey, W., A. Dalke, and K. Schulten, VMD: visual molecular dynamics. Journal of molecular graphics, 1996. 14(1).
40. Stukowski, A., Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 2010. 18(1): p. 015012.
41. Alexander, S. and A. Karsten, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modelling and Simulation in Materials Science and Engineering, 2010. 18(8): p. 085001.
42. Stukowski, A., V.V. Bulatov, and A. Arsenlis, Automated identification and indexing of dislocations in crystal interfaces. Modelling and Simulation in Materials Science and Engineering, 2012. 20(8): p. 085007.
43. Henderson, A., A Parallel Visualization Application. ParaView Guide, 2007.
44. Squillacote, A.H., The ParaView guide: a parallel visualization application. 2007: Kitware.
指導教授 黃爾文(E-Wen, Huang) 審核日期 2013-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明