博碩士論文 100324061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:52.14.14.164
姓名 胡哲誠(Zhe-chen Hu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染
(Electrospun Alginate/Polycaprolactone Composite Nanofibers for in-situ Transfection)
相關論文
★ 利用穿膜胜肽改善帶正電高分子之轉染效率★ 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化
★ 以電刺激增進骨髓基質細胞骨分化之最佳化探討★ 利用電場控制導電性高分子以進行基因於聚電解質多層膜的組裝
★ 以短鏈胜肽接枝聚乙烯亞胺來進行基因輸送應用之研究★ 電場對於複合奈米絲進行原位基因傳送之影響
★ 利用電場調控聚電解質多層膜的釋放 以應用於基因輸送★ 發展載藥電紡聚乳酸/多壁奈米碳管/聚乙二醇纖維
★ 利用寡聚精胺酸促進去氧寡核苷酸輸送★ 利用聚己內酯/褐藻酸鈉之複合電紡絲擴增癌症幹細胞
★ 以二元體形式之Indolicidin 應用於去氧寡核苷酸之輸送★ Indolicidin之色胺酸殘基對於轉染效率的影響
★ Indolicidin之二聚體形式對輸送去氧寡核?酸的影響★ 搭建可提供電刺激與機械刺激之生物反應器
★ 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體★ 開發促進傷口癒合之複合敷料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 褐藻酸鈉所製備纖維支架,其負電特性可用來吸附帶正電的聚乙烯亞胺/基因納米粒子,藉由增加纖維的用量,可以增進轉染的效果,然而褐藻酸鈉對於細胞生物相容性不佳。因此我們導入了具生物相容性的聚己內酯來進行混合紡絲,SEM照片與纖維螢光染色中證實纖維的比例可以依照需求來調整,接觸角與紅外光譜儀之測試中也顯示複合纖維之性質會隨組成比例不同而改變。將不同組成比例之複合纖維來進行粒子吸附後進行轉染,發現聚己內酯纖維比例的提高可以增加材料的生物相容性,但是粒子的吸附量也隨之下降。為兼具轉染效果與生物適合性,我們利用EDTA來降解褐藻酸鈉纖維,結果發現在培養初期褐藻酸鈉纖維結構仍可維持以用於吸附粒子,在細胞攝入粒子後褐藻酸鈉纖維會逐漸被降解,只留下聚己內酯纖維,使細胞在攝入基因後得以存活於合適的環境。最後,為了要臨床應用需求,我們透過調整鈣離子的濃度來改變褐藻酸鈉纖維的交聯程度,並於結果發現,降低交聯程度會使纖維的結構較不穩定而會逐漸自行降解,亦可達到兼具轉染效果與生物適合性的效果。這些結果皆顯示利用可降解釋的複合支架來進行送藥並提升生物活性將有利於組織工程的應用。
摘要(英) To regulate in situ gene delivery from biomaterial scaffolds, electrospun alginate nanofibers were applied to adsorb DNA/polyethylene (PEI) complex. The transfection efficiency increased with increasing deposited nanofibers. However, alginate was not favor for cell adhesion. Therefore, biocompatible poly (ε-poly olactone) (PCL) nanofibers was coelectrospun with alginate to increase biocompatibility. The scanning electron microscopy and fluorescent dye staining results suggested that the definite fiber ratios could be controlled. In addition, contact angle and FT-IR results also indicated that the properties of composite fibers can be regulated by the fiber ratios. The in situ transfection results demonstrated that the incorporated PCL fibers improved biocompatibility; however, the transfection efficiency was reduced. To preserve both gene transfer ability and biocompatibility, EDTA was applied to remove calcium ions for loosening alginate fiber structure. This treatment may initially maintain alginate fibers for nanoparticle adsorption, but these alginate fibers were gradually degraded in days to create a more appropriate environment for cell survival. For clinical application, we tried to regulate calcium concentration during fiber crosslinking to control the stability of alginate fibers. Though decreasing the levels of crosslinking, alginate fibers were degraded with time, which promoted both transfection efficiency and biocompatibility. These results supported biodegradable composite scaffolds should be potential for drug delivery with excellent bioactivity, which should be beneficial for tissue engineering applications.
關鍵字(中) ★ 電紡絲
★ 奈米粒子
★ 降解性材料
關鍵字(英) ★ Electrospinning
★ Nanoparticles
★ Degradable materials
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
第一章 緒論 1
1-1 背景 1
1-2 實驗目的 3
第二章 文獻回顧 5
2-1 組織工程 5
2-2 電紡絲於組織工程 7
2-3 電紡絲簡介 10
2-4 褐藻酸鈉 13
2-4-1 褐藻酸鈉之來源 13
2-4-2 褐藻酸鈉之性質 13
2-4-3 電紡絲製備褐藻酸鈉於組織工程應用 14
2-5 聚己內酯 16
2-5-1 聚己內酯之來源 16
2-5-2 聚己內酯之性質 16
2-5-3 電紡絲製備聚己內酯於組織工程應用 17
2-6 基因治療 18
2-6-1 生長因子 18
2-6-2 基因載體 19
2-7 聚乙烯亞胺 21
2-7-1 聚乙烯亞胺之來源 21
2-7-2 聚乙烯亞胺之性質 21
2-8 電紡絲於基因治療之應用 23
2-9 帶電物質的作用 28
2-9-1 作用原理 28
2-9-2 帶電物質於組織工程中的運用 28
2-10 降解性材料 30
2-10-1 降解性材料之性質 30
2-10-2 降解性材料之應用 30
第三章 材料與方法 35
3-1 實驗藥品 35
3-2 實驗儀器 37
3-3 實驗方法 39
3-3-1 電紡絲溶液之配製 39
3-3-1-1 儲備溶液配製 39
3-3-1-2 Alginate/PEO 紡絲液配製 39
3-3-1-3 Polycaprolactone/PEO 紡絲液配製 39
3-3-2 纖維製備 40
3-3-3 掃描式電子顯微鏡影像分析(SEM) 40
3-3-4 纖維收集量量測 40
3-3-5 混合纖維製備 41
3-3-6 材料表面分析 41
3-3-6-1 接觸角(contact angle)測定 41
3-3-6-2 FT-IR 測定 41
3-3-7 纖維之螢光染色測定 41
3-3-8 粒子轉染實驗 42
3-3-9 DNA吸附定量 42
3-3-10 EDTA降解實驗 43
3-3-11 氯化鈣降解實驗 44
3-3-12 MTT assay 45
3-3-13 LDH assay 45
第四章 結果與討論 47
4-1 粒子於褐藻酸鈉纖維上的吸附與轉染 47
4-2 褐藻酸鈉/聚己內酯複合纖維的製備與性質 53
4-2-1 纖維之收集量 53
4-2-2 複合纖維之收集 57
4-2-3 纖維之螢光染色測定 59
4-2-4 材料表面性質測定 61
4-3 複合纖維的生物適合性 66
4-4 粒子於複合纖維上之轉染 71
4-5 複合纖維降解實驗 76
4-6 複合纖維自行降解實驗 82
第五章 結論 90
第六章 參考資料 92
參考文獻 1. A.L. Anthony., Tissue Engineering of Artificial Organs. Journal of Endourology, 2000. 14(1): p. 49-57.
2. 李宣書, 淺談組織工程. 物理雙月刊, 2001. 二十四卷三期: p. 431-435.
3. 闕士傑, 腎臟移植對治療末期腎衰竭的優缺點. 透析通訊, 2002.
4. G. Nighswonger., Technology Forecast: New Prospects for Medical Devices in 2000. Medical Device and Diagnostic Industry, 2000: p. 68-144.
5. T. Garg, O.S. Saahil Arora, R.S.R. Murthy, Scaffold: A Novel Carrier for Cell and Drug Delivery. Critical Reviews™ in Therapeutic Drug Carrier Systems, 2012. 29: p. 1-63.
6. K.R. Cutroneo.,Gene Therapy for Tissue Regeneration. Cell Biochem, 2003. 88: p. 418-425.
7. V. Barron,Combinatorial Approaches in Tissue Engineering: Progenitor Cells, Scaffolds, and Growth Factors, 2003: p. 2-21.
8. Z. Gill, Tissue Engineering. Nanobioart, 2013 : p. 825-830.
9. L. Koláčná, J.B.F. Varga, E. Košťáková, L. Plánka, A. Nečas, D. Lukáš, E. Amler,V. Pelouch, Biochemical and Biophysical Aspects of Collagen Nanostructure in the Extracellular Matrix Physiol. Res, 2007: p. 51-60.
10. H. Yoshimoto, S.Y.M. Vacanti, Nanostructured Polymer Scaffolds for Tissue Engineering and Regenerative Medicine. Biomaterials, 2003. 24: p. 2077-2082.
11. G.E. Kempson, C. Pollard, M. Tuke, The Tensile Properties of the Cartilage of Human Femoral Condyles Related to the Content of Collagen and Glycosaminoglycans. Biochim Biophys Acta, 1973. 297: p. 456-472.
12. T. Amornsakchai, S.A. Jawad, Electrospun Nanofibrous Structure: A Novel Scaffold for Tissue Engineering. J Mater Sci, 1993. 28: p. 1689-1698.
13. S.C. Wu, W.H. Chang, G.C. Dong, K. Yu and Y.S. Chen, C.H. Yao, Cell Adhesion and Proliferation Enhancement by Gelatin Nanofiber Scaffolds. Journal of Bioactive and Compatible Polymers, 2011. 26(6): p. 565-577.
14. Z.X. Meng, Y.S.Wang, C. Ma, W. Zheng, L. Li, Y.F. Zheng, Electrospinning of PLGA/gelatin Randomly-oriented and Aligned Nanofibers asPotential Scaffold in tissue Engineering. Materials Science and Engineering C, 2010. 30: p. 1204-1210.
15. A. Formhals, Process and Apparatus for Preparing Artificial Threads. US Patent 1, 1934: p. 504-509.
16. A. Formhals, Method and Apparatus for Spinnin. US Patent 1, 1944: p. 950-954.
17. G.I. Taylor, Disintegration of Water Drops in an Electric Fiedld. Proc. R. Soc. London, 1964. 280: p. 383-397.
18. G.I. Taylor, The Stability of Horizontal Fluid Interface in a Vertical Electric Field. J. Fluid Mech, 1965. 22(1) : p. 1-15.
19. W. Ji, F. Yang, H. Seyednejad, Z. Chen, W.E Hennink, J.M. Anderson, J.J. van den Beucken, J.A. Jansen, Biocompatibility and Degradation Characteristics of PLGA-based Electrospun Nanofibrous Scaffolds with Nanoapatite Incorporation. Biomaterials, 2012: p. 6604-6614.
20. M.W. Laschke, A.Stohe,C. Scheuer, D. Eglin, S. Verrier, M. Alini,T. Pohlemann, M.D. Menger, In vivo Biocompatibility and Vascularization of Biodegradable Porous Polyurethane Scaffolds for Tissue Engineering. Acta Biomater, 2009: p. 1991-2001.
21. P.J. VandeVord, M.H. Matthew, S.P. DeSilva, L. Mayton, B. Wu, P.H. Wooley, Evaluation of The Biocompatibility of a Chitosan Scaffold in Mice. J Biomed Mater Res, 2002: p. 585-590.
22. T.G. Montgomery, Electrospinning. College of Textile Engineering & Technology, 2008: p.185-190.
23. A. Yükseltürk, Electrospinning. OR for nanotechnology, 2010: p.2957-2968.
24. Y.J. Lee,O.W. Kwon, W.H. Park, H.G. Choi, Y.R. Lee, S.S. Han, S.K. Noh, W.S. Lyoo, Preparation of Atatic Poly(vinyl alcohol)/Sodium Alginate Blend Nanowebs by Electrospinning. J. Appl. Polym. Sci., 2006: p. 1337-1342.
25. K.I. Draget, G. Skjåk-Bræk, Alginates from Algae. Polysaccharides and Polyamides in the Food Industry. Properties, Production, and Patents, 2005: p.1-30.
26. R.V. Iozzo, J. FASEB, Proteoglycans of the Extracellular Environment:Clues from the Gene and Protein Side Offer Novel Perspectives in Molecular Diversity and Function. Biol Sci, 1996: p. 598-614.
27. L. Zhang, S.Hong, X. Zhao, Optimum Combination of Insulin-Transferrin-Selenium and Fetal Bovine Serumfor Culture of Rabbit Articular Chondrocytes in Three-Dimensional Alginate Scaffolds. International Journal of Cell Biology, 2009 (2009): p.1-6.
28. Z.J. Sun, L.G. Li, S.Y. Yu, W.T. Wang, W. Xie, Differential Role of Microenvironment in Microencapsulation for Improved Cell Tolerance to Stress. Appl Microbiol Biotechnol, 2007: p. 1419-1427.
29. N. Bhattarai, D. Edmondson, M. Zhang, Alginate-Based Nanofibrous Scaffolds:Structural,Mechanical,and Biological Properties. Adv. Mater, 2006: p. 1463-1467.
30. H. Nie, J. Zheng, S. Xu, J. Li, C. C. Han, Effects of Chain Conformation and Entanglement on the Electrospinning of Pure Alginate. Biomacromol, 2008: p. 1362-1365.
31. J.W. Lu, Z.X. Guo, P. Hu, J. Yu, Electrospinning of Sodium Alginate with Poly(ethylene oxide). Polymer, 2006: p. 8026-8031.
32. S. Safi, S. A. Hosseini Ravandi, M. Ghiaci, Study of Electrospinning of Sodium Alginate,Blend Solutions of Sodium Alginate/poly(vinyl alcohol) and Sodium Alginate/poly(ethylene oxide). J. Appl. Polym. Sci., 2007: p. 3245-3255.
33. K.Y. Lee, Alginate: Properties and Biomedical Applications. Progress in Polymer Science, 2012. 37: p. 106-126.
34. C. Cage, A Quick-Prototyping Material — No Ovens Required. Toolmonger, 2007: p. 23-27.
35. A. Cipitria, T.R. Dargaville, P.D. Dalton and D W. Hutmacher, Design, Fabrication and Characterization of PCL Electrospun Scaffolds—A Review. Journal of Materials Chemistry, 2011(26) : p. 9419-9453.
36. J.P. Raval, K.A. Amin, P.S. Patel, Controlled-release and Antibacterial Studies
of Doxycycline-loaded Poly(e-caprolactone) Microspheres. Journal of Saudi Chemical Society, 2011: p. 59-68.
37. J.L. Lowery, G.C. Rutledge, Effect of Fiber Diameter, Pore Size and Seeding Method on Growth of Human Dermal Fibroblasts in Electrospun Poly(3-caprolactone) Fibrous Mats. Biomaterials, 2009. 31: p. 491-504.
38. O. Bretcanu, D. Mohammad Yunos, A.R. Boccaccini, R. Ipsita, T. Kowalczyk, A. Kowalewski, Electrospun Nanofibrous Biodegradable Polyester Coatings on Bioglass®-based Glass-ceramics for Tissue Engineering. Materials Chemistry and Physics, 2009. 118: p. 420-426.
39. R.L. Ma, The Nerve-Growth Factor. Scientific American, 1979: p. 44-53.
40. S.T. Chen,A. Iida, L. Guo, T. Friedmann, J.K. Yee, Generation of Packaging Cell Lines for Pseudotyped Retroviral Vectors of the G Protein of Vesicular Stomatitis Virus by Using a Modified Tetracycline Inducible System. Proc. Natl. Acad. Sci. U S A, 1996. 93: p. 10057-10062.
41. L.Naldini, U. Blomer, P. Gallay, D. Ory, R. Mulligan, F.H. Gage, I.M. Verma, K.I. Draget, O. Smidsrød, G. Skjåk-Bræk, In Vivo Gene Delivery and Stable Transduction of Nondividing Cells by a Lentiviral Vecto. , Science, 1996. 272: p. 263-267.
42. A. Chakravarthy, A Very Basic Introduction to Gene Therapy. Exploreable Of Science & Skepticism, 2011: p. 3-10.
43. D. Stone, F. Bolognani, P.R. Lowenstein, M.G. Castro, Viral Vectors for Gene Delivery and Gene Therapy Within the Endocrine System. J Endocrinol, 2000. 164: p. 103-118.
44. S.Y. Wong, D. Putnam, Polymer Systems for Gene Delivery-Past, Present, and Future. Prog. Polym. Sci, 2007. 32: p. 799-837.
45. M. Hubbe, Composting as a Way to Convert Cellulosic Biomass and Organic Waste into High-value Soil Amendments: A review. BioRes, 5(4) : p. 2808-2854
46. R.L. Kircheis, E. Wagn, Design and Gene delivery activity of Modified Polyethylenimines. Advanced Drug Delivery Reviews, 2001. 53(3): p. 341-358.
47. H. Dodiuk-Kenig, S. Kenig, Novel Adhesion Promoters Based on Hyper-branched Polymers. Composite Interfaces, 2004: p. 1-17.
48. A.R. Vancha, S.G. Kishore, V.L. Parsa, M. Jasti, M. González-García, R.P. Ballestero, Use of Polyethyleneimine Polymer in Cell Culture as Attachment Factor and LipofectionEnhancer. BMC Biotechnol, 2004: p. 1-12.
49. J. Dominik, Fragment of Polyethyleneimine. Wikimedia Commons, 2013.
50. Y.K. Luu, B.S. Hsiao, B. Chu, M. Hadjiargyrou, Development of a Nanostructured DNA Delivery Scaffold via Electrospinning of PLGA and PLA–PEG Block Copolymers. Journal of Controlled Release, 2003: p. 341-353.
51. I.C. Liao, J.B. Liu, K.W. Leong, Sustained Viral Gene Delivery through Core-shell Fibers. Journal of Controlled Release, 2009: p. 48-55.
52. D. Klee, C. Jérôme, S. Leonhardt, S. Barth, P. Stinissen, A. Schols, F. Kiessling, M. Daemen, H. Hoofstraat, Layer-by-layer Self-assembled Chitosan Coating on Electrospun Nanofibers. Biomedica 2009: p.1-2.
53. J. Zhang, L. Wang, H. Wang, Z. Gu, D. Kong, Co-electrospun Fibrous Scaffold–adsorbed DNA for Substrate-mediated Gene Delivery. J Biomed Mater Res A, 2010: p. 212-220.
54. Y. Xiong, B.T. Ma, Some Recent Developments in the Chemical Synthesis of Inorganic Nanotubes. Chemical Communications, 2005: p. 5013-5022.
55. S. Jiang, M. Li, The pH Stimulated Reversible Loading andRelease of a Cationic Dye in a Layer-by-layer Assembled DNA/PAH film. Journal of Colloid and Interface Science, 2004. 277(2): p. 396-403.
56. M.H. Lee, I.M. Hsing, Enhanced Electrochemical Detection of DNA Hybridization Based on Electrode-Surface Modification. Langmuir, 2003: p. 4338-4343.
57. G.L. Bowlin, A. Meyer., The Persistence of Electrostatically Seeded Endothelial Cells Lining a Small Diameter Expanded Polytetrafluoroethylene Vascular Graft. Journal of Biomaterials Applications, 2001: p. 157-173.
58. M.Rodrigo, F.N. Crespilho., Layer-by-layer Self-assembly and Electrochemistry: Applications in Biosensing and Bioelectronics. Biosensors and Bioelectronics, 2012: p. 1-10.
59. S. Kumaresh, R. Anandrao. K. Walter E. Rudzinski, Biodegradable Polymeric Nanoparticles as Drug Delivery Devices. Journal of Controlled Release, 2001. 70: p. 1-20.
60. W.S. Chu, S.G. Kim, Fabrication of a Biodegradable Brug Belivery System with Controlled Release made of PLGA/5-FU/hydroxyapatite. Rapid Prototyping Journal, 2008: p. 293-299.
61. B.S. Gupta, M.W. King., S. Hudson, E.G. Loboa, R. Hufenus, J. Gluck, A. Moghe, Electrospun Core-Sheath Fibers for Soft Tissue Engineering. National Textile Center Annual Report, 2006: p. 1-6.
62. B.M. Baker, A.O. Gee., R.B. Metter, A.S. Nathan, R.A. Marklein, J.A. Burdick, R.L. Mauck, The Potential to Improve Cell Infiltration in Composite Fiber-aligned Electrospun Scaffolds by the Selective Removal of Sacrificial Fibers. Biomaterials, 2008. 29: p. 2348-2358.
63. J. Nam, Y. Huang, J. Lannutti, Improved Cellular Infiltration in Electrospun Fiber via Engineered Porosity. Tissue engineering, 2007. 13: p. 2249-2257.
64. B. Sarmento, F. Veiga, A. Ribeiro, Characterization of Insulin-loaded Alginate Nanoparticles Produced by Ionotropic Per-gelation through DSC and FTIR Studies. Carbohydrate Polymer, 2006: p. 1-7.
65. T. Elzein, C. Delaite, S. Bistac, P. Dumas, FTIR Study of Polycaprolactone Chain Organization at Interfaces. Journal of Colloid and Interface Science, 2004. 273: p. 381-387.
66. H.D. Peng, Y. Han., T.X. Liu, W.C. Tjiu, Morphology and Thermal Degradation Behavior of Highly Exfoliated CoAl-layered Double Hydroxide/Polycaprolactone Nanocomposites Prepared by Simple Solution Intercalation. Thermochimica Acta, 2010: p. 1-7.
指導教授 胡威文(Wei-wen Hu) 審核日期 2013-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明