博碩士論文 100324067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:34.205.93.2
姓名 徐菁鴻(Ching-Hung Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 新穎太陽能電池基板表面粗糙化結構之研究
★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究
★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究
★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究
★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究
★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究★ 尖針狀鈷矽化物/矽單晶異質奈米線陣列結構之製備及其性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用射頻磁控濺鍍系統沉積 ZnO:Al (AZO)透明導電薄膜作為晶種層,
成功的以水熱法製備出一系列長短寬度可調變之純 ZnO 以及 AZO 奈米線陣列,
利用 SEM、TEM、SAED、XRD、UV-vis 和EDS 針對其晶體結構、表面形貌、
光電性質和表面潤濕性質進行一系列深入的觀察與分析。
藉由TEM 和 XRD 分析可以得知本實驗水熱法製備之ZnO 和 AZO 奈米
線為六方晶系纖鋅礦的單晶結構,且在本實驗之反應溫度65-80 0C 內,奈米線長
度和反應時間呈線性關係。藉由計算不同反應溫度下的反應速率,ZnO、AZO
(2%Al) 和 AZO (5%Al) 奈米線陣列的反應活化能可以藉由阿瑞尼士方程式推
導分別為36.3 ( kJ /mol ) 、49.2 ( kJ / mol ) 和45.2 ( kJ / mol )。濺鍍沉積AZO 薄
膜和AZO 奈米線薄膜的電阻隨著照射UV 光的時間增加而減少。此外本研究也
對於ZnO 材料的表面潤濕性質進行探討,且得知ZnO 材料之水接觸角將會隨著
放置時間的增加而變大。最後將製備完成之親水性 ZnO 與 AZO 奈米線薄膜施
以真空以及氧氣氛下熱處理,可以達到調控材料表面潤濕性質之目的。
摘要(英) In this study, large area vertically-aligned ZnO and Al-doped ZnO (AZO)
nanowires were successfully synthesized by hydrothermal method o glass and Si
substrates. The morphologies, crystal structures, compositions, properties, and
growth kinetics of the ZnO and AZO nanowires have been systematically investigated
by SEM, TEM, SAED, XRD, UV-vis and EDS analyses.
From TEM and XRD analyses, all the ZnO and AZO nanowires synthesized were
single crystalline with a hexagonal structure and their growth direction was parallel
to [0001]. In addition, the lengths of the ZnO and AZO nanowires were found to
increase linearly with reaction time at 65-80 0C. By measuring the growth rate at
different reaction temperatures, the activation energies for the linear growth of ZnO,
AZO (2%Al), and AZO (5%Al) nanowire arrays were derived to be about 36.6, 49.2 and
45.2 KJ/mol, respectively. The resistances of AZO film and AZO nanowires were
measured to decrease with the exposure time of UV light. On the other hand, an
abnormal surface wettability were found in the ZnO-based samples. The water
contact angles of the ZnO-based tended to increase with increasing the storage days.
In this study, we also demonstrate the wettability of AZO, and Zno nanowires can be
modulated by annealing in vacuum and in oxygen atmosphere.
關鍵字(中) ★ 水熱法
★ 氧化鋅
關鍵字(英) ★ hydrothermal method
★ ZnO
論文目次 摘要............................................................................................................. I
Abstract .....................................................................................................II
致謝.......................................................................................................... III
目錄.......................................................................................................... IV
圖目錄..................................................................................................... VII
第一章 緒論 ............................................................................................ 1
1-1 前言 .............................................................................................. 1
1-2 太陽能電池 .................................................................................. 2
1-3 透明導電材料 .............................................................................. 3
1-4 氧化鋅材料 .................................................................................. 5
1-5 金屬氧化物透明導電材料導電機制 .......................................... 6
1-6 一維ZnO 奈米線成長機制與製備方法 .................................... 7
1-6-1 氧化鋅摻雜鋁奈米線製備方法 ......................................................... 8
1-7 水熱法沉積ZnO 奈米線合成方法以及理論基礎 .................... 8
1-8 氧化鋅的潤濕性質 .................................................................... 10
1-9 研究動機與實驗目的 ................................................................. 13
第二章 實驗步驟 .................................................................................. 15
V
2-1 實驗步驟 .................................................................................... 15
2-1-1 實驗試片前處理 ............................................................................... 15
2-1-2 濺鍍沉積法製備ZnO:Al 透明導電薄膜特性分析 ....................... 15
2-1-3 水熱法製備ZnO ,AZO 奈米結構薄膜之成長動力學分析 ....... 16
2-2 水熱法沉積溶液配製 ................................................................ 16
2-3 實驗設備 .................................................................................... 17
2-3-1 濺鍍系統(Sputtering System) ......................................................... 17
2-3-2 水熱法沉積系統(Hydrothermal System) ...................................... 17
2-3-3 真空退火系統(Vacuum Annealing System) .................................. 17
2-4 實驗分析設備 ............................................................................ 18
2-4-1 紫外光-可見光光譜儀(UV-VIS) ..................................................... 18
2-4-2 XRD 繞射分析 ................................................................................. 19
2-4-3 掃描式電子顯微鏡(SEM)................................................................ 19
2-4-4 穿透式電子顯微鏡(TEM) ............................................................... 19
2-4-5 高分辨穿透式電子顯微鏡(HR-TEM)與能量散佈光譜儀(EDS) . 20
2-4-6 影像式接觸角量測儀 ....................................................................... 21
2-4-7 電性分析儀 ....................................................................................... 21
第三章 結果與討論 .............................................................................. 22
3-1 濺鍍沉積 ZnO:Al 透明導電薄膜基材之製備與分析 .......... 22
3-1-1 濺鍍法製備 ZnO:Al 透明導電薄膜之相鑑定與特性分析 ......... 22
3-1-2 ZnO:Al 透明導電薄膜真空熱處理前後特性分析 ........................ 23
3-2 水熱法沉積製備 AZO ,ZnO 奈米結構之製備與分析 ..... 26
3-2-1 溫度對於水熱法沉積製備AZO ,ZnO 奈米結構薄膜之影響 .. 26
VI
3-2-2 時間對於水熱法沉積製備AZO,ZnO 奈米結構薄膜之影響 .... 29
3-2-3 水熱法沉積製備ZnO ,AZO 奈米線之鑑定 ............................. 32
3-3 水熱法沉積製備ZnO ,AZO 奈米線之成長動力學討論 ... 33
3-4 AZO 奈米結構光暗電性質分析 ................................................ 35
3-5 ZnO 和AZO 奈米結構之親疏水性質討論 .......................... 37
第四章 結論 .......................................................................................... 40
參考文獻 .................................................................................................. 43
參考文獻 [1] 吳財福, 陳裕愷, 張健軒, “太陽光電能供電與照明系統綜論,” 全華圖書, (2007) 1-2.
[2] A. A. Lacis and J. E. Hansen, “A Parameterization for the Absorption of Solar Radiation in the Earth’s Atmosphere,” J. Astronaut.Sci., 31 (1974) 118-133.
[3] 陳頤承, 黃志仁, 吳建樹, 翁得期, 陳麒麟, “矽薄膜太陽能電池技術,” 電子月刊, 145 (2007) 149-164.
[4] “BIPV Encapsulation Markets Preview” NanoMarkets (2012).
[5] J. J. Huang, Y. K. Su, S. H. Wang, Y. H. Liu, and F. S. Juang, “Efficiency Enhancement of Top Emission Organic Light-Emitting Diodes with Ni/Au Periodic Anode,” Jpn. J. Appl. Phys., 47 (2008) 7359-7362.
[6] H. J. Peng, X. L. Zhu, J. X. Sun, Z. L. Xie, S. Xie, M. Wong, and H. S. Kwok, “Efficient Organic Light-Emitting Diode Using Semitransparent Silver as Anode,” Appl. Phys. Lett., 87 (2005) 3.
[7] A. Gassmann, C. Melzer, and H. von Seggern, “The Li3PO4/Al Bilayer: An Efficient Cathode for Organic Light Emitting Devices, “J. Appl. Phys., 105 (2009) 084513.
[8] C. F. Qiu, H. J. Peng, H. Y. Chen, Z. L. Xie, M. Wong, and H. S. Kwok, “Top-Emitting OLED Using Praseodymium Oxide Coated Platinum as Hole Injectors,” IEEE Trans. Electron Devices, 51 (2004) 1207-1210.
[9] P. A. K. Moorthy and G. K. Shivakumar, “Approximations of Fuchs-Sondheimer Theory for the Case of Total Diffuse-Scattering in Thin-Films,” J. Mater. Sci. Lett., 1 (1982) 453-454.
[10] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, “Cathode Dependence of The Open-Circuit Voltage of Polymer: Fullerene Bulk Heterojunction Solar Cells,” J. Appl. Phys., 94 (2003) 6849-6854.
[11] H. Cho, C. Yun, J. W. Park, and S. Yoo, “Highly Flexible Organic Light-Emitting Diodes Based on ZnS/Ag/WO3 Multilayer Transparent Electrodes,” Org. Electron., 10 (2009) 1163-1169.
[12] H. J. Cho, K. W. Park, J. K. Ahn, N. J. Seong, S. G. Yoon, W. H. Park, S. M. Yoon, D. J. Park, and J. Y. Lee, “Nanoscale Silver-Based Al-Doped ZnO Multilayer Transparent-Conductive Oxide Films,” J. Electrochem. Soc., 156 (2009) J215-J220.
[13] Jung-A. Lee, Joon-Hyung Lee, Young-Woo Heo, Jeong-Joo Kim, and Hee Young Lee, “Characteristics of Sn and Zn co-substituted In2O3 thin films prepared by RF magnetron sputtering,” Curr. Appl. Phys. 12 (2012) S89eS93.
[14] Jörg Haeberle, Matthias Richter, Zbigniew Galazka, Christoph Janowitz, and Dieter Schmeißer, “Resonant photoemission at the O1s threshold to characterize In 2 O 3 single crystals,” Thin Solid Films xxx (2013) xxx-xxx.
[15] K. Fleischer, E. Arca, and I. V. Shvets, “Improving solar cell efficiency with optically optimised TCO layers,” Sol. Energ. Mat. Sol. C. 101 (2012) 262-269.
[16] “Natively textured surface Al-dopedZnO-TCO layers with gradual oxygen growth for thin film solar cells via magnetron sputtering,” Appl. Surf. Sci. 258 (2012) 4092-4096.
[17] Dieter Bonnet, “CHAPTER IC-2 CdTe Thin-Film PV Modules,” Practical Handbook of Photovoltaics (2012) 283-320.
[18] Y. Sato, J. Kiyohara, A. Hasegawa, T. Hattori, M. Ishida, N. Hamada, N. Oka, and Y. Shigesato, “Study on Inverse Spinel Zinc Stannate, Zn2SnO4, as Transparent Conductive Films Deposited by RF Magnetron Sputtering,” Thin Solid Films, 518 (2009) 1304-1308.
[19] S. Ouendadji, K. Ait-Hamouda, N. Gabouze, N. Saoula, and K. Henda, “Electrochemical behavior of p-Si/TiC in aqueous HF,” Vacuum, 71 (2003) 517-522.
[20] V. Adamovich, A. Shoustikov, and M. E. Thompson, “TiN as an Anode Material for Organic Light-Emitting Diodes,” Adv. Mater., 11 (1999) 727-730.
[21] N. W. Cheung, H. Vonseefeld, M. A. Nicolet, F. Ho, and P. Iles, “Thermal-Stability of Titanium Nitride for Shallow Junction Solar-Cell Contacts,” J. Appl. Phys., 52 (1981) 4297-4299.
[22] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, “Longitudinal Unzipping of Carbon Nanotubes to Form Graphene Nanoribbons,” Nature, 458 (2009) 872-875.
[23] Jorge Cruz Fernandes, Carlos Anjinho, Pedro Miguel Amaral, Lu´ıs Guerra Rosa, José Rodr´ıguez, Diego Mart´ınez, Fernando Almeida Costa Oliveira, Nobumitsu Shohoji, “Characterisation of solar-synthesisedTiCx ( x = 0.50, 0.625, 0.75, 0.85, 0.90 and 1.0) by X-ray diffraction, density and Vickers microhardness,” Mater. Chem. Phys. 77 (2002) 711–718.
[24] Min-Hsin Yeh, Lu-Yin Lin, Chuan-Pei Lee, Chen-Yu Chou, Keng-Wei Tsai, Jiann-T’suenLin,Kuo-ChuanHo,“Highperformance CdS quantum--dot-sensitized solar cells with Ti-based ceramic materials as catalysts on the counter electrode,”J. Power. Source. 237 (2013) 141e148.
[25] W. J. Fan, J. B. Xia, P. A. Agus, S. T. Tan, S. F. Yu, and X. W. Sun, “Band Parameters and Electronic Structures of Wurtzite ZnO and ZnO/MgZnO Quantum Wells,” J. Appl. Phys., 99 (2006) 4.
[26] Ü. Ö. Hadis Morkoç, “Zinc Oxide: Fundamentals, Materials and Device Technology,” Chapter 1, (2009), WILEY-VCH.
[27] F. Decremps, J. Zhang, and R.C. Liebermann, “New Phase Boundary and High-Pressure Thermoelasticity of ZnO,” Europhys. Lett., 51 (2000) 268-274.
[28] A. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, I. Suemune, Y. W. Ok, and T. Y. Seong, “Growth and Characterization of Hypothetical Zinc-Blende ZnO Films on GaAs(001) Substrates with ZnS Buffer Layers,” Appl. Phys. Lett., 76 (2000) 550-552.
[29] K. I. Hagemark and P. E. Toren, “Determination of Excess Zn in ZnO-Phase Boundary Zn-Zn1+XO,” J. Electrochem. Soc., 122 (1975) 992-994.
[30] K. Lott, S. Shinkarenko, T. Kirsanova, L. Tum, E. Gorohova, A. Grebennik, and A. Vishnjakov, “Zinc Nonstoichiometry in ZnO,” Solid State Ion., 173 (2004) 29-33.
[31] M. P. Lu, J. Song, M. Y. Lu, M. T. Chen, Y. Gao, L. J. Chen, and Z. L. Wang, “Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays,” Nano Lett., 9 (2009) 1223-1227.
[32] J. C. Sun, H. W. Liang, J. Z. Zhao, J. M. Bian, Q. J. Feng, L. Z. Hu, H. Q. Zhang, X. P. Liang, Y. M. Luo, and G. T. Du, “Ultraviolet Electroluminescence from N-ZnO : Ga/P-ZnO : N Homojunction Device on Sapphire Substrate with p-Type ZnO : N Layer Formed by Annealing in N2O Plasma Ambient,” Chem. Phys. Lett., 460 (2008) 548-551.
[33] O. Isabella, F. Moll, J. Krc, and M. Zeman, “Modulated Surface Textures Using Zinc-Oxide Films for Solar Cells Applications,” Phys. Status Solidi A-Appl. Mat., 207 (2010) 642-646.
[34] M. Berginski, J. Hupkes, M. Schulte, G. Schope, H. Stiebig, B. Rech, and M. Wuttig, “The Effect of front ZnO : Al Surface Texture and Optical Transparency on Efficient Light Trapping in Silicon Thin-Film Solar Cells,” J. Appl. Phys., 101 (2007) 11.
[35] R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light Trapping in Thin-Film Silicon Solar Cells with Submicron Surface Texture,” Opt. Express, 17 (2009) 23058-23065.
[36] S. U. Lee, W. S. Choi, and B. Hong, “Synthesis and Characterization of SnO2:Sb Film by dc Magnetron Sputtering Method for Applications to Transparent Electrodes,” Phys. Scr. T 129 (2007) 312-315.
[37] J. Lee, “Effects of Oxygen Concentration on the Properties of Sputtered SnO2:Sb Films Deposited at Low Temperature,” Thin Solid Films 516 (2008) 1386-1390.
[38] J. Ma, X. Hao, S. Huang, J. Huang, Y. Yang, and H. Ma, “Comparison of the Electrical and Optical Properties for SnO2:Sb Films Deposited on Polyimide and Glass Substrates,” Appl. Surf. Sci. 214 (2003) 208-213.
[39] Y. K. Moon, S. H. Kim, and J. W. Park, “The Influence of Substrate Temperature on the Properties of Aluminum-Doped Zinc Oxide Thin Films Deposited by DC Magnetron Sputtering,” J. Mater. Sci.: Mater. Electron 17 (2006) 973-977.
[40] Q. B. Ma, Z. Z. Ye, H. P. He, S. H. Hu, J. R. Wang, L. P. Zhu, Y. Z. Zhang, and B. H. Zhao, “Structural, Electrical, and Optical Properties of Transparent Conductive ZnO:Ga Films Prepared by DC Reactive Magnetron Sputtering,” J. Cryst. Growth 304 (2007) 64-68.
[41] T. K. Tsai, H. C. Chen, J. H. Lee, Y. Y. Huang, and J. S. Fang, ”Highly Conductive Indium Zinc Oxide Prepared by Reactive Magnetron Cosputtering Technique Using Indium and Zinc Metallic Targets,” J. Vac. Sci. Technol. A, 28 (2010) 425-430.
[42] X. Bie, J. G. Lu, L. Gong, L. Lin, B. H. Zhao, and Z. Z. Ye, ”Transparent Conductive ZnO:Ga Films Prepared by DC Reactive Magnetron Sputtering at Low Temperature,” Appl. Surf. Sci., 256 (2009) 289-293.
[43] S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354 (1991) 56-8.
[44] A. Lecestre, E. Dubois, A. Villaret, T. Skotnicki, P. Coronel, G. Patriarche, C. Maurice, “Confined VLS growth and structural characterization of silicon nanoribbons,” Microelectron. Eng. 87 (2010) 1522-1526.
[45] Zhao Wu, Yunwang Zhang, and Kai Du, “A simple and efficient combined AC–DC Electrodeposition method for fabrication of highly ordered Au nanowires in AAO template,” Appl. Surf. Sci. 265 (2013) 149-156.
[46] J. Elias, I. Utke, S. Yoon, M. Bechelany, A. Weidenkaff, J.Michler, and L. Philippe, “Electrochemical growth of ZnO nanowires on atomic layer deposition coated polystyrene sphere templates,” Electrochimica. Acta. xxx (2013) xxx-xxx.
[47] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng, and I. C. Chen, “Well-Aligned, Vertically Al-Doped ZnO Nanowires Synthesized on ZnO:Ga/Glass Templates,” J. Electrochem. Soc. 152 (2005) 378-381.
[48] Ye Sun, Katherine E Addison and Michael N R Ashfold, “Growth of arrays of Al-doped ZnO nanocones by pulsed laser deposition, “Nanotechnology. 18 (2007) 495601 (4pp).
[49] S. Lin, H. Tang, Z. Ye, H. He, Y. Zeng, B. Zhao, and L. Zhu, “Synthesis of vertically aligned Al-doped ZnO nanorods array with controllable Al concentration,” Mater. Let. 62 (2008) 603-6.
[50] R. Könenkamp, K. Boedecker, M. C. Lux-Steiner, and M. Poschenrieder, “Thin film semiconductor deposition on free-standing ZnO columns,” Appl. Phy. Lett. 77 (2000) 1575-7.
[51] Jijun Qiu, Xiaomin Li, Weizhen He, Se-Jeong Park, Hyung-Kook Kim, Yoon-Hwae Hwang, Jae-Ho Lee, and Yang-Do Kim, “The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method,” Nanotechnology. 20 (2009) 155603.
[52] Jing-Hua Tian, Jie Hu, Si-Si Li, Fan Zhang, Jun Liu, Jian Shi, Xin Li, Zhong-Qun Tian, and Yong Chen, “Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires,” Nanotechnology. 22 (2011) 245601.
[53] G. Amin, M. H. Asif, A. Zainelabdin, S. Zaman, O. Nur, and M. Willander, “Influence of pH, Precursor Concentration,Growth Time, and Temperature on the Morphology of ZnO Nanostructures Grown by the Hydrothermal Method,” Nanomaterials. 10 (2011) 269692.
[54] Zhiqing Zhang and Jin Mu, “Hydrothermal synthesis of ZnO nanobundles controlled by PEO–PPO–PEO block copolymers,” J. Colloid Interf. Sci. 307 (2007) 79-82.
[52] Renee B. Peterson , Clark L. Fields , and Brian A. Gregg, “Epitaxial Chemical Deposition of ZnO Nanocolumns from NaOH Solutions,” Langmuir. 20 (2004) 5114-5118.
[55] Zhengzhi Zhou and Yulin Deng, “Kinetics Study of ZnO Nanorod Growth in Solution,” J. Phys. Chem. C 113 (2009) 19853-19858.
[56] Robert N. Wenzel, “Resistance of Solid Surfaces to Wetting By Water,” Ind. Eng. Chem. 28(8) (1936) 988-994.
[57] Cassie and S. Baxte, “Wettability of Porus Surface,” Trans. Faraday Soc. 40 (1944) 546-551.
[58] Xiaolin Zong and Ping Wang, “Effect of UV irradiation on the properties of ZnO nanorod arrays prepared by hydrothermal method,” Physica. E. 41 (2009) 757-761.
[59] Ren-De Sun, Akira Nakajima, Akira Fujishima, Toshiya Watanabe, and Kazuhito Hashimoto, “Photoinduced Surface Wettability Conversion of ZnO and TiO 2 Thin Films,” J. Phys. Chem. B 105 (2001) 1984 - 1990.
[60] Rong Wang, Kazuhito Hashimoto Akira Fujishima, “Light-induced amphiphilic surfaces,” Nature. 31 (1997) 431-432.
[61] Wolfgang H. and Hirschwa, “Zinc Oxide: An Outstanding Example of a Binary Compound Semiconductor,” Acc. Chem. Res. 18 (1985) 228-234.
[62] Brome Uriiversity, I’hysics Department, Providence, and Rhode Islgrid, “Optical Properties and Band Structure of SrTiO3 and BaTiO3,” Phys. Rev. Lett., 140 (1965) A651-A655.
[63] X. Q. Meng, D. X. Zhao, J. Y. Zhang, D. Z. Shen, Y. M. Lu, L. Dong, Z. Y. Xiao, Y. C. Liu, and X. W. Fan, “Wettability conversion on ZnO nanowire arrays surface modified by oxygen plasma treatment and annealing,” Chem. Phys. Lett. 413 (2005) 450-453.
[64] Sijing Xie, Yan Zhao, and Yijian Jiang, “Laser-induced hydrophobicity on single crystal zinc oxide surface,” Appl. Surf. Sci. 263 (2012) 405-409
[65] H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire Ultraviolet Photodetectors and Optical Switches,” Adv. Mater. 14 (2002) 158-60.
[66] D. R. Vij and N. Singh, “Luminescence and Related of Ⅱ-Ⅳ Semiconductors,” Nova Science Publishers, N. Y. ,1998.
[67] V. Srikant and D. R. Clarke, “Optical Absorption Edge of ZnO Thin Films: The Effect of Substrate,” J. Appl. Phys. 81 (1997) 6357-6364.
[68] X. Chen, W. Guan, G. Fang, and X. Z. Zhao, “Influence of Substrate Temperature and Post-Treatment on the Properties of ZnO:Al Thin Films Prepared by Pulsed Laser Deposition,” Appl. Surf. Sci. 252 (2005) 1561-1567.
[69] S. S. Lin, J. L. Huang, and P. Šajgalik, “The Properties of Heavily Al-Doped ZnO Films before and after Annealing in the Different Atmosphere,” Surf. Coat. Technol. 185 (2004) 254-263.
[70] C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, F. Williams, A. K. Pradhan, “Effects of Substrate Temperature on the Optical and Electrical Properties of Al : ZnO Films, Semicond,” Sci. Technol. 23 (2008) 085019.
[71] D.Y. Song, “Effects of RF Power on Surface-Morphological, Structural and Electrical Properties of Aluminium-Doped Zinc Oxide Films by Magnetron Sputtering, ” Appl. Surf. Sci. 254 (2008) 4171-4178.
[72] J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, B. H. Zhao, “Carrier Concentration Dependence of Band Gap Shift in N-Type ZnO : Al Films, ” J. Appl. Phys. 101 (2007) 083705.
[73] A. Walsh, J. L. F. D. Silva, S. H. Wei, “Symmetry-Induced Transparency in Conductive Metal Oxides for Optoelectronics, ” SPIE Newsroom (2008).
[74] Shih-Wei Chen and Jenn-Ming Wu, “Nucleation mechanisms and their influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method,” Acta Materialia, 59 (2011) 841-847.
[75] S. M. Sze, “Semiconductor Devices,” Wiley (2001).
[76] Jun Zhang, YanruLiu, Zhiyang Wei, and Junyan Zhang, “Mechanism for wettability alteration of ZnO nanorod arrays via thermal annealing in vacuum and air,” Appl. Surf. Sci., 265 (2013) 363-368.
指導教授 鄭紹良(S. L. Cheng) 審核日期 2013-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明