博碩士論文 100326001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:184 、訪客IP:3.21.231.245
姓名 蔡茗宇(Ming-yu Tsai)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
(Short-term dynamic variations of water-soluble inorganic ions at Mountain in spring Lulin and Longtan in summer in 2013)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2011-2015年台灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來源推估及對能見度影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文於2013年春季在鹿林山背景觀測站(以下簡稱為鹿林山,2,862 m)與夏季龍潭空品測站(以下簡稱為龍潭)以即時氣膠水溶性監測儀(Particle-Into-Liquid-Sampler coupled to an Ion Chromatograph, PILS-IC)觀測PM2.5氣膠水溶性離子,並收集站址觀測的PM2.5質量濃度、PM2.5散光及吸光係數、氣膠粒徑分布、氣膠總數目、氣體污染物動態變化。
結果發現在鹿林山觀測的三次雲霧事件,CO、NOx有隨時間上升的趨勢,推斷是平地氣體污染物受到山下氣流抬升至鹿林山而形成雲霧,此時氣膠質量濃度、散光及吸光係數、氣膠粒徑分布及總數目都有相對應的增大或變化。氣膠水溶性離子NH4+、SO42-、NO3-有明顯高濃度出現,NH4+並顯示是由NH3轉化而來。NH4+與SO42-有中度以上相關性(R2>0.64),因此,這兩種離子結合型態可能為硫酸銨或硫酸氫銨。從過剩ExNO3-與過剩ExNH4+計算判斷NO3-生成機制 (Mwaniki, et al., 2014; Schlager, et al., 1990),發現在不同時段分別有HNO3 (g) 凝結在氣膠表面、N2O5水解、以及硝酸銨氣膠的形成。
鹿林山觀測的生質燃燒事件(biomass burning, BB)中CO、NOx、O3、PM2.5質量濃度、PM2.5散光及吸光係數、氣膠總數目都有增高現象。NH4+和SO42-在大多數時間關聯性很好,而且K+有顯著的濃度增加。在五次BB時段有六次雲霧事件,其中四個雲霧事件經由K+增益量判斷,雲霧與生質燃燒氣團來源相同。生質燃燒氣團長程傳輸的硫酸鹽轉化比值(Sulfur oxidation ratio, SOR)可達0.9,顯示硫化物主要以SO42-形式存在。SO2在各次生質燃燒事件都沒有明顯的濃度增加趨勢,表示生質燃燒不會產生大量SO2且SO2來自遠端各方面污染源經過了大氣的均勻混合。
龍潭為平地測站,觀測期間發生光化反應時,NH4+、SO42-、NO3-濃度增加,PM2.5佔PM10比重上升至50%,表示有細粒徑氣膠產生。另外,龍潭在高濃度硝酸鹽時段,除了正午是受到光化反應外,在夜間推測是受到外地傳輸及混合層降低的影響;由於NH4+和NO3-有中度以上相關,推論龍潭光化與高濃度硝酸鹽事件是以硝酸銨為硝酸鹽主要組成。由於夏季生質燃燒活動較少,龍潭Knss+/NO3-與Knss+/SO42-數值明顯低於鹿林山,而且SOR和硝酸鹽轉化比值(Nitrogen oxidation ratio, NOR)也是受到污染物傳輸路徑較短的緣故,普遍低於鹿林山。
比較Aerosol Inorganic Model II (Clegg et al., 1998a, b)模擬的氣膠含水量(Aerosol Water Content, AWC)和鹿林山吸濕差異移動度粒徑分布儀(Humidified Scanning Mobility Particle Sizer, H-SMPS)量測的氣膠吸濕參數(κ),生質燃燒氣團由於會帶來大量較不吸濕的含碳氣膠使κ值低,但雲霧事件也可能因氣膠吸濕粒徑變大超過H-SMPS量測上限,使得剩下所採集氣膠都是較不吸濕因而降低κ值,整體而言,生質燃燒事件κ值仍較雲霧事件低。然而,在氣膠含水量方面,因生質燃燒氣膠有高濃度SO42-、NO3-,因此鹿林山生質燃燒事件模擬的AWC是大於雲霧事件。龍潭高濃度硝酸鹽事件κ值與AWC模擬都高於光化事件,由於龍潭高濃度硝酸鹽事件SO42-、NO3-相加總濃度是高於光化事件,這指出SO42-、NO3-是主導κ值與AWC的重要因子。
摘要(英) This work monitored water-soluble inorganic ions (WSIIs) of atmospheric PM2.5 using Particle-Into-Liquid-Sampler coupled with an Ion Chromatograph (PILS-IC) at the Lulin Atmospheric Background Station (LABS, 2,862 m a.s.l.) in spring and Longtan air quality monitoring station (Longtan) in summer in 2013. Meanwhile, PM2.5 mass concentration, PM2.5 scattering and absorption coefficients, aerosol size spectra, aerosol total number concentration, and dynamic variations of gaseous pollutants were also measured at LABS.
CO and NOx were observed to increase with time during the period of three fog events at LABS. It suggests that ground gas pollutants were transported by the uplift flow to form fog at LABS. The PM2.5 mass concentration, PM2.5 scattering and absorption coefficients, aerosol size spectra, and aerosol total number concentration were also increased in the fog events accordingly. The levels of NH4+, SO42-, and NO3- of water-soluble inorganic ions were enhanced and NH4+ was observed from the conversion of NH3. Moderately high linear correlation between SO42- and NH4+ (R2>0.64) indicates that the compound form of these two ions might be ammonium sulfate or ammonium bisulfate. From the calculations of ExNO3- and ExNH4+, three nitrate formation mechanisms (Mwaniki, et al., 2014; Schlager, et al., 1990) can be inferred to be condensed HNO3(g) onto aerosol surface, N2O5 hydrolysis, or the formation of ammonium nitrate particles in different times.
CO, NOx, O3, PM2.5 mass concentration, PM2.5 scattering and absorption coefficients, and aerosol total number concentration were all increased during the biomass burning events (BB) observed at LABS. The concentration between SO42- and NH4+ was consistently varied for most of the time and K+ concentration was significantly enriched. For four of the six fog events during the five BB time periods, they were influenced by the transported BB air flow judged by the enhanced K+ concentration. The sulfur oxidation ratio (SOR) could be as high as 0.9 to indicate that SO42- was the major species of sulfur. Interestingly, SO2 concentration was quite stable during BB observation, which implies that SO2 is produced from a variety of sources through uniformly mixing in the atmosphere rather than produced drastically from BB.
Longtan is located nearly on the ground; the concentrations of NH4+, SO42-, and NO3- were increased when photochemical events occurred. This will lift the fraction of PM2.5 over PM10 to above 50%, which indicates the production of fine particles. In addition, high concentration of nitrates is caused not only by photochemical reactions at the noon time but also possible distant transport and shallow mixing layer in the evening. Since NH4+ correlated more than moderately well with NO3-, the ammonium nitrate was inferred to be the main nitrate compound form in photochemical and high nitrate events at Longtan. Owing to less BB activity in summer, the computed values of Knss+/NO3- and Knss+/SO42- at Longtan were significantly lower than LABS. Similarly, values of SOR and nitrogen oxidation ratio at Longtan were also lower than LABS due to shorter transport distance of pollutants.
Simulated aerosol water content (AWC) from Aerosol Inorganic Model II (Clegg et al., 1998a, b) was varied consistently with the measured aerosol hygroscopic parameter (κ) from Humidified Scanning Mobility Particle Sizer (H-SMPS) in the fog events at LABS. The values of κ might be reduced by the great amount of less hygroscopic carbonaceous aerosol in the BB air flow; however, the growth of hygroscopic aerosol to exceed the upper limit of H-SMPS might also make the collected remaining aerosol less hygroscopic as to lower the values of κ in the fog events. All things considered, the values of κ in the BB air flow are smaller than that of fog events. In contrast, the simulated AWC from the BB air flow is greater than that of the fog events because of the higher levels of SO42- and NO3-. The values of κ and AWC are both greater in high nitrate events than that of photochemical events at Longtan caused by the higher total level of SO42- and NO3-. This demonstrats the dominant effect of SO42- and NO3- in the determination ofκ and AWC.
關鍵字(中) ★ 氣膠水溶性無機離子短時間動態變化
★ 長程傳輸生質燃燒氣團氣膠特性
★ 雲霧事件氣膠特性
★ 光化事件氣膠特性
★ PILS-IC
關鍵字(英) ★ Short-term dynamic variations of aerosol water-soluble inorganic ions
★ erosol properties in long-range biomass burning air flow
★ aerosol properties in fog events
★ aerosol properties in photochemical events
★ PILS-IC
論文目次 摘要 I
ABSTRACT III
致謝 V
目錄 VI
圖目錄 X
表目錄 XX
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 氣膠水溶性離子 3
2.1.1 氣膠中和狀況與結合型態 4
2.2 高山地區氣體與氣膠 5
2.2.1 高山地區氣膠粒徑分布動態變化 5
2.2.2 雲霧及霾害事件時氣膠特性 7
2.3 生質燃燒 9
2.3.1 生質燃燒氣膠水溶性離子特性 9
2.3.2 生質燃燒氣膠光學特性 10
2.3.3 生質燃燒氣膠氣膠傳輸 10
2.4 臭氧生成機制 11
2.5 氣膠水溶性離子連續監測儀器 12
2.5.1 濕式前驅氣體分離器 12
2.5.2 即時氣膠水溶性離子監測儀器 12
2.6 大氣氣膠含水與吸濕特性 15
2.6.1 無機氣膠含水特性 15
2.6.2 氣膠吸濕參數 15
2.7 氣膠含水量模擬及PH值 18
2.7.1 氣膠含水量模擬 18
2.7.2 模擬氣膠pH值 18
第三章 研究方法 20
3.1 研究架構 20
3.2 採樣地點與採樣週期 21
3.2.1 鹿林山大氣背景測站 22
3.2.2 龍潭測站 23
3.3 採樣設備與方法 26
3.3.1 手動採樣器 26
3.3.2 採樣濾紙前處理與設置 27
3.4 大氣氣膠連續監測系統 30
3.4.1 自動監測儀器 30
3.4.2 即時氣膠水溶性離子層析儀 31
3.4.3 NOAA氣膠觀測系統 31
3.4.4 積分式散光儀(Integrating Nephelometer) 32
3.4.5 微粒碳吸收光度計(PSAP) 34
3.4.6 粒徑分布監測系統 38
3.4.7 其他連續監測儀器 42
3.5 AIM2模式 44
3.6 逆軌跡方法與來源分類 45
第四章 結果與討論 46
4.1 鹿林山氣膠水溶性離子動態變化 46
4.1.1 鹿林山R&P3500(PM2.5)與PILS-IC(PM2.5)氣膠水溶性離子比對 46
4.1.2 鹿林山氣膠水溶性離子動態變化時間序列趨勢 48
4.1.3 不同氣流來源鹿林山氣膠水溶性動態變化 53
4.2 鹿林山雲霧事件氣膠動態變化 56
4.2.1 不同類型氣流對雲霧事件的影響 56
4.2.2 雲霧事件發生前後鹿林山氣膠水溶性離子動態變化 59
1. 第一次雲霧事件(2013年2月28日) 60
2. 第二次雲霧事件(2013年3月1日) 72
3. 第三次雲霧事件(2013年3月16日) 83
4.2.3 彙整鹿林山雲霧事件動態變化 95
1. 雲霧事件氣膠質量濃度變化 95
2. 綜合雲霧事件氣體資料與氣膠水溶性離子變化 99
4.3 鹿林山生質燃燒氣團經過時氣膠動態變化 109
4.3.1 生質燃燒事件個案探討 109
1. 第一次生質燃燒事件(2013年3月3日至3月4日) 111
2. 第二次生質燃燒事件(2013年3月14日至3月15日) 123
3. 第三次生質燃燒事件(2013年3月17日至3月21日) 134
4. 第四次生質燃燒事件(2013年3月24日至3月26日) 147
5. 第五次生質燃燒事件(2013年3月27日至3月30日) 160
4.3.2 彙整鹿林山生質燃燒事件氣體資料與氣膠動態特性 170
4.4 龍潭事件氣膠動態變化 178
4.4.1 龍潭氣膠時間序列動態變化 178
4.4.2 龍潭氣膠光化事件水溶性離子動態變化 181
1. 第一次光化事件(2013年6月6日) 181
2. 第二次光化事件(2013年6月21日) 189
4.4.3 龍潭氣膠高濃度硝酸鹽事件水溶性離子動態變化 197
1. 第一次高濃度硝酸鹽事件(2013年6月4日) 197
2. 第二次高濃度硝酸鹽事件(2013年6月5日) 205
3. 第三次高濃度硝酸鹽事件(2013年6月13日) 214
4. 第四次高濃度硝酸鹽事件(2013年6月17日) 221
4.4.4 綜合探討龍潭氣膠光化與高濃度硝酸鹽事件水溶性離子動態變化 229
4.5 探討鹿林山與龍潭氣膠水溶性離子成分比值 234
4.5.1 鹿林山雲霧與生質燃燒事件氣膠水溶性離子成分比值 234
4.5.2 龍潭氣膠水溶性離子成分比值及與鹿林山比較 237
4.6 AIM2模式氣膠含水量模擬與氣膠吸濕參數 239
4.6.1 AIM2氣膠含水量模擬與pH值 240
4.6.2 氣膠吸濕參數 245
第五章 結論與建議 250
5.1 結論 250
5.2 建議 253
第六章 參考文獻 254
附錄一 2013年2月27日至4月15日鹿林山觀測期間逆推軌跡圖 265
附錄二 2013年2月27日至4月15日鹿林山觀測期間衛星火點圖 277
附錄三 2013年6月4日至7月4日龍潭各事件桃園地區風場 283
附錄四 2013年鹿林山與龍潭各事件乾濕粒徑分布圖 292
附錄五 口試委員意見與答覆 296
參考文獻 Acker, K., Beysens, D., Moller, D., 2008. Nitrite in dew, fog, cloud and rain water: An
indicator for heterogeneous processes on surfaces. Atmospheric Research 87, 200–212.
Aikawa, M., Hiraki, T., Shoga, M., Tamaki, M., 2005. Chemistry of fog water
collected in the Mt. Rokko area (Kobe City, Japan) between April 1997 and March 2001. Water Air and Soil Pollution 160, 373–393. •
Andrés-Hernández∗, M.D., Notholt, J., Hjorth, J., Schrems, O., 1996. A DOAS study
on the origin of nitrous acid at urban and non-urban sites. Atmospheric Environment 30, 175-180.
Asmi, E., Freney, E., Hervo, M., Picard, D., Rose, C., Colomb, A., Sellegri, K., 2012.
Aerosol cloud activation in summer and winter at puy-de-Dôme high altitude site in France. Atmospheric Chemistry and Physics 12, 589-607.
Baltensperger, U., Schwikowski, M., Jost, D.T., Nyeki, S., Gaggeler, H.W., Poulida, O., 1998. Scavenging of atmospheric constituents in mixed phase clouds at the high-alpine site jungfraujoch part I: Basic concept and aerosol scavenging by clouds. Atmospheric Environment 32, 23, 3,975–3,983.
Bey, I., Jacob, D.J., Logan, J.A., Yantosca, R.M., 2001b. Asian chemical outflow to the
Pacific in spring:Origins pathways, and budgets. Journal of Geophysical Research 106, 23,097–23,114.
Bowman, D., Balch, J.K., Artaxo, P., Bond, W.J., Carlson, J.M., Cochrane, M. A.,
D’Antonio, C.M., DeFries, R.S., Doyle, J.C., Harrison, S.P., Johnston, F.H., Keeley, J. E., Karwchuk, M.A., Kull, C.A., Marston, J.B., Moritz, M.A., Prentice, I.C., Roos, C. I., Scott, A.C., Swetnam, T.W., van der Werf, G.R., Pyne, S.J., 2009. Fire in the Earth System 324, 481–484.
Carrico, C.M., Petters, M.D., Kreidenweis, S.M., Sullivan, A.P., McMeeking, G.R.,
Levin, E.J.T., Engling, G., Malm, W.C., Collett Jr., J.L., 2010. Water uptake and chemical composition of fresh aerosols generated in open burning of biomass. Atmospheric Chemistry and Physics 10, 5,165–5,178.
Chang, S.Y., Lee, C.T., 2002. Applying GC-TCD to investigate the hygroscopic
characteristics of mixed aerosols. Atmospheric Environment 36, 1,521-1,530.
Chang, S.Y., Fang, G.C., Chou, C.C.K., Chen, W.N., 2006. Source identifications of
PM10 aerosols depending on hourly measurements of soluble components characterization among different events in Taipei Basin during spring season of 2004. Chemosphere 65, 792–801.
Chen, C.F., Liang, J.J., 2013. Integrated chemical species analysis with source-receptor modeling results to characterize the effects of terrain and monsoon on ambient aerosols in a basin. Environmental Science and Pollution Research 20, 2,867–2,881.
Cheng, S.H., Yang, L.X., Zhou, X.H., Xue, L.K., Gao, X.M., Zhou, Y., Wang, W.X.,
2011. Size-fractionated water-soluble ions, situ pH and water content in aerosol on hazy days and the influences on visibility impairment in Jinan, China. Atmospheric Environment 45, 4,631-4,640.
Chuang, M.T., Chou, C.C.K., Sopajareepom, K., Lin, N.H., Wang, J.L., Sheu, G.R.,
Chang, Y.J., Lee C.T., 2012. Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment. Atmospheric Environment 78, 72-81.
Clegg, S.L., Brimblecombe, P., Wexler, A.S., 1998a. Thermodynamic model of the
system H+-NH4+-SO42--NO3--H2O at tropospheric temperatures. Journal of Physical Chemistry A 102, 2137–2154.
Clegg, S.L., Brimblecombe, P., Wexler, A.S., 1998b. Thermodynamic model of the
system H+-NH4+-SO42--NO3--H2O at 298.15 K. Journal of Physical Chemistry A 102, 2155–2171.
Colbeck, I. Harrison, R. M., 1984. Ozone—secondary aerosol—visibility relationships in North-West England. Science of The Total Environment 34, 87-100.
Cozic, J., Verheggen, B., Mertes, S., Connolly, P., Bower, K., Petzold,A.,
Baltensperger, U., Weingartner, E., 2007. Scavengingof black carbon in mixed phase clouds at the high alpine site Jungfraujoch, Atmospheric Chemistry and Physics, 7, 1–11.
Cozic, J., Verheggen, B., Weingartner, E., Crosier, J., Bower, K., Flynn, M., Coe, H.,
Henning, S., Steinbacher, M., Coen, M., Collaud Petzold, A., Baltensperger, U., 2008. Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch. Atmospheric Chemistry amd Physics 8, 407-423.
Deng, C., Zhuang, G., Huang, K., Li, J., Zhang, R., Wang, Q., Sun, Y., Guo, Z., Wang, Z., 2011. Chemical characterization of aerosols at the summit of Mountain Tai in the middle of central east China. Atmospheric Chemistry and Physics 11, 7,319-7,332.
Drewnick, F., Schwab, J.J., Hogrefe, O., Peters, S., Husain, L., Diamond, D., Weber,
R., Demerjian, K.L., 2003. Intercomparison and evaluation of four semi-continuous PM2.5 sulfate instruments. Atmospheric Environment 37, 3,335-3,350.
Dusek, U., Frank, G., Massling, A., Zeromskiene, K., Iinuma, Y., Schmid, O., Helas,
G., Hennig, T., Wiedensohler, A., Andreae, M., 2011. Water uptake by biomass
burning aerosol at sub-and supersaturated conditions: closure studies and
implications for the role of organics. Atmospheric Chemistry and Physics 11,
9,519-9,532.
Engelhart, G., Hennigan, C., Miracolo, M., Robinson, A., Pandis, S., 2012. Cloud
condensation nuclei activity of fresh primary and aged biomass burning aerosol. Atmospheric Chemistry and Physics 12, 7,285-7,293.
Frank, N., 2006. Retained Nitrate, Hydrated Sulfates, and Carbonaceous Mass in
Federal Reference Method Fine Particulate Matter for Six Eastern U.S. Cities. Journal of the Air and Waste Management Association 56, 500-511.
Feng, J.L., Guo, Z.G., Zhang, T.R., Yao, X.H., Chan, C.K., Fang, M., 2012. Source
and formation of secondary particulate matter in PM2.5 in Asian continental outflow. Journal of Geophysical Research 117, D03302, 1-11.
Fountoukis, C., Nenes, A., 2007. ISORROPIA II: a computationally efficient Thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42--NO3--Cl--H2O aerosols. Atmospheric Chemistry and Physics 7, 4,639–4,659.
Fu, K., Liang, D., Wang, W., Cheng, Y., Gong, S., 2012. Multi-component atmospheric aerosols prediction by a multi-functional MC-HDMR approach. Atmospheric Research 113, 43–56.
Gao, X., Xue, L., Wang, X., Wang, T., Yuan, C., Gao, R., Zhou, Y., Nie, W., Zhang, Q.,
Wang, W., 2012. Aerosol ionic components at Mt. Heng in central southern China: abundances, size distribution, and impacts of long-range transport. Science of The Total Environment 433, 498-506.
Genfa, Z., Slanina, S., Boring, C.B., Jongejan, Piet, A.C., Dasgupta, P.K., 2003.
Continuous wet denuder measurements of atmospheric nitric and nitrous acids during the 1999 Atlanta Supersite, Atmospheric Environment 37, 1,351-1,364.
Gülsoy, G., Tayanç, M., Ertürk, F., 1999. Chemical analyses of the major ions in the precipitation of Istanbul, Turkey 105, 273-280.
Gunthe, S. S., Rose, D., Su, H., Garland, R. M., Achtert, P., Nowak, A., Wiedensohler A., Kuwata, M., Takegawa, N., Kondo, Y., Hu, M., Shao, M., Zhu, T., Andreae, M. O., Pöschl. U., 2011. Cloud condensation nuclei (CCN) from fresh and aged air pollution in the megacity region of Beijing. Atmospheric Chemistry and Physics 11, 9,959-9,997.
Gillani, N. V., Meagher. J. F., Valente. R. J., Imhoff. R. E., Tanner. R. L., Luria M., 1998. Relative production of ozone and nitrates in urban and rural power plant plumes 1. Composite results based on data from 10 field measurement days, Journal of Geophysical Research 103, 22,593–22,615. 
Hao, L., Romakkaniemi, S., Kortelainen, A., Jaatinen, A., Portin, H., Miettinen, P.,
Komppula, M., Leskinen, A., Virtanen, A., Smith, J.N., Sueper, D., Worsnop, D.R., Lehtinen, K.E., Laaksonen, A., 2013. Aerosol chemical composition in cloud events by high resolution time-of-flight aerosol mass spectrometry. Environment Science and Technology 47, 2,645–2,653.
Henning, S., Weingartner, E., Schwikowski, M., Ga¨ggeler, H. W., Gehrig, R., Hinz,
K. P., Trimborn, A., Spengler, B., and Baltensperger U., 2003. Seasonal variation of water-soluble ions of the aerosol at the high-alpine site Jungfraujoch (3580 m asl). Journal of Geophysical Research 108, 4030.
Hogrefe, O., Schwab, J.J., Drewnick, F., Lala, G.G., Peters, S., Demerjian, K.L., Rhoads. K., Felton, H.D., Rattigan, O.V., Husain, L., Dutkiewicz, V.A., 2004. Semicontinuous PM2.5 sulfate and nitrate measurements at an urban and a rural location in New York: PMTACS-NY summer 2001 and 2002 campaigns. Air & Waste Management Association 54, 1,040–1,060.
Huang, X. Qiu, R. Chan, C.K., Pathak, R. K., 2011. Evidence of high PM2.5 strong
acidity in ammonia-rich atmosphere of Guangzhou, China: Transition in pathways of ambient ammonia to form aerosol ammonium at [NH4+]/[SO42–] =1.5. Atmospheric Research 99, 488–495.
Hsu, N., Herman, J., 2003. Radiative impacts from biomass burning in the presence of
clouds during boreal spring in southeast Asia. Geophysical Research Letters 30, 1,224.
IPCC, 2007. Climate Change 2007, IPCC Fourth Assessment Report, Cambridge
University Press, New York.
Kim, J.S., Kim, Y.J., Park, K., 2011. Measurements of hygroscopicity and volatility of
atmospheric ultrafine particles in the rural Pearl River Delta area of China. Atmospheric Environment 45, 4,661-4,670.
Kivekäs, N., Sun, J., Zhan, M., Kerminen, V. M., Hyvärinen, A., Komppula, M.,
Viisanen, Y., Hong, N., Zhang, Y., Kulmala, M., Zhang, X. C., Deli-Geer, Lihavainen, H., 2009. Long term particle size distribution measurements at Mount Waliguan, a high-altitude site in inland China. Atmospheric Chemistry and Physics 9, 5,461-5,474.
Komppula, M., Lihavainen, H., Hyvärinen, A.P., Kerminen, V.M., Panwar, T. S.,
Sharma, V.P., Viisanen, Y., 2009. Physical properties of aerosol particles at a Himalayan background site in India. Journal of Geophysical Research 114, 12,202.
Koren. I., Remer, L.A., Longo. K., 2007. Reversal of trend of biomass burning in the
Amazon. Geophysical Research Letters 34, L20404.
Krivacsy, Z., Hoffer, A., Sarvari, Zs., Temesi, D., Baltensperger, U., Nyeki, S.,
Weingartner, E., Kleefeld, S., Jennings, S. G., 2001. Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites. Atmospheric Environment 35, 6,231–6,244.
Lee, T., Yu, X.Y., Kreidenweis, S.M., Malm, W.C., Collett, J.L., 2008. Semi-continuous measurement of PM2.5 ionic composition at several rural locations in the United States. Atmospheric Environment 42, 6,655–6,669.
Lee, A.K.Y., Hayden, K.L., Herckes, P., Leaitch, W.R., Liggio, J., Macdonald,
A.M., Abbatt, J.P.D, 2012. Characterization of aerosol and cloud water at a mountain site during WACS 2010: secondary organic aerosol formation through oxidative cloud processing. Atmospheric Chemistry and Physics 12, 7,103–7,116.
Lee, C.T., Hsu, W.C., 1998. A novel method to measure aerosol water mass. Journal
of Aerosol Science 29, 827-837.
Lee, C.T., Hsu, W.C., 2000. The measurement of liquid water mass associated with
collected hygroscopic particles. Journal of Aerosol Science 31, 189–197.
Lee, C.T., Chang, S.Y., 2002. A GC-TCD method for measuring the liquid water mass
of collected aerosols. Atmospheric Environment 36, 1,883-1,894.
Lee, C.T., Chuang, M.T., Lin, N.H., Wang, J.L., Sheu, G.R. Chang, S.C., Wang, S.H.,
Huang, H., Chen, H.W., Liu, Y.L., Weng, G.H., Lai, H.Y., Hsu, S.P., 2011. The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric Environment 45, 5,784-5,794.
Lundgren, D.A., Burton, 1995. Effect of particle size distribution on the cut   point between fine and coarse ambient mass fractions. Inhalation Toxicology 7,   
131-148.
Mangelson, N.F., Lewis, L., Joseph, J.M., Cui, W., Machir, J., Williams, N.W.,
Eatough, D. J., Rees, L. B., Wilkerson, T., Jensen, D. T., 1997. The contribution
of sulfate and nitrate to atmospheric fine particles during winter inversion fogs in
cache valley, utah. Journal of the Air & Waste Management Association, 47, 167-175.
Moore, R.H., Raatikainen, T., Langridge, J.M., Bahreini, R., Brock, C.A., Holloway, J.S., Lack, D.A., Middlebrook, A.M., Perring, A.E., Schwarz, J.P., Spackman, J.R. Nenes, A., 2010. CCN Spectra, Hygroscopicity, and Droplet Activation Kinetics of Secondary Organic Aerosol Resulting from the 2010 Deepwater Horizon Oil Spill. JOURNAL OF GEOPHYSICAL RESEARCH 117, D00V12.
Mwaniki, G.R., Rosenkrance, C., Wallace, H. W., Jobson, B.T., Erickson, M.H., Lamb B.K., Hardy, R. J., Zalakeviciute, R., VanReken, T.M., 2014. Factors contributing to elevated concentrations of PM2.5 during wintertime near Boise, Idaho. Atmospheric Pollution Research 5, 96-103.
Lack, A.M. Middlebrook, A.E. Perring, J.P. Schwarz, J.R. Spackman, and A. NenesMwaniki, G.R., Rosenkrance, C., Wallace, W.H., Jobson, B.T., Erickson, M. H., Lamb, B. K., Hardy R. J., Zalakeviciute, R., VanReken, T.M., 2014. Factors contributing to elevated concentrations of PM2.5 during wintertime near Boise, Idaho. Atmospheric Pollution Research 5, 96‐103.
Ng, N.L., Herndon, S. C., Trimborn, A., Canagaratna, M.R., Croteau, P.L., Onasch,
T.B., Sueper, D., Worsnop, D.R., Zhang, Q., Sun, Y.L., Jayne, J.T., 2011. An
Aerosol Chemical Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass Concentrations of Ambient Aerosol 45, 780-794.
Ohta, S., Okita, T., 1990. A Chemical Characterization of Atmospheric Aerosol in Sapporo. Atmospheric Environment, 24A, 815-822.
Orsini, D.A., Ma, Y., Sullivan, A., Sierau, B., Baumann, K., Weber, R.J., 2003.
Refinements to the particle-into-liquid sampler (PILS) for ground and airborne measurements of water soluble aerosol composition. Atmospheric Environment 37, 1,243-1,259.
Ou Yang, C.F., Lin, N.H., Sheu, G.R., Lee, C.T., Wang, J.L., 2012. Seasonal and
diurnal variations of ozone at a high-altitude mountain baseline station in East Asia. Atmospheric Environment. 46, 279-288.
Park, R.S., Lee, S.J., Shin, S.K., Song, C.H., 2013. Contribution of ammonium nitrate to aerosol optical depth and direct radiative forcing by aerosols over East Asia. Atmospheric Chemistry and Physics 13, 19,193–19,235.
Pathak, R.K., Louie, P.K.K., Chan, C.K., 2004. Characteristics of aerosol acidity in
Hong Kong. Atmospheric Environment 38, 2,965–2,974.
Pathak, R.K., Wu, W.S., Wang, T., 2008. Summertime PM2.5 ionic species
in four major cities of China: Nitrate formation in an ammonia– deficient atmosphere. Atmospheric Chemistry and Physics Discussions 8, 11,487–11,517.
Pathak, R.K., Wu, W.S., Wang, T., 2009. Summertime PM2.5 ionic species in four
major cities of China: nitrate formation in an ammonia-deficient atmosphere. Atmospheric Chemistry and Physics 9, 1,711–1,722.
Pathak, R.K., Wang, T., Ho, K.F., Lee, S.C., 2011. Characteristics of summertime
PM2.5 organic and elemental carbon in four major Chinese cities: Implications of high acidity for water-soluble organic carbon (WSOC). Atmospheric Environment 45, 318-325.
Petters, M.D., Kreidenweis, S.M., 2007. A single parameter representation of
hygroscopic growth and cloud condensation nucleus activity. Atmospheric Chemistry and Physics 7, 1,961-1,971.
Pierce, J. R., Chen, K., Adams, P. J., 2007. Contribution of primary carbonaceous aerosol to cloud condensation nuclei: processes and uncertainties evaluated with a global aerosol microphysics model, Atmospheric Chemistry and Physics 7, 5,447–5,466.
Ram, K., Sarin, M.M., 2011. Day–night variability of EC, OC, WSOC and inorganic
ions in urban environment of Indo-Gangetic Plain: Implications to secondary aerosol formation. Atmospheric Environment 45, 460–468.
Rengarajan, R., Sudheer, A.K., Sarin, M.M., 2011. Aerosol acidity and secondary
organic aerosol formation during wintertime over urban environment in western India. Atmospheric Environment 45, 1,940-1,945.
Roberts, G. C., Day, D. A., Russell, L. M., Dunlea, E. J., Jimenez, J. L., Tomlinson, J. M., Collins, D. R., Shinozuka, Y., Clarke, A. D., 2010. Characterization of particle cloud droplet activity and composition in the free troposphere and the boundary layer during INTEX-B. Atmospheric Chemistry and Physics 10, 6,627–6,644.
Ryerson, T. B., Trainer, M., Holloway, J. S., Parrish, D. D., Huey, L. G., Sueper, D. T., Frost, G. J., Donnelly, S. G., Schauffler, S., Atlas, E. L., Kuster, W. C., Goldan, P. D., Hubler, G., Meagher, J. F., Fehsenfeld, F.C., 2001. Observations of Ozone Formation in Power Plant Plumes and Implications for Ozone Control Strategies. Science 292, 719-723.
Ryu, S. Y., Kwon, B. G., Kim, Y. J., Kim, H. H., Chun, K. J., 2006. Characteristics of
biomass burning aerosol and its impact on regional air quality in the summer of 2003 at Gwangju, Korea. Atmospheric Research 84, 362-373.
Schlager, H., Arnold, F., Hofmann, D., Deshler, T., 1990. Balloon observations of nitric–acid aerosol formation in the Arctic stratosphere 1. Gaseous nitric–acid. Geophysical Research Letters 17, 1,275–1,278.
Seinfeld, J.H., Pandis, S.N., 2006. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change..
Sheu, G.R., Lin, N.H., Wang, J.L., Lee, C.T., Ou Yang, C.F., Wang, S.H., 2010. Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan. Atmospheric Environment 44, 2,393-2,400.
Shon, Z.H., Kim, K. H., Song, S. K., Jung, K., Kim, N.J., Lee, J. B., 2012.
Relationship between water-soluble ions in PM2.5 and their precursor gases in Seoul megacity. Atmospheric Environment 59, 540-550
Solomon, S., Portmann. R. W., Garcia. R. R., Thomason. L. W., Poole, L. R., McCormic, M. P., 1984. The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes. Journal of Geophysical Research: Atmospheres 101, 6,713–6,727.
Spracklen, D. V., Carslaw, K. S., P¨oschl, U., Rap, A., Forster, P. M., 2011. Global cloud condensation nuclei influenced by carbonaceous combustion aerosol, Atmospheric Chemistry and Physics 11, 9067–9087.
Streets, D. G., Yarber, K. F., Carmichael, G. R., 2003. Biomass burning in Asia:
Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles 17, 1099.
Tang, I.N., 1980. Deliquescence properties and particle size change of hygroscopic    
  aerosols. In generation of aerosols and facilities for exposure experiments , Ann Arbour Science Publishers 7, 153–167.
Truex, T. J., Pierson, W. R., Mckee, D. E., 1980. Sulfate in diesel exhaust. Environmental Science and Technology 14, 1,118–1,121.
Venzac, H., Sellegri, K., Villani, P., Picard, D., Laj, P., 2009. Seasonal variation of
aerosol size distributions in the free troposphere and residual layer at the puy de Dôme station, France. Atmospheric Chemistry and Physics 9, 1,465-1,478.
Voutsa, D., Samara, C., Manoli, E., Lazarou, D., Tzoumaka, P., 2014. Ionic composition of PM2.5 at urban sites of northern Greece: secondary inorganic aerosol formation. Environmental Science and Pollution Research 7, 4,995-5,006.
Wang, Y., Guo, J., Wang, T., Ding, A., Gao, J., Zhou, Y., Collett, Jr., J.L., Wang, W.,
2011. Influence of regional pollution and sandstorms on the chemical composition of cloud/fog at the summit of Mt. Taishan in northern China. Atmospheric Research 99, 434–442.
Xue, J., Lau, A.K.H, Yu, J.Z., 2011. A study of acidity on PM2.5 in Hong Kong using
online ionic chemical composition measurements. Atmospheric Environment 45, 7,081–7,088.
Yao, X.H., Chan, C.K., Fang, M., Cadle, S., Chan. T., Mulawa, P., He, K., Ye, B., 2002. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmospheric Environment 36, 4,223-4,234.
Yao, X.H., Ling, T.Y., Fang, M., Chan, C.K., 2006. Comparison of thermodynamic
predictions for in situ pH in PM2.5. Atmospheric Environment 40, 2,835–2,844.
Yao, X.H., Shairsingh, K., Lam, P.H., Evans, G.J., 2009. Underestimation of sulfate
concentration in PM2.5 using a semi-continuous particle instrument based on ion chromatography. Journal of Environmental Monitoring 11, 1,292-1,297.
Zhang, T., Cao, J.J., Tie, X.X., Shen, Z.X., Liu, S.X., Ding, H., Han, Y.M., Wang,
G.H., Ho, K.F., Qiang, J., Li, W.T., 2011. Water-soluble ions in atmospheric aerosols measured in Xi′an, China: Seasonal variations and sources 102, 110-119.
Zhang, L., Jacob, D. J., Knipping, E. M., Kumar, N., Munger, J. W., Carouge, C. C.,
van Donkelaar, A., Wang, Y. X., and Chen, D., 2012. Nitrogen deposition to the United States: distribution, sources, and processes, Atmospheric Chemistry and Physics 12, 4,539–4,554.
Zhang, Q., Tie, X., Lin, W., Cao, J., Quan, J., Ran, L., Xu, W., 2013. Variability of SO2 in an intensive fog in North China Plain: Evidence of high solubility of SO2, Atmospheric Environment 11, 41-47.
Zhou,Y., Xuea, L., Wang, T., Gao, X., Wang, Z., Wang, X., Zhang, J., Zhang, Q., Wang, W., 2012. Characterization of aerosol acidity at a high mountain site in central eastern China, Atmospheric Environment 51, 11-20.
行政院環境保護署環境檢驗所,2004。環境檢驗方法偵測極限測定指引(NIEA-PA107)。
許紹鵬,2010,鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性。國立中央大學環境工程研究所碩士論文。
張佑嘉,2011,中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性。國立中央大學環境工程研究所碩士論文。
許博閔,2011。鹿林山大氣背景站不同氣團氣膠光學特性。國立中央大學環境工程研究所碩士論文。
林書暉,2013。2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化。國立中央大學環境工程研究所碩士論文。
巫學蒼,2013。2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析。國立中央大學環境工程研究所碩士論文。
葉宗鑫,2014。東南亞生質燃燒源區及下風區氣膠與雲凝結核特性探討:泰北安康山與台灣鹿林山之比較分析。國立中央大學大氣物理研究所碩士論文。
洪國鈞,2014。中南半島生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析。國立中央大學環境工程研究所碩士論文。
指導教授 李崇德 審核日期 2014-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明