博碩士論文 100326002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.145.92.29
姓名 林信賢(Hsin-hsien Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以熱裂解去除土壤中六氯苯之效率探討
(Removal of hexachlorobenzene from soil by pyrolysis)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 六氯苯過去廣泛應用於農業作為制菌劑,具有難降解、生物累積毒性等特性,為疏水性物質,易和土壤行疏水性吸附而難以去除。本研究配置六氯苯污染土壤,以靜態及動態熱裂解兩種方式,分別探討土壤中六氯苯去除效率及氯苯分布,並嘗試添加零價鐵,探討其在熱裂解系統中對六氯苯去除效率之影響。靜態結果顯示未添加零價鐵,操作時間60分鐘,250oC、300oC、350oC及400oC之六氯苯去除效率為18%、42%、74%及96%,去除效率隨著溫度升高而提升,而各操作溫度隨著操作時間從30分鐘增加至60分鐘,去除效率皆未顯著提升;添加5%奈米零價鐵於操作時間60分鐘,250oC、300oC、350oC及400oC之六氯苯去除效率為則為34%、42%、67%及97%,250oC時去除效果優於未添加之情況,然而於350oC去除效率卻較未添加零價鐵為低,顯示加入零價鐵於不同溫度對六氯苯去除效率有不同程度之影響。動態系統未添加零價鐵時,操作時間60分鐘,250oC、300oC、350oC及400oC之六氯苯去除效率為22%、53%、66%及88%,添加5%奈米零價鐵之效率為36%、51%、65%及88%,去除效率隨著溫度升高而提升,和靜態系統之趨勢相同。然而兩系統於添加零價鐵後皆有其他氯數之氯苯生成,其中350oC生成最為顯著。氯苯生成量於400oC大幅降低,顯示此溫度之破壞效率已大於生成效率。零價鐵於熱裂解系統內釋出電子並對六氯苯進行降解,反應後Fe2+及Fe3+可能與土壤中之元素生成金屬催化物,例如FeCl2, FeCl3,催化致使氯苯生成。戴奧辛生成以350oC時最為顯著,以高氯數戴奧辛為主;毒性當量之貢獻以2,3,7,8-TeCDD、1,2,3,7,8-PeCDD及2,3,4,7,8-PeCDF最為顯著,顯示於缺氧情況下,以熱裂解去除土壤中六氯苯之過程仍有戴奧辛生成之潛勢能。然而400oC未見戴奧辛生成,顯示400oC之戴奧辛破壞效率高於生成效率。
摘要(英) Hexachlorobenzene (HCB) was widely used in agriculture as pesticides. Some of the important characteristics of HCB include low water solubility, bioaccumulation. It is easy to adsorb and difficult to remove from soil. In this study, pyrolysis with static system and dynamic system are applied to treat HCB-contaminated soil, the impact of nanoscale iron on HCB removal will also be evaluated. The results display the HCB removal efficiencies achieved with the static system with temperature varying from 250 to 300, 350oC and 400oC at 60 min without nZVI are 18%, 42%, 74% and 96%, respectively. It displays the benefit of HCB removal at a higher temperature. However, the removal efficiency does not change much as the treatment time is extended from 30 to 60 min. The HCB removal efficiencies achieved with temperature varying from 250 to 300, 350oC and 400oC at 60 min with 5%-nZVI are 34%, 42%, 67% and 97%, respectively. The HCB removal efficiency increases at 250oC if compared with the case without nZVI but decreases at 350oC. It displays that nZVI has different effects on HCB removal at different temperatures. The results obtained with the dynamic system indicate that HCB removal efficiencies achieved with temperature varying from 250 to 300, 350 and 400oC at 60 min without nZVI are 22%, 53%, 66 and 87%, respectively. In the presence of 5%-nZVI, the HCB removal efficiencies achieved are 36%, 51%, 65 and 87%, respectively. These trends are similar to that observed in static system. The results obtained from both static system and dynamic system indicate that CBs are generated when nZVI is added. CBs are generated significantly at 350oC but decreased at 400oC. It indicates that the destruction efficiency is increased significantly at 400oC. Possible reasons of CB generated are that nZVI release electrons and generate other iron-containing compounds, like FeCl2 or FeCl3. Precursors exist in soil may react with chloride to form chlorobenzenes through the catalysis of these iron-containing compounds. PCDD/Fs are generated significantly at 350oC and form higher chlorinated congeners. 2,3,7,8-TeCDD, 1,2,3,7,8-PeCDD and 2,3,4,7,8-PeCDF are the main species contributing to toxicity. On the other hand, formation of PCDD/Fs is not significant for the system operating at 400oC. It indicates that pyrolysis of HCB-contaminated soil also generates PCDD/Fs even oxygen is not provided to the system.
關鍵字(中) ★ 六氯苯
★ 熱裂解
★ 零價鐵
★ 戴奧辛生成
關鍵字(英) ★ Hexachlorobenzene
★ Pyrolysis
★ nZVI
★ PCDD/Fs formation
論文目次 摘要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 x
第一章 前言 1
研究源起及目的 1
第二章 文獻回顧 3
2.1 持久性有機污染物 3
2.2 六氯苯 3
2.2.1六氯苯生物毒性 7
2.2.2六氯苯國內外污染案例及法規標準 8
2.3 戴奧辛生成機制 9
2.4 POPS污染土壤整治方法 13
2.5 熱處理技術 15
2.5.1 焚化/燃燒技術 15
2.5.2 熱脫附技術 16
2.5.3 熱裂解技術 18
2.6 各種土壤污染整治技術所需經費之比較 22
2.7 奈米零價鐵特性與發展 23
2.7.1 零價鐵 23
2.7.2 零價鐵還原脫氯機制 24
2.7.3 奈米化零價鐵特性 26
2.7.4 零價鐵合成方式 26
2.8 利用奈米零價鐵去除含氯污染物文獻總述 27
第三章 研究方法與設備 31
3.1 污染土壤配置 31
3.2 建立批次熱裂解系統 32
3.3土壤基本特性分析 36
3.3.1元素分析儀 36
3.3.2感應耦合電漿質譜儀法 37
3.4 奈米零價鐵製備及零價鐵分析方法 38
3.4.1 奈米零價鐵合成 38
3.4.2 零價鐵分析方法 39
3.5 土壤中六氯苯及副產物分析 41
3.5.1 索式萃取法 41
3.5.2 淨化程序 42
3.5.3 氯苯分析程序 44
3.6 戴奧辛分析 46
3.6.1 樣品萃取程序 46
3.6.2 淨化程序 46
3.6.3 HRMS分析程序 49
3.7 實驗之藥品、溶劑、材料、設備 55
3.7.1 實驗藥品 55
3.7.2 實驗溶劑 55
3.7.3 實驗材料 55
3.7.4 實驗設備 56
第四章 結果與討論 57
4.1 土壤基本特性分析探討 57
4.1.1 土壤中元素分析 57
4.1.2 土壤中氯鹽分析 58
4.2 奈米零價鐵特性分析及其反應性 59
4.2.1 比表面積分析 59
4.2.2 XRD及SEM分析 59
4.3 批次熱裂解探討 61
4.3.1 靜態熱裂解系統對土壤中HCB之去除效率 61
4.3.2 靜態熱裂解後土壤中CBs氣、固相濃度分佈 64
4.3.3 靜態熱裂解後土壤中CBs總濃度分佈 68
4.3.4 動態熱裂解系統對土壤中HCB之去除效率 70
4.3.5 動態熱裂解後土壤中CBs氣、固相濃度分佈 71
4.3.6 靜態及動態熱裂解系統之比較 74
4.3.7 六氯苯降解動力參數 77
4.3.8 氯苯生成機制探討 80
4.3.9 六氯苯污染土壤熱裂解副產物分析 83
4.3.10 熱裂解系統之戴奧辛生成潛能 84
第五章 結論與建議 90
5.1 結論 90
5.2 建議 91
參考文獻 92
參考文獻 Addink R., Olie K., 1995. Role of oxygen in formation of polychlorinated dibenzo-p-dioxins/dibenzofurans from carbon on fly ash, Environmental Science and Technology, 29, 1586-1590.
Agency for Toxic Substances and Disease Registry, U.S. 1999. Public health service, ATSDR’s toxicological profiles on CD-ROM, CRCnetBase.
Altarawneh M., Dlugogorski B.Z., Kennedy E.M., Mackie J.C., 2007. Mechanisms for PCDFs and PCBs formations from fires: pathways from oxidation of chlorobenzenes. Seventh Asia–Oceania Symposium on Fire Science and Technology, Hong Kong.
Altwicker E., Milligan M.S., 1993. Dioxin formation from tetrachlorophenol over fly ash under breakthrough conditions. Organohalogen Compound, 11, 269-272.
Anna D.O., 2011. Risk assessment for water infrastructure safety and security. CRC Press. ISBN-10: 143985341X.
Augustijn-Beckers P.W.M., Hornsby, A.G., Wauchope R.D.,1994. SCS/ARS/CES pesticide properties database for environmental decision making II. Additional compounds. Reviews of Environment Contamination and Toxicology, 137, 1-82.
Bailey R.E., 2001. Global hexachlorobenzene emissions. Chemosphere, 43, 167-182.
Barber J.L., Sweetman A.J., Wijk D., Jones K.C., 2005. Hexachlorobenzene in the global environment: Emissions, levels, distribution, trends and processes. Science of the Total Environment, 349, 1-44.
Booij K., Hoedemaker J.R., Bakker J.F., 2003. Dissolved PCBs, PAHs, and HCB in pore waters and overlying waters of contaminated harbor sediments. Environmental Science and Technology, 37, 4213-4220.
Born J.G.P., Mulder P., Louw R., 1993. Fly ash mediated reactions of phenol and monochlorophenols: Oxychlorination, deep oxidation, and condensation. Environmental Science and Technology, 27, 1849-1863.
Brubaker W.W.J., Hites R.A., 1998. OH reaction kinetics of gas-phase α- and ϒ- hexachlorocyclohexane and hexachlorobenzene, Environmental Science and Technology, 32, 766–769.
Buser H.R., 1979. Formation of polychlorinated dibenzofurans (PCDF) and dibenzo-p-dioxins (PCDDs) from the pyrolysis of chlorobenzenes. Chemosphere, 6, 415-424.
Celis E.M., Chilean Case Study, 1990, http://www.chem.unep.ch/pops/POPs_Inc/proceedings/Iguazu/CELIS.html
Cheng R., Zhou W., Wang J.L., Qi, D., Guo L., Zhang W.X., Qian, Y., 2010. Dechlorination of pentachlorophenol using nanoscale Fe/Ni particles: role of nano Ni and its size effect. Journal of Hazardous Materials, 180, 79-85.
Cheng S.F., Wu S.C., 2000. The enhancement methods for the degradation of TCE by zero-valent metals. Chemosphere, 41, 1263-1270.
Chiappini F., Alvarez L., Lux-Lantos V., Randi A.S., Kleiman de Pisarev DL., 2009. Hexachlorobenzene triggers apoptosis in rat thyroid follicular cells. Toxicological Sciences, 108, 301-310.
Chu I., Villeneuve D., Secours V., Valli V.E., 1983. Comparative toxicity of 1,2,3,4‐, 1,2,4,5‐, and 1,2,3,5‐tetrachlorobenzene in the rat: Results of acute and subacute studies. Journal of Toxicology and Environmental Health, 11, 663-677.
Cong X., Xue N., Wang S., Li K., Li F., 2010. Reductive dechlorination of organochlorine pesticides in soils from an abandoned manufacturing facility by zero-valent iron. Science of the Total Environment, 408, 3418-3423.
Dang D.N., Nguyen M.A., Carvalho F.P., Villeneuve J.P., Cattini C., 1999. Organochlorine pesticides and PCBs along the coast of North Vietnam. Science of the Total Environment, 30, 237-238.
Dickson L.C., Lenoir D., Hutzinger O., 1989. Surface-catalyzed formation of chlorinated dibenzodioxins and dibenzofurans during incineration, Chemosphere, 19, 277-282.
Dickson L.C., Lenolr D., Hutzinger O., 1992. Quantitative comparison of de Novo and precursor formation of polychlorinated dibenzo-p-dioxins under simulated municipal solid waste incinerator postcombustion conditions. Environmental Science and Technology, 26, 1822-1828.
Evans C.S., Dellinger B., 2005. Mechanisms of dioxin formation from the hightemperature oxidation of 2-chlorophenol. Environmental Science and Technology, 39, 122-127.
Everaert K., Baeyens J., 2002. The formation and emission of dioxins in large scale thermal processes. Chemosphere, 46. 439-448.
Froese K.L., Hutzinger O., 1996. Polychlorinated benzene, phenol, dibenzo-p-dioxin, and dibenzofuran in heterogeneous combustion reactions of acetylene. Environmental Science and Technology, 30, 998-1008.
Gao, X., Wang, W., Liu, X., 2007. Low-temperature dechlorination of hexachlorobenzene on solid supports and pathway hypothesis. Chemosphere, 71, 1093-1099.
Gao X., Wang W., Liu X., 2009. Dechlorination reaction of hexachlorobenzene with calcium oxide at 300-400◦C. Journal of Analytical and Applied Pyrolysis, 47, 77-94.
Gopalakrishnan J., 2004. Physiological and enzymatic studies of respiration in dehalococcoides species strain CBDB1. Dissertation.
Gudahy J.J., Troxler W.L., Yezzi J.J., Rosenthal S.I., 1993. Treatment of non-hazardous petroleum-contaminated soils by thermal desorption technologies, Journal of the Air and Waste Management Association, 43, 1512-1525.
Gullett B.K., Bruce K.R., Beach L.O., 1992. Effect of sulfur dioxide on the formation mechanism of polychlorinated dibenzodioxin and dibenzofuran in municipal waste combustors. Environmental Science and Technology, 26, 1938-1943.
Gullett B.K., Bruce K.R., Beach L.O., Drago A.M., 1992. Mechanistic steps in the production of PCDD and PCDF during waste combustion. Chemosphere, 25, 1387-1392.
Hadjab S., Maurel D., Cazals Y., Siaud P., 2004. Hexachlorobenzene, a dioxin-like compound, disrupts auditory function in rat. Hearing Research, 191, 125-134.
Hagenmaier H., Brunner H., Haag R., Kraft M., Lützke K., 1987. Problems associated with the measurement of PCDD and PCDF emissions from waste incineration plants. Waste Management and Research, 5, 239-250.
Hwang Y.H., Kim D.G., Shin H.S., 2011. Effects of synthesis conditions on the characteristics and reactivity of nano scale zero valent iron. Applied Catalysis B: Environmental, 105, 144-150.
Ishida M., Shiji R., Nie P., Nakamura N., Sakai S.I., 1998. Full-scale plant study on low temperature thermal dechlorination of PCDDs/PCDFs in fly ash, Chemosphere, 37, 2299-2308.
Jarrell J.F., McMahon A., Villeneuve D., Franklin C., Singh A., Valli V.E., 1993. Hexachlorobenzene toxicity in the monkey primordial germ cell without induced porphyria. Reprod Toxicology, 7, 41-47.
Jou C.J.G., Hsieh S.C., Lee C.L., Lin C., Huang H.W., 2010. Combining zero valent iron nanoparticles with microwave energy to treat chlorobenzene. Journal of Taiwan Institute of Chemical Engineers, 41, 216-220.
Katsenovich, Y. P., Wilhelm, F.R.M., 2009. Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soil. Science of the Total Environment, 407, 4986-4993.
Klusmeier W., Vögler P., Ohrbach K.H., Weber H., Kettrup A., 1988. Thermal decomposition of pentachlorobenzene, hexachlorobenzene and octachlorostyrene in air. Journal of Analytical and Applied Pyrolysis, 14, 25-36.
Kommalapati R.R., Valsaraj K.T., Constant W.D., Roy D., 1997. Aqueous solubility enhancement and desorption of hexachlorobenzene from soil using a plantbased surfactant, Water Research, 31, 2126-2170.
Kwok E.S.C., Atkinson R., 1995. Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: An update. Atmospheric Environment, 29, 1685-1695.
Landers J.P., Bunce N.J., 1991. The Ah receptor and the mechanism of dioxin toxicity, Biochemical Journal, 276, 273-187.
Lee C.L., Lee H.Y., Tseng K.H., Hong P.K.A., Jou C.J.G., 2011. Enhanced dechlorination of chlorobenzene by microwave-induced zero-valent iron: particle effects and activation energy. Environmental Chemistry Letters 9, 355-359.
Lee J.K., Park D., Kim B.U., Dong J.I., Lee S., 1998. Remediation of petroleum-contaminated soils by fluidized thermal desorption. Waste Management, 18, 503-507.
Lee W.J., Shih S.I., Chang C.Y., Lai, Y.C., Wang L.C., Chang-Chien G.P., 2008. Thermal treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans from contaminated soils. Journal of Hazardous Materials, 160, 220-227.
Lelli S.M., Ceballos N.R., Mazzetti M.B., Aldonatti C. A., San Martín de Viale L.C., 2007. Hexachlorobenzene as hormonal disruptor—studies about glucocorticoids: Their hepatic receptors, adrenal synthesis and plasma levels in relation to impaired gluconeogenesis. Biochemical Pharmacology, 73, 873-879.
Li T., Yuan S., Wan J., Lu X., 2010. Hydroxypropyl-cyclodextrin enhanced electrokinetic remediation of sediment contaminated with HCB and heavy metals. Journal of Hazardous Materials, 176, 306-312.
Li X.Q., Cao J., Zhang W.X., 2008. Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI):  A study with high-resolution X-ray photoelectron spectroscopy (HR-XPS). Industrial and Engineering Chemistry Research, 47, 2131-2139.
Li L., Fan M., Brown R.C., Leeuwen J.V., Wang J., Wang W., Song Y., Zhang P., 2006. Synthesis, properties and environmental applications of nanoscale iron based materials: A review. Environmental Science and Technology, 36, 405-431.
Liao C.J., Chung T.L., Chen W.L., Kuo S.L., 2007. Treatment of PCP-contaminated soil using nanoscale zero-valent iron with hydrogen peroxide. Journal of Molecular Catalysis A: Chemical, 265, 189-194.
Linder R., Scotti T., Goldstein J., McElroy K., Walsh D., 1980. Acute and subchronic toxicity of pentachlorobenzene. Journal of Environmental Pathology and Toxicology, 4, 183-196.
Liu W., Zheng M., Wang D., Xing Y., Zhao X., Ma X., Qian Y., 2004. Formation of PCDD/Fs and PCBs in the process of production of 1,4-dichlorobenzene. Chemosphere, 57, 1317-1323.
Luijk R., Akkerman D.M., Slot P., Olie K., Kapteijn F., 1994. Mechanism of formation of polychlorinated dibenzo-p-dioxins and dibenzofurans in the catalyzed combustion of carbon, Environmental Science and Technology, 28, 312-321.
Lundin L., Marklund S., 2005. Thermal degradation of PCDD/F in municipal solid waste ashes in sealed glass ampules, Environmental Science and Technology, 39, 3872-3877.
Ma X., Zheng M., Liu W., Qian Y., Zhao X., Zhang B., 2005. Synergic effect of calcium oxide and iron (III) oxide on the dechlorination of hexachlorobenzene. Chemosphere, 60, 796-801.
Mackay D., 1992. Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals. Vol. I. Monoaromatic hydrocarbons, chlorobenzenes, and PCBs. Chelsea, MI, Lewis Publishers.
Matheson L.J., and Tratnyek P.G., 1994. Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science and Technology, 28, 2045-2053.
Matheus D.R., Bononi V.L.R., Machado K.M.G., 2000. Biodegradation of hexachlorobenzene by basidiomycetes in soil contaminated with industrial residues. Journal of Microbiology and Biotechnology, 16, 415-421.
Mejdoub N.E., Souizi A., Delfosse L., 1998. Experimental and numerical study of the thermal destruction of hexachlorobenzene. Journal of Analytical and Applied Pyrolysis, 47, 77-94.
Merino J., Bucalá V., 2007. Effect of temperature on the release of hexadecane from soil by thermal treatment. Journal of Hazardous Materials, 143, 455-461.
Milligan M.S., Altwicker E., 1993. The relationship between de novo synthesis of polychlorinated dibenzo-p-dioxins and dibenzofurans and low-temperature carbon gasification in fly ash. Environmental Science and Technology, 27,1595-1601.
Misaka Y., Yamanaka K., Takeuchi K., Sawabe K., Shobatake K., 2006. Removal of PCDDs/DFs and dl-PCBs in MWI fly ash by heating under vacuum, Chemosphere, 64, 619-627.
Mitoma Y., Makitakase N., Hidekitashiro T., Egashira N., 2006. Calcium-promoted catalytic degradation of PCDDs, PCDFs and coplanar PCBs under a mild wet process. Environmental Science and Technology, 40, 1849-1854.
Naikwadi K.P., Albrecht I.D., Karasek F.W., 1993. Mechanism of formation of PCDD/PCDF in industrial waste incineration and a method of prevention of their formation. Chemosphere, 27, 335-342.
Nganai S., Lomnicki S.M., Dellinger B., 2011. Formation of PCDD/Fs from the copper oxide-mediated pyrolysis and oxidation of 1,2-Dichlorobenzene, Environmental Science and Technology, 45, 1034-1040.
Noubactep C., 2009. The suitability of metallic iron for environmental remediation. Environmental Progress and Sustainable Energy, 29, 286-291.
Nurmi J.T., Tratnyek P.G., Sarathy V., Baer D.R., Amonette J.E., Pecher K., Wang C., Linehan J.C., Matson D.W., Penn R.L., Driessen M.D., 2005. Characterization and properties of metallic iron particles: Spectroscopy, electrochemistry and kinetics. Environmental Science and Technology, 39, 1221-1230.
Oonnittan A., Isosaari P., Sillanpää M., 2010. Oxidant availability in soil and its effect on HCB removal during electrokinetic Fenton process. Separation and Purification Technology, 76, 146-150.
Paul B., 2009. Toxic waste in our midst: Towards an interdisciplinary analysis. Journal of Environmental Management, 90, 1559-1566.
Philipp B., Stevens P., 1987. Grundzüge der Industriellen Chemie, 176, ISBN 3-527-25991.
Rasulev B., Kušić H., Leszczynska D., Leszczynski J., Koprivanac N., 2010. QSAR modeling of acute toxicity on mammals caused by aromatic compounds : the case study using oral LD50 for rats. Journal of Environmental Monitoring, 12, 1037-1044.
Risoul V., Renauld V., Trouvé G., Gilot P., 2002. A laboratory pilot study of thermal decontamination of soils polluted by PCBs. Comparison with thermogravimetric analysis. Waste Management, 22, 61-72.
Risoul V., Richter H., Lafleur A.L., Plummer E.F., Gilot P., Howard J.B., Peters W.A., 2005. Effects of temperature and soil components on emissions from pyrolysis of pyrene-contaminated soil. Journal of Hazardous Materials, 126, 128-140.
Satapanajaru T., Anurakpongsatorn P., Pengthamkeerati P., Boparai H., 2008. Remediation of Atrazine contaminated soil and water by nano zero valent iron. Water Air and Soil Pollution, 192, 349-359.
Satapanajaru T., Onanong S., Confort S.D., Snow D.D., Cassada D.A., Harris C., 2009. Remediating dinoseb contaminated soil with zerovalent iron. Journal of Hazardous Materials, 168, 930-937.
Sato T., Todoroki T., Shimoda K., Teradab A., Hosomi M., 2010. Behavior of PCDDs/PCDFs in remediation of PCBs-contaminated sediments by thermal desorption. Chemosphere, 80, 184-189.
Schoonenboom M.H., Tromp P.C., Olie K., 1995. The formation of coplanar PCBs, PCDDs and PCDFs in a fly ash model system. Chemosphere, 30, 1341-1349.
Schwarz G., Steiglitz L., Roth W., 1990. Formation conditions of several polychlorinated compound classes on fly ash of a municipal waste incinerator, Organohalogen Compounds, 3, 169-172.
Shea P.J., Machacek T.A., Comfort S.D., 2004. Accelerated remediation of pesticide-contaminated soil with zerovalent iron. Environmental Pollution, 132, 183-188.
Shih Y.H., Hsu C.Y., Su Y.F., 2011. Reduction of hexachlorobenzene by nanoscale zero valent iron: Kinetics, pH effect, and degradation mechanism. Separation and Purification Technology, 76, 268-274.
Shih Y.H., Tai Y.T., 2010. Reaction of decabrominated diphenyl ether by zerovalent iron nanoplarticles. Chemosphere, 78, 1200-1206.
Shiu W.Y., Ma K.C., 2000. Temperature dependence of physical–chemical properties of selected chemicals of environmental interest. II. Chlorobenzenes, polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, and dibenzofurans. Journal of Physical and Chemical Reference Data, 29, 387-426.
Singhal, R.K., Gangadhar, B., Basu, H., Manisha, V., Naidu, G.R.K., Reddy, A.V.R., 2012. Remediation of Malathion contaminated soil using zero valent iron nano particles. American Journal of Analytical Chemistry, 3, 76-82.
Sommeling P.M., Mulder P., Louw R., 1994. Formation of PCDFs during chlorination and oxidation of chlorobenzene in chlorine/oxygen mixtures around 340 °C, Chemosphere, 29 ,2015-2018.
Song G.J., Kim S.H., Seo Y.C., Kim S.C., 2008. Dechlorination and destruction of PCDDs/PCDFs in fly ashes from municipal solid waste incinerators by low temperature thermal treatment, Chemosphere, 71, 248-257.
Stieglitz L., Bautz H., Roth W., Zwick G., 1997. Investigation of precursor reactions in the de-novo-synthesis of PCDD/PCDF on fly ash. Chemosphere, 34, 1083-1090.
Stieglitz L., Vogg H., 1987. On formation conditions of PCDD/PCDF in fly ash from municipal waste incinerators. Chemosphere, 16, 1917-1922.
Stieglitz L., Vogg H., 1988. Report KFK 4379, Laboratorium fur Isotopentechnik, Institut fur Heize Chemi, Kernforschungszentrum Karlsruhe.
Sun Y.P., Li X.Q., Cao J., Zhang W.X., Wang H.P., 2006. Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 120, 47-56.
Swami K., Narang A.S., Narang R.S., Eadon G.A., 1992. Thermally induced formation of PCDD and PCDF from tri- and tetrachlorobenzene in dielectric fluids. Chemosphere, 24, 1845-1853.
Taniguchi S., Miyamura A., Ebihara A., Hosomi M., Murakami A., 1998. Treatment of PCB-contaminated soil in a pilot-scale continuous decomposition system. Chemosphere, 37, 2315-2326.
Taniguchi S., Murakami A., Hosomi M., Miyamura A., Uchida R., 1997. Chemical decontamination of PCB-contaminated soil. Chemosphere, 34, 1631-1637.
TCI America. Material Safety Data Sheet. Portland OR. 1-800-423-8616.
Thuan T.N., 2012. Investigation on low-temperature pyrolysis of pentachlorophenol-contaminated soil. National Central University, Graduate Institute of Environmental Engineering. Doctoral Dissertation.
Tong M., Yuan S., 2012. Physiochemical technologies for HCB remediation and disposal: A review. Journal of Hazardous Materials, 229, 1-14.
USEPA, 2000. Draft PBT national action plan for hexachlorobenzene (HCB) for public review.
Vogg H., Stieglitz L., 1986. Thermal behavior of PCDD/PCDF in fly ash from municipal incinerators, Chemosphere, 15, 1373-1378.
Vrana B., Paschke A., Popp P., Schuurman G., 2001. Use of semi-permeable membranes: Determination of bioavailable organic waterbourne contaminants in the industrial region of Bitterfeld, Saxony- Anhalt, Germany. Environmental Science and Pollution Research, 8, 27-34.
Wan J., Li Z., Lu X., Yuan S., 2010. Remediation of a hexachlorobenzene-contaminated soil by surfactant-enhanced electrokinetics coupled with microscale Pd/Fe PRB. Journal of Hazardous Materials, 184, 184-190.
Wang W., Gao X., Zheng L., Lan Y., 2006. Reductive dechlorination of polychlorinated dibenzo-p-dioxins and dibenzofurans in MSWI fly ash by sodium hypophosphite. Separation and Purification Technology, 52, 186-190.
Weber R., Nagai K., Nishino J., Shiraishi H., Ishida M., Takasuga T., Konndo K., Hiraoka M., 2002b. Effects of selected metal oxides on the dechlorination and destruction of PCDD and PCDF, Chemosphere, 46, 1247-1253.
Weber R., Sakurai T., 2001. Formation characteristics of PCDD and PCDF during pyrolysis processes, Chemosphere, 45, 1111-1117.
Weber R., Takasuga T., Nagai K., Shiraishi H., Sakurai T., Matuda T., Hiraoka M., 2002a. Dechlorination and destruction of PCDD, PCDF and PCB on selected fly ash from municipal waste incineration, Chemosphere, 46, 1255-1262.
Wu W.Z., Schramm K.W., Henkelmann B., Xu Y., Yedile A., Kettrup A., 1997. PCDD/Fs, PCBs, HCHs and HCB in sediments and soils of YA-ER lake area in China: results on residual levels and correlation to the organic carbon and the particle size. Chemosphere, 34, 191-201.
Yuan S., Tian M., Lu X., 2006. Microwave remediation of soil contaminated with hexachlorobenzene. Journal of Hazardous Materials, 137, 878-885.
Yuan S.Y., Su C.J., Chang B.V., 1999. Microbial dechlorination of hexachlorobenzene in anaerobic sewage sludge. Chemosphere, 38, 1015-1023.
Zhang W.X., 2003. Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 5, 323-332.
Zhang W.X., Wang C.B., 1997. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science and Technology, 31, 2154-2156.
馬運、黃啟飛、趙秀蘭,2009年,六氯苯在中國典型持久性有機污染物污染場地中空問分佈研究,環境污染與防治第31卷第3期。
高學睿、董斌、黃爽、陳秀紅、王建漳、鄭傳舉,2010年,漳河灌區水稻種植前后土壤養分變化研究,灌溉排水學報第4期。
範藝寬、張翔、黃元炯、寶德俊、馬京民,2003年,河南煙區土壤和灌溉水氯含量狀況評價,煙草科技/栽培與調製第8期39-41頁。
賴慧如、潘文捷、陳冠宇、劉聰德、陳裕太、李美貴、余光昌,2005年,比較微米級和奈米級零價鐵對水中五氯酚之去氯處理,嘉南學報第三十一期147-161頁。
環保署毒災應變諮詢中心,2009年,六氯苯(Hexachlorobenzene),防救手冊。
指導教授 張木彬(Moo-been Chang) 審核日期 2013-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明