博碩士論文 100326010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.191.216.163
姓名 洪國鈞(Kuo-Chun Hung)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
(Aerosol Characterization and Source Apportionment for near-source biomass burning at Chiang-Mai, Thailand and downwind Mt. Lulin)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估
★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性★ 2011-2015年台灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來源推估及對能見度影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文於2013年春季分別於中南半島生質燃燒源區泰國清邁山區(海拔1,536公尺)及台灣鹿林山大氣背景監測站(海拔2,862公尺)進行氣膠採樣。研究目的是分別探討近生質燃燒(BB)源區及背景點傳輸老化氣膠特性,此外,本文也彙整2010-2013年中南半島及2003-2013年鹿林山氣膠特性,探討兩地中、長期氣膠化學特性及來源貢獻。
研究結果顯示2013年清邁PM10氣膠受PM2.5氣膠主導,BB事件日PM2.5氣膠水溶性離子以硫酸根離子及銨根離子為優勢物種,氣膠碳成分以OC3及EC1-OP為主,水可溶有機碳(WSOC)佔有機碳比例為61%,二元酸以Oxalate濃度最高,至於氣膠單醣無水化合物則明顯以左旋葡萄糖為主。生質燃燒指標物種nss-K+、OC3、EC1-OP及Levoglucosan彼此間相關性判定係數R2都達0.6以上(N=38),印證本地區氣膠受BB影響。利用特定氣膠成分比值性質,可推測PM2.5氣膠來自開放式森林燃燒,燃燒樹種可能混合軟木及硬木,燃燒狀態為燜燒狀態。2010-2013年中南半島近BB源區氣膠成分各年代比例接近,陽離子、陰離子、有機碳、元素碳佔PM2.5質量濃度平均比例分別為 5.7±0.6%、12.2±1.3%、40.9±4.1%和 7.4±1.0%,應可代表中南半島BB PM2.5氣膠主要成分比例。
彙整2003-2013年鹿林山PM2.5氣膠觀測資料顯示:生質燃燒(BB)類型質量濃度、水溶性離及碳成分濃度都高於其他氣流類型,特別是生質燃燒指標物種如:nss-K+、NO3-、OC3、EC1-OP、levoglucosan等特別凸顯。非生質燃燒(NBB)類型的水溶性離子比例則高於BB類型,表示偏向受到人為污染。利用碳成分優勢物種、char-EC/soot-EC及OC/EC比值,也可確認BB類型氣膠的BB特徵和NBB類型的偏向來自機動車輛排放影響。
利用2010年及2013年上風處(泰國清邁)及下風處(鹿林山)觀測數據,顯示nss-K+、OC3及EC1-OP的比例變化較其他成分穩定,適合當作BB長程傳輸氣膠指標物種。本文利用穩定生質燃燒物種nss-K+¬探討氣膠傳輸老化特性,顯示NH4+、NO3 、SO42-、OC1、OP及二元酸部分物種在傳輸過程有增益現象,單醣無水化合物則在傳輸過程會有降解現象。
Positive Matrix Factorization (PMF)解析出2003-2013年鹿林山逆推BB軌跡類型PM2.5氣膠污染源共有6個主要類型,依高低序分別為BB mixing secondary aerosol (28.9%)、BB (26.3%)、BB mixing sea salt (15.0%)、BB mixing Dicarboxylates (14.7%)、BB mixing soil dust (9.1%)及Vehicle emissions (5.9%),PMF來源推估顯示約94% PM2.5質量濃度來自BB煙團在長程傳輸過程混合其他污染源。在NBB期間,PMF解析出4個主要污染源,其中二次氣膠貢獻PM2.5質量濃度最多達70.2 %,氣流多半源自於海洋(包含大平洋與南中國海),也有少許氣流混合海洋及人為污染物來自於中國大陸沿岸並透過低層大氣傳輸至鹿林山。
摘要(英) This work collected atmospheric aerosols at Chiang Mai (1,536 m a.s.l., Thailand) in the northern part of Indochina Peninsula and Mt. Lulin Atmospheric Background Station (LABS, 2,862 m a.s.l., Taiwan), respectively, during the springtime of 2013. The objectives of this study were to investigate aerosol characteristics in the near-source biomass burning (BB) area and transported and aged aerosols at a background site. In addition, aerosol characteristics of Indochina Peninsula observed during the period of 2010-2013 and that of LABS during 2003-2013 were also summarized to explore middle- and long-term aerosol chemical characteristics and source contributions.
The results showed that PM2.5 dominated PM10 at Chiang Mai in 2013. For BB events, sulfate and ammonium ions were the major species in PM2.5 water-soluble ions (WSIs); while OC3 and EC1-OP were significant in aerosol carbonaceous components. The fraction of water-soluble organic carbon in organic carbon (OC) was 61% and oxalate was the dominant component of dicarboxylates. As for anhydrous sugars, levoglucosan was undoubtedly the most significant component. The BB tracers such as nss-K+, OC3, EC1-OP, and levoglucosan were correlated well with each other (with the coefficient of determination R2≧0.6, N=38), which confirmed that aerosols were affected by BB in the area. Inferred from the characteristics of specific aerosol component ratios, PM2.5 aerosol was contributed from open forest burning from a mix of softwood and hardwood and the combustion state was smoldering. The yearly component fractions of PM2.5 from near-source BB during 2010-2013 were close to each other. The PM2.5 fraction of cations, anions, OC, elemental carbon were 5.7±0.6%, 12.2±1.3%, 40.9±4.1%, 7.4±1.0%, respectively. The resulted fractions of PM2.5 should be typical for Indochina BB aerosol.
The PM2.5 aerosol observations at LABS showed that PM2.5 mass, WSIs, and carbonaceous content from BB backward trajectory group were all higher than that of other trajectory groups especially for BB tracers such as nss-K+, NO3-, OC3, EC1-OP and levoglucosan as summarized from 2003 to 2013. In contrast, the mass fractions of PM2.5 WSIs of non-BB (NBB) were higher than that of BB, an indication of more anthropogenic influence. By employing prevailing carbonaceous component, char-EC/soot-EC, and OC/EC ratios, aerosols from BB backward trajectory group were confirmed with BB characteristics and that from NBB trajectory group were more toward to vehicle emissions.
This work compared PM2.5 component ratios at the upwind Chiang Mai Thailand (Mt. Suthep in 2010 and Mt. Ang Khang in 2013) with the corresponding values at the downwind LABS to find that the ratios of nss-K+, OC3, and EC1-OP were quite stable. It implies that these three PM2.5 components are appropriate for acting as BB aerosol tracers through long-range transport. As a result, aerosol aging characteristics were investigated by using stable nss-K+ to show the enhancements of NH4+, NO3 , SO42-, OC1, OP, and dicarboxylates and the degradation of anhydrosugars during transport.
Six source types were resolved from Positive Matrix Factorization (PMF) for PM2.5 aerosols classified into BB backward trajectory group at LABS from 2003 to 2013. The resolved source types in source contributions from high to low are BB mixing secondary aerosol (28.9%), BB (26.3%), BB mixing sea salt (15.0%), BB mixing Dicarboxylates (14.7%), BB mixing soil dust (9.1%), and Vehicle emissions (5.9%). PMF source apportionment indicated that 94% of PM2.5 mass concentration was contributed from BB plume mixed with other source contributions in the path of long-range transport. In contrast, four source types were resolved from PMF and secondary aerosol contributed predominantly to 70.2% of PM2.5 mass concentration during the NBB period. The NBB air masses were mostly originated from ocean (including Pacific Ocean and South China Sea) but few with a mix of marine contributions and anthropogenic pollutants from China coastline and transported through lower atmosphere to LABS.
關鍵字(中) ★ 生質燃燒氣膠
★ 近污染源生質燃燒氣膠特性
★ 氣膠傳輸老化
★ 氣膠指標成分
★ 氣膠來源解析
關鍵字(英) ★ Biomass burning aerosol
★ Near-sources biomass burning aerosols characteristics
★ Aerosol transport and aging
★ Aerosol tracers
★ Aerosol source apportionment
論文目次 摘要 I
致謝 VI
目錄 VII
圖目錄 X
表目錄 XVII
第一章、前言 1
1.1研究緣起 1
1.2研究目的 2
第二章、文獻回顧 3
2.1生質燃燒 3
2.1.1亞洲與東南亞生質燃燒 3
2.1.2 亞洲大氣污染物傳輸至台灣的機制 6
2.2 生質燃燒氣膠化學特性 9
2.2.1 氣膠水溶性無機離子 9
2.2.2 氣膠碳成分 13
2.2.3 氣膠單醣無水化合物 17
2.2.4 氣膠二元酸 20
2.2.5 似腐植質(HULIS)氣膠 24
2.3 生質燃燒燃料燃燒方式與特性 26
2.3.1 不同生質燃燒程序階段 26
2.3.2 不同生質燃燒材料特性 27
2.3.3 生質燃燒化學特徵物種比值特性 32
2.4氣膠中和狀況與結合型態 37
2.5泰國地區氣膠特性 37
2.6 受體模式PMF 40
2.6.1 常見的PM2.5中重要物種型態 40
第三章、研究方法 43
3.1 研究架構 43
3.2 採樣地點與採樣週期 44
3.2.1 泰國清邁省安康山採樣點 45
3.2.2泰國清邁安康山觀測期間逆推軌跡分類 49
3.2.3 鹿林山大氣背景監測站 52
3.2.4鹿林山測站觀測期間逆推軌跡分類 54
3.3 採樣方法與採樣器 58
3.3.1 採樣儀器 58
3.3.2 採樣濾紙選擇與前處理程序 63
3.4 樣本分析方法 67
3.4.1 氣膠質量濃度分析 67
3.4.2 氣膠水溶性離子分析 68
3.4.3 氣膠碳成分分析 71
3.4.4 氣膠有機成分分析-單醣無水化合物 74
3.4.5 氣膠有機成分分析-二元酸 77
3.4.6 氣膠水可溶有機碳分析 78
3.4.7 腐植質氣膠含量分析 80
3.5 受體模式POSITIVE MATRIX FACTORIZATION (PMF) 83
3.5.1 PMF模式介紹 83
3.5.2 PMF預處理程序 84
3.5.3 EPA PMF v3.0.2.1軟體操作介紹 86
3.6 氣膠中和探討-【NH4+】MEAS /【NH4+】CALC計算方式 90
3.7 水溶性離子非海洋來源(NSS, NON-SEA-SALT)估算方法 90
3.8 判別生質燃燒方法 91
3.8.1 美國太空總署(NASA)自然災害網 91
3.8.2 全球火災監測中心(GFMC) 92
3.8.3 氣流軌跡模式(NOAA HYSPLIT) 92
3.8.4 Seven-SEAS資料庫 92
四、結果與討論 93
4.1 泰國清邁生質燃燒源區氣膠特性 93
4.1.1 測站氣象資料 93
4.1.2 PM10-2.5及PM2.5 氣膠質量濃度及組成 94
4.1.3 PM10-2.5及PM2.5氣膠水溶性離子 98
4.1.4 PM10-2.5及PM2.5氣膠碳成分濃度 103
4.1.4 PM10-2.5及PM2.5氣膠有機物濃度 110
4.1.5 PM2.5氣膠成分日夜變化 119
4.1.6 生質燃燒源區PM2.5氣膠來源判斷 133
4.2 鹿林山手動觀測氣膠特性 142
4.2.1 PM10-2.5及PM2.5氣膠質量濃度及組成 142
4.2.2 PM2.5氣膠水溶性離子濃度 145
4.2.3 PM2.5氣膠碳成分濃度 147
4.2.4 PM2.5氣膠有機物濃度 150
4.3泰國清邁生質燃燒氣膠傳輸演化化學特徵物種 154
1. 氣膠水溶性無機離子 154
2. 氣膠碳成分 155
3. 氣膠單醣無水化合物 156
4.4氣膠中和狀況與結合型態 157
4.4.1泰國清邁山區PM2.5氣膠中和狀況與結合型態 157
4.4.2鹿林山PM2.5氣膠中和狀況與結合型態 161
4.5近四年中南半島生質燃燒污染源區氣膠特性 167
4.5.1 PM2.5氣膠質量濃度及組成 168
4.5.2 PM2.5氣膠水溶性離子 171
4.5.3 PM2.5氣膠碳成分 173
4.5.4 PM2.5氣膠有機物成分 176
4.5.5 中南半島生質燃燒污染源區PM2.5氣膠來源推估 180
4.5.6 中南半島生質燃燒污染源區PM2.5氣膠中和與結合型態 186
4.6 生質燃燒長程傳輸PM2.5氣膠成分比例變化及老化特性 192
4.6.1 泰國清邁與鹿林山生質燃燒氣膠成分差異 193
4.6.2 泰國清邁與鹿林山氣膠傳輸老化特性 197
4.6.3 越南山羅與鹿林山生質燃燒氣膠成分差異 201
4.7 2003 - 2013年鹿林山手動觀測氣膠成分特性 204
4.7.1 PM2.5氣膠質量濃度及組成 206
4.7.2 PM2.5氣膠水溶性離子濃度 217
4.7.3 PM2.5氣膠碳成分濃度 228
4.7.4 PM2.5氣膠有機成分濃度 245
4.7.5 鹿林山各氣流來源類型PM2.5氣膠中和與結合型態 255
4.8 以PMF解析鹿林山PM2.5氣膠污染源 261
4.8.1 鹿林山生質燃燒類型(BB) PM2.5氣膠來源解析 261
4.8.2 鹿林山非生質燃燒類型(NBB) PM2.5氣膠來源解析 273
第五章、結論與建議 282
5.1 結論 282
5.2 建議 286
第六章、參考文獻 287
附錄 311
附錄一 2003年至2013年鹿林山PM2.5氣膠成分逐年、逐月樣本數 311
附錄二 2013年2月至4月泰國清邁觀測期間逆推軌跡圖 314
附錄三 2012年10月至2013年4月鹿林山觀測期間逆推軌跡圖 323
附錄四 2013年2月至4月密集觀測期間衛星火點圖 332
附錄五 口試委員意見回覆 339
參考文獻 Abas, M. R., Simoneit, B.R.T., Elias, V., Cabral, J.A., Cardoso, J.N., 1995. Composition of higher molecular weight organic matter in smoke aerosol from biomass combustion in Amazonia. Chemosphere, 30, 995–1015.
Aggarwal, S., Kawamura, K., 2008. Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: implications for photochemical aging during long-range atmospheric transport. Journal of Geophysical Research-Atmospheres 113, D14301, doi:10.1029/ 2007JD009365.
Aggarwal, S., Kawamura, K., 2009. Carbonaceous and inorganic composition in long-range transported aerosols over northern Japan: Implication for aging of water-soluble organic fraction. Atmospheric Environment 43, 2532-2540.
Alves, C.A., Vicente, A., Monteiro, C., Gonçalves, C., Evtyugina, M., Pio, C., 2011. Emission of trace gases and organic components in smoke particles from a wildfire in a mixed-evergreen forest in Portugal. Science of the total environment, 409(8), 1466-1475.
Alves, C., Vicente, A., Nunes, T., Gonçalves, C., Fernandes, A. P., Mirante, F., Tarelho L., Campa, A. M. S., Querol, X., Caseiro, A., Monteiro, C., Evtyugina M., Pio, E., 2011. Summer 2009 wildfires in Portugal: emission of trace gases and aerosol composition. Atmospheric Environment, 45(3), 641-649.
Andreae, M.O., Merlet, P., 2001. Emission of trace gases and aerosols from biomass burning. Global biogeochemical cycles, 15(4), 955-966.
Andreae, M.O., Atlas, E., Harris, G.W., Helas, G., de Kock, A., Koppman, R., Maenhaut, W., Mano, S., Pollock, W. H., Rudolph, J., Scharffe, D., Schebeske, G., Wellimg, M., 1996. Methyl halide emissions from savanna fires in southern Africa. Journal of Geophysical Research-Atmospheres, 101, 23603.
Andreae, M. O., Andreae, T.W., Annegam, H., Beer, J., Cachier, H., le Canut, P., Elbert, W., Maenhaut, W., Salma, I., Wienhold, F. G., Zenker, T., 1998. Airborne studies of aerosol emissions from savanna fires in southern Africa: 2. Aerosol chemical composition. Journal of Geophysical Research, 103(D24), 32119-32128, 10.1029/98JD02280.
Benner Jr., B.A., Wise, S.A., Currie, L.A., Klouda, G.A., Klinedinst, D.B., Zweidinger, R.B., Stevens, R.K., Lewis, C.W., 1995. Distinguishing the contributions of residential wood combustion and mobile source emissions using relative concentrations of dimethylphenanthrene isomers. Environmental Science & Technology 29, 2382-2389.
Berresheim, H., Plass-Dulmer, C., Elste, T., Mihalopoulos, N., and Rohrer, F.: OH in the coastal boundary layer of Crete during MINOS: Measurements and relationship with ozone photolysis, Atmospheric Chemistry and Physics 3, 639-649.
Blando, J.D., Turpin, B.J., 2000. Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility. Atmospheric Environment 34,1623–1632.
Bond, T.C., Streets, D.G., Yarber, K.F., Nelson, S.M., Woo, J.-H., Klimont, Z., 2004. A technology based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research 109, D14203, doi:10.1029/ 2003JD003697.
Brosset, C., 1978. Water-soluble sulphur compounds in aerosols. Atmospheric Environment 12, 25-38.
Cachier, H., Jacob, J., Bremond, M., Lacaux, J., Gaudichet, A., Baudet, J., 1991. Bimoass burning in a savanna region of the Ivory Coast. Atmospheric Climatic and Biospheric Implication, 174-180.
Cachier, H., Liousse, G., Buat-Menard, P., Gaudichet, A., 1995. Particulate content of savanna fire emission. Journal of Atmospheric Chemistry, 22, 123–148.
Caseiro, A., Bauer, H., Schmidl, C., Pio, C. A., & Puxbaum, H., 2009. Wood burning impact on PM10 in three Austrian regions. Atmospheric Environment, 43(13), 2186-2195.
Cao, J. J., Lee, S. C., Ho, K. F., Zhang, X. Y., Zou, S. C., Fung, K., Chow, J. C., Watson, J. G., 2003. Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period. Atmos. Environ. 37, 1451–1460.
Cao, J. J.,Wu, F., Chow, J. C., Lee, S. C., Li, Y., Chen, S. W., An, Z.S., Fung, K.K.,Watson, J.G., Zhu, C.S., Liu, S.X., 2005. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China. Atmospheric Chemistry and Physics 5, 3127–3137.
Cao, J.J., Lee, S.C., Ho, K.F., Fung, K.K., Chow, J.C., Watson, J.G., 2006. Characterization of roadside fine particulate carbon and its eight fractions in Hong Kong. Aerosol and Air Quality Research 6, 106–122.
Cao, J.J., Xu, B.Q., He, J.Q., Liu, X.Q., Han, Y.M., Wang, G.h., Zhu, C.s., 2009. Concentrations, seasonal variations, and transport of carbonaceous aerosols at a remote Mountainous region in western China. Atmospheric Environment, 43(29), 4444-4452.
Castro, L.M., Pio, C.A., Harrison, R.M., Smith, D.J.T., 1999. Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations. Atmos. Environ. 33, 2771–2781.
Chan, C.Y., Engling, G., Sang, X., Zhang, T., 2011. Biofuel Combustion Emissions - Chemical and Physical Smoke Properties, Environmental Impact of Biofuels, Dr. Marco Aurelio Dos Santos Bernardes (Ed.), ISBN: 978-953-307-479-5, InTech, DOI: 10.5772/23430.
Chang, D., Song, Y., 2010. Estimates of biomass burning emissions in tropical Asia based on satellite-derived data. Atmospheric Chemistry and Physics 10, 2335-2351
Chang, S.C., Lee, W.J., Wang, L.C., Lin, N.H., Chang-Chien, G.P., 2013. Influence of the Southeast Asia biomass burnings on the atmospheric persistent organic pollutants observed at near source and receptor sites. Atmospheric Environment 78, 184-194.
Chantara, S., Sillapapiromsuk, S., Wiriya, W., 2012. Atmospheric pollutants in Chiang Mai (Thailand) over a five-year period (2005-2009), their possible sources and relation to air mass movement. Atmospheric Environment 60, 88-98.
Chebbi, A., Carlier, P., 1996. Carboxylic acids in the troposphere, occurrence, sources, and sinks: A review. Atmospheric Environment 30, 4233-4249.
Chen, L.W. A., Moosmuller, H., Arnott, W. P., Chow, J.C., Watson, J.G., Susott, R.A., Babbitt, R. E., Wold, C. E., Lincoln, E. N., and Hao, W. M. , 2007: Emissions from laboratory combustion of wildland fuels: Emission factors and source profiles, Environ. Sci. Technol., 41, 4317–4325.
Cheng, F.Y., Yang, Z.M., Ou-Yang, C.F., Ngan, F., 2013. A numerical study of the dependence of long-range transport of CO to a mountain station in Taiwan on synoptic weather patterns during the Southeast Asia biomass-burning season. Atmospheric Environment 78, 277-290.
Chow, J.C., Watson, J.G., Kuhns, H.D., Etyemezian, V., Lowenthal, D.H., Crow, D.J., Kohl, S.D., Engelbrecht, J.P., Green, M.C., 2004. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational (BRAVO) study. Chemosphere 54, 185–208.
Chow, J.C., Watson, J.G., Chen, L.W. A., Arnott, W. P., Moosmüller, H., Fung, K., 2004. Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Environmental science & technology, 38(16), 4414-4422.
Chuang, M.T., Chang, S.C., Lin, N.H., Wang, J.L., Sheu, G.R., Chang, Y.J., Lee, C.T., 2013. Aerosol chemical properties and related pollutants measured in Dongsha Island in the northern South China Sea during 7-SEAS/Dongsha Experiment. Atmospheric Environment 78, 82-92.
Chuang, M.T., Chiang, P.C., Chan, C.C., Wang, C.F., Chang, E.E., Lee, C.T., 2008. The effects of synoptical weather pattern and complex terrain on the formation of aerosol events in the Greater Taipei area. Science of The Total Environment 399, 128–146.
Chuang, M.T., Chou, C.C.-K., Sopajareepom, K., Lin, N.H., Wang, J.L., Sheu, G.R., Chang, Y.J., Lee C.T., 2013. Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment. Atmospheric Environment 78, 72-81.
Chuang, M.T., Lee, C.T., Chou, C.C.K., Lin, N.H., Sheu, G.R., Wang, J.L., Chang, S.C., Wang, S.H., Chi, K.H., Young, C.-Y., Huang, H., Chen, H.W., Weng, G.H., Lai, S.Y., Hsu, S.P., Chang, Y.J., Wu, X.-C., 2014. Carbonaceous aerosols in the biosmoke transported from Indochina to Taiwan: Long-term observation at Mountain Lulin. Atmospheric Environment 89, 507-516.
Claeys, M., Kourtchev, I., Pashynska, V., Vas, G., Vermeylen, R., Wang, W., Cafmeyer, J., Chi, X., Artaxo, P., Andreae, M., Maenhaut. W., 2010. Polar organic marker compounds in atmospheric aerosols during the LBA-SMOCC 2002 biomass burning experiment in Rondônia, Brazil: sources and source processes, time series, diel variations and size distributions. Atmospheric Chemistry and Physics, 10(19), 9319-9331.
Clegg, S.L., Brimblecombe, P., Wexler, A.S., 1998. A thermodynamic model of the system H+ - NH4+ - Na+ - SO42−- NO3− - Cl− - H2O at 298.15 K. Journal of Physics and Chemistry A 102, 2155-2171.
Cohen, D.D., Crawford, J., Stelcer, E., Bac, V.T., 2010. Characterisation and source apportionment of fine particulate sources at Hanoi from 2001 to 2008. Atmospheric Environment 44, 320-328.
Cozic, J., Verheggen, B., Weingartner, E., Crosier, J., Bower, K. N., Flynn, M., Coe, H., Henning, S., Steinbacher, M., Henne, S., Collaud Coen, M.,Petzold, A., and Baltensperger, U., 2008. Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch. Atmospheric Chemistry and Physics 8, 407-423.
Czoschke, N.M., Jang, M., 2006. Effect of acidity parameters on the formation of heterogeneous aerosol mass in the a-pinene ozone reaction system. Atmospheric Environment 40, 5629–5639.
Decesari, S., Facchini, M.C., Matta, E., Lettini, F., Mircea, M., Fuzzi, S., Tagliavini, E., Putaud, J.P., 2001. Chemical features and seasonal variation of fine aerosol water-soluble organic compounds in the Po Valley, Italy. Atmospheric Environment 35, 3691–3699.
Decesari, S., Facchini, M.C., Matta, E., Mircea, M., Fuzzi, S., Chughtai, A.R., Smith, D.M., 2002. Water soluble organic compounds formed by oxidation of soot. Atmospheric Environment 36, 1827–1832.
Decesari, S., 2006. Characterization of the organic composition of aerosols from Rondonia Brazil, during the LBA-SMOCC 2002 experiment and its representation through model compounds. Atmospheric Chemistry and Physics 6, 375–402.
Draxler, R.R. and Rolph, G.D., 2013. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory, College Park, MD.
Duan, F., Liu, X., Yu, T., Cachier, H., 2004. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmospheric Environment 38, 1275-1282.
Echalar, F., Gaudichet, A., Cachier, H., Artaxo, P., 1995. Aerosol emission by tropical forest and savanna biomass burning:characteristic trace elements and fluxes. Geophysical Research Letters, 22(22), 3039–3042.
Engling, G., Carrico, C. M., Kreldenweis, S. M., Collett, J. L., Day, D. E., Malm, W. C., Lincoln, E., Hao, W. M., Iinuma, Y. and Herrmann, H., 2006a. Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection. Atmospheric Environment 40, S299-S311, doi: Doi: 10.1016/j.atmosenv.2005.12.069.
Engling, G., Herckes, P., Kreidenweis, S. M., Malm, W. C. and Collett, J. J. L., 2006b. Composition of the fine organic aerosol in Yosemite National Park during the 2002 Yosemite Aerosol Characterization Study. Atmospheric Environment 40, 2959- 2972.
Engling, G., Lee, J. J., Tsai, Y.-W., Lung, S. C. C., Chou, C. C. K. and Chan, C. Y., 2009. Size- Resolved Anhydrosugar Composition in Smoke Aerosol from Controlled Field Burning of Rice Straw. Aerosol Science and Technology 43, 662-672.
Engling, G., Zhang, Y.-N., Chan, C-Y., Sang, X.-F., Lin, M., Ho, K.-F., Li, Y.-S., Lin, C.-Y., and Lee, J. J., 2011. Characterization and sources of aerosol particles over the southeastern Tibetan Plateau during the Southeast Asia biomass-burning season, Tellus, 63B, 117–128.
Fabian, P., Kohlpainter, M., Rollenbeck, R., 2005. Biomass burning in the Amazon-fertilizer for the mountaineous rain forest in Ecuador. Environmental Science Pollution Research 12 (5), 290 – 296.
Facchini, M.C., Fuzzi, S., Zappoli, S., Andracchio, A., Gelencs´er, A., Kiss, G., Kriv´acsy, Z., M´esz´aros, E., Hansson, H.C., Alsberg, T., Zebuhr, Y., 1999. Partitioning of the organic aerosol component between fog droplets and interstitial air. Journal of Geophysical Research 104(D21), 26, 821–26,832.
Falkovich, A. H., Graber, E. R., Schkolnik, G., Rudich, Y., Maenhaut, W.,and Artaxo,P., 2004. Low molecular weight organic acids in aerosol particles from Rondônia, Brazil, during the biomass-burning, transition and wet periods. Atmospheric Chemistry and Physics Discussions, 4, 6867-6907.
Fang, M., Zheng, M., Wang, F., To, K. L., Jaafar, A. B., Tong, S. L., 1999. The solvent-extractable organic compounds in the Indonesia biomass burning aerosols-characterization studies. Atmospheric Environment, 33, 783–795.
Ferek, R. J., Reid, J. S., Hobbs, P. V., Blake, D. R., Liousse, C., 1998. Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil. Journal of Geophysical Research, 103, 32107–32118.
Fine, P. M., Cass, G. R. and Simoneit, B. R. T. , 2001. Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the northeastern United States. Environmental Science & Technology 35, 2665-2675.
Fine, P. M., Cass, G. R. and Simoneit, B. R. T. , 2004. Chemical characterization of fine particle emissions from the fireplace combustion of wood types grown in the Midwestern and Western United States. Environmental Engineering Science 21, 387-409.
Fine, P. M., Cass, G. R. and Simoneit, B. R. T., 2002. Chemical Characterization of Fine Particle Emissions from the Fireplace Combustion of Woods Grown in the Southern United States. Environmental Science & Technology 36, 1442-1451, doi: 10.1021/es0108988.
Fine, P. M., Cass, G. R. and Simoneit, B. R. T., 2004. Chemical characterization of fine particle emissions from the wood stove combustion of prevalent United States tree species. Environmental Engineering Science 21, 705-721.
Fisch, G., Tota, J., Machado, L. A. T., Dias, M., Lyra, R. F. D., Nobre, C. A., Dolman, A. J., and Gash, J. H. C., 2004. The convective boundary layer over pasture and forest in Amazonia, Theor. Appl. Climatol., 78, 47–59.
Folkins, I., Chatfield, R., Baumgardner, D., Proffitt, M., 1997. Biomass burning and deep convection in southeastern Asia′ Results from ASHOE/MAESA.
Formenti, P., Elbert, W., Maenhaut, W., Haywood, J., Osborne, S., Andreae, M. O., 2003. Inoganic and carbonaceous aerosols during the Southern African Regional Science initiative (SAFARI2000) experiment: Chemical characteristics, physical properties, and emission date for smoke from African biomass burning. Journal of Geophysical Research, 108(D13), doi: 1029/2002JD002408.
Friedli, H.R., Atlas, E., Stroud, V.R., Giovanni, L., Campos, T., Radke, L.F., 2001. Volatile organic trace gases emitted from North American wildfires. Global Biogeochemical Cycles 15(N2), 435– 452.
Fu, P. Q., Kawamura, K., Chen, J., Li, J., Sun, Y., Liu, Y., Tachibana, E., Aggarwal, S. G., Okuzawa, K., Tanimoto, H., Kanaya, Y., Wang, Z. F., 2012. Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning. Atmospheric Chemistry and Physics, 12(18), 8359-8375.
Gao, S., Hegg, D. A., Hobbs, P. V., Kirchstetter, T. W., Magi, B. I., Sadilek, M., 2003b. Water‐soluble organic components in aerosols associated with savanna fires in southern Africa: Identification, evolution, and distribution. Journal of Geophysical Research: Atmospheres (1984–2012), 108(D13).
Gao, S., Hegg, D.A., Hobbs, P.V., Kirchstetter, T.W., Magi, B.I., Sadilek, M., 2003.Water-soluble organic components in aerosols associated with savanna fires in southern Africa: Identification, evolution, and distribution, Journal of Geophysical Research-Atmospheres 108, D13, 8491, doi:10.1029/2002JD002324.
Gao, S., Keywood, M., Ng, N.L., Surratt, J., Varutbangkul, V., Bahreini, R., Flagan, R.C., Seinfeld, J.H., 2004. Low-molecular-weight and oligomeric components in secondary organic aerosol from the ozonolysis of cycloalkenes and alphapinene. Journal of Physical Chemistry A 108, 10147-10164.
Gaudichet, A., Echalar, F., Chatenet, B., Quisefit, J.P., Malingre, G., Cachier, H., Buat, P., Artaxo, P., Maenhaut, W., 1995. Trace elements in tropical African savanna biomass burning aerosols. Journal of Atmospheric chemistry 22, 19-39.
Gelencsér, A., 2004. Carbonaceous Aerosol. Atmospheric and Ocean ographic Sciences Library 30. Geophysical Research Letters 31(6), Springer1-4020-2886-5.
Goldberg, E.D., 1963. Chemistry } the oceans as a chemical systems. In: Hill, H.M. (Ed.), Composition of Sea Water, Comparative and Descriptive Oceanography, vol. 2 of The Sea. Wiley-Interscience, New York, pp. 3-25.
Graham, B., Mayol-Bracero, O.L., Guyon, P., Roberts, G.C., Decesari, S., Facchini, M.C., Artaxo, P., Maenhaut, W., Köll, P., Andreae, M.O., 2002. Water-soluble organic compounds in biomass burning aerosols over Amazonia 1. Characterization by NMR and GC-MS. Journal of Geophysical Research 107(D20), 8047. doi: 10.1029/2001JD000336.
Grosjean, D., Cauwenberghe, K. V., Schmid, J. P., Kelly, P. E., Pitts Jr., J. N., 1978. Identification of C3–C10 aliphatic dicarboxylic acids in airborne particulate matter, Environ. Sci. Technol., 12, 313–317.
Han, Y.M., Cao, J.J., Chow, J.C., Watson, J.G., Fung, K., Jin, Z.D., Liu, S.X., An, Z.S., 2007.Evaluation of the thermal/optical reflectance method for discrimination between soot- and char-EC. Chemosphere 69, 569-574.
Han, Y.M., Lee, S.C., Cao, J.J., Ho, K.F., An, Z.S., 2009. Spatial distribution and seasonal variation of char-EC and soot-EC in the atmosphere over China. Atmospheric Environment 43, 6066-6073.
Harrison, R. M., Peak, J. D., Collins, G. M., 1996. Tropospheric cycle of nitrous acid. Journal of Geophysical Research - Atmospheres, 101, 14429.
Hatakeyama, S., Ohno, M., Weng, J., Takagi, H., Akimoto, H., 1987. Mechanism for the formation of gaseous and particulate products from ozone‐cycloalkene reactions in air, Environ. Sci. Technol., 21, 52–57.
Hawthorne, S. B., Krieger, M. S., Miller, D. J., Mathiason, M. B., 1989. Collection and quantification of methoxylated phenol tracers for atmospheric pollution from residential wood stoves. Environment Science Technology, 23, 470–475.
He, L.Y., Hu, M., Huang, X.F., Zhang, Y.H., Tang, X.Y., 2006. Seasonal pollution characteristics of organic compounds in atmospheric fine particles in Beijing. Science of the Total Environment 359, 167–176.
Heil, A., 2007. Indonesian forest and peat fires: emissions, air quality,and human health, Ph.D. thesis, Max Planck Inst. for Meteorol.,Hamburg, 142pp.
Hennigan, C. J., Sullivan, A. P., Collett, J. L., and Robinson, A. L., 2010. Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals, Geophys. Res. Lett., 37, L09806, doi:10.1029/2010GL043088.
Herckes, P., Engling, G., Kreidenweis, S. M., and Collett, J. L., 2006. Particle size distributions of organic aerosol constituents during the 2002 Yosemite aerosol characterization study, Environ. Sci. Technol., 40, 4554–4562.
Hien, P.D., Bac, V.T., Thinh, N.T.H., 2004. PMF receptor modelling of fine and coarse PM10 in air masses governing monsoon conditions in Hanoi, northern Vietnam. Atmospheric Environment 38, 189–201.
Hien, T.T., Thanh, L.T., Kameda, T., Takenaka, N., Bandow, H., 2007. Distribution characteristics of polycyclic aromatic hydrocarbons with particle size in urban aerosols at the roadside in Ho Chi Minh City, Vietnam. Atmospheric Environment 41, 1575–1586.
Ho, K. F., Lee, S. C., Cao, J. J., Kawamura, K., Watanabe, T., Cheng, Y., Chow, J.C., 2006. Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong. Atmospheric Environment 40, 3030–3040.
Hoffmann, D., Tilgner, A., Iinuma, Y., and Herrmann, H., 2010. Atmospheric stability of levoglucosan: A detailed laboratory and modeling study, Environ. Sci. Technol., 44, 694–699.
Hosoya, T., Kawamoto, H., Saka, S., 2008. Different pyrolytic pathways of levoglucosan in vapor and liquid/solid-phases. Journal of Analytical and Applied Pyrolysis 83, 64-70.
Hsieh, L.-Y., Chen, C.-L., Wan, M.-W., Tsai, C.-H., Tsai, Y.I., 2008. Speciation and temporal characterization of dicarboxylic acids in PM2.5 during a PM episode and a period of non-episodic pollution. Atmospheric Environment 42(28), 6836–6850.
Hsieh, L.Y., Kuo, S.C., Chen, C.L., Tsai, Y.I., 2009. Size distributions of nano/micron dicarboxylic acids and inorganic ions in suburban PM episode and non-episodic aerosol. Atmospheric Environment 43, 4396-4406.
Huang, X-F, Yu, J.Z., He, L-Y, Yuan, Z., 2006. Water-soluble organic carbon and oxalate in aerosols at a coastal urban site in China: Size distribution characteristics, sources, and formation mechanisms. Journal of Geophysical Research, vol. 111, d22212, doi:10.1029/2006jd007408.
Hyer, E.J., Chew, B.N., 2010. Aerosol transport model evaluation of an extreme smoke episode in Southeast Asia. Atmos. Environ. 44, 1422–1427.
Iinuma, Y., Bruggemann, E., Gnauk, T., Muller, K., Andreae, M. O., Helas, G., Parmar, R. and Herrmann, H., 2007. Source characterization of biomass burning particles: The combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat. Journal of Geophysical Research-Atmospheres 112, Doi: 10.1029/2006jd007120.
Ito, A., Penner, J.E., 2004. Global estimates of biomass burning emissions based on satellite imagery for the year 2000, J. Geophysical Research-Atmospheres 109, D14S05, doi:10.1029/2003JD004423.
Jalava, P., Salonen, R., Nuutinen, K., Pennanen A., Happo, M., Tissari, J., Frey, A., Hillamo, R., Jokiniemi, J., Hirvonen, M., 2010. Effect of combustion condition on cytotoxic and inflammatory activity of residential wood combustion particles. Atmospheric Environment 44, 1691-1698.
Jang, M.S., Czoschke, N.M., Sangdon, L., Kamens, R.M., 2002. Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science 298, 814-817.
Jimenez, J., Wu, C.-F., Claiborn, C., Gould, T., Simpson, C.D., Larson, T., Liu, S.L.-J., 2006. Agricultural burning smoke in eastern Washington part I: atmospheric characterization. Atmospheric Environment 40, 639–650.
Kawamura, K., Sakaguchi, F., 1999. Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. Journal of Geophysical Research 104, 3501–3509.
Kawamura, K., Kasukabe, H., Barrie, L.A., 2010. Secondary formation of water‐soluble organic acids andα‐dicarbonyls and their contributions to total carbonand water‐soluble organic carbon: Photochemicalaging of organic aerosols in the Arctic spring. Journal of Geophysical Research 115, d21306, doi:10.1029/2010JD014299.
Kim, E., Hopke, P. K., & Edgerton, E. S., 2003. Source identification of Atlanta aerosol by positive matrix factorization. Journal of the Air & Waste Management Association, 53(6), 731-739.
Kim, E., Hopke, P. K., Paatero, P., and Edgerton, E. S., 2003b. Incorporation of parametric factors into multilinear receptor model studies of Atlanta aerosol, Atmos. Environ., 37(36), 5009–5021.
Kim, E., Hopke, P.K., 2004. Improving source identification of fine particles in a rural northeastern U.S. area utilizing temperature-resolved carbon fractions. Journal of Geophysical Research 109, d09204, doi:10.1029/2003JD004199.
Kiss, G., Tombacz, E., Hansson, H.C., 2005. Surface Tension Effects of Humic-Like Substances in the Aqueous Extract of Tropospheric Fine Aerosol. Journal of Atmospheric Chemistry 50, 279–294.
Kleffman, J., Kurtenbach, R., Lorzer, J., Wiesen, P., Kalthoff, N., Vogel, B., Vogel, H., 2003. Measured and simulated vertical profiles of nitrous acid, part1: Field measurements. Atmospheric Environment, 37, 2949.
Krivácsy, Z., Hoffer, A., Sárvári, Zs., Temesi, D., Baltensperger, U., Nyeki, S., Weingratner, E., Kleefeld, S., Jennings, S.G., 2001. Role of organic and blackcarbon in the chemical composition of atmospheric aerosol at Europeanbackground sites. Atmospheric Environment 35(36), 6231-6244.
Kumagai, K., Iijima, A., Shimoda, M., Saitoh, Y., Kozawa, K., Hagino, H., Sakamoto, K., 2010. Determination of Dicarboxylic Acids and Levoglucosan in Fine Particles in the Kanto Plain, Japan, for Source Apportionment of Organic Aerosols. Aerosol and Air Quality Research 10, 282-291.
Kundu, S., Kawamura, K., Andreae, T.W., Hoffer, A., Andreae, M.O., 2010. Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers. Atmospheric Chemistry and Physics 10, 2209–2225.
Kundu, S., Kawamura, K., Andreae, T. W., Hoffer, A., & Andreae, M. O., 2010. Diurnal variation in the water-soluble inorganic ions, organic carbon and isotopic compositions of total carbon and nitrogen in biomass burning aerosols from the LBA-SMOCC campaign in Rondônia, Brazil. Journal of Aerosol Science, 41(1), 118-133.
Kundu, S., Kawamura, K., Andreae, T., Hoffer, A., & Andreae, M., 2010. Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers. Atmospheric Chemistry and Physics, 10(5), 2209-2225.
Larson, T.V., Koenig, J.Q., 1994. Wood smoke: Emissions and noncancer respiratory effects. Annual Review of Public Health 15, 133-156.
Lee J.J., Engling, G., Lung, S.C.C., Lee, K.Y., 2008. Particle size characteristics of levoglucosan in ambient aerosolsfrom rice straw burning. Atmospheric Environment 42, 8300–8308.
Lee, C.T., Chuang, M.T., Lin, N.H., Wang, J.L., Sheu, G.R., Wang, S.H., Huang, H., Chen, H.W., Weng, G.H., Hsu, S.P., 2011. The enhancement of biosmoke from Southeast Asia on PM2.5 water-soluble ions during the transport over the Mountain Lulin site in Taiwan. Atmospheric Environment 45, 5784-5794.
Lee, J.H., Hopke, P.K., Turner, J.R., 2006. Source identification of airborne PM2.5 at the St. Louis-Midwest Supersite. Journal of Geophysical Research 111, d10s10, doi:10.1029/2005JD006329.
Legrand, M., Preunkert, S., Oliveira, T., Pio, C., Hammer, S., Gelencsér, A., Kasper-Giebl, A., Laj, P., 2007. Origin of C2–C5 dicarboxylic acids in the European atmosphere inferred from year‐round aerosol study conducted at a west‐east transect. Journal of Geophysical Research: Atmospheres (1984–2012), 112(D23).
Levine, J.S., 1999. The 1997 fires in Kalimantan and Sumatra, Indonesia:Gaseous and particulate emissions, Geophysical Research Letters 26(7),815–818.
Li, J., Posfai, M., Hobbs, P.V., Buseck, P.R., 2003. Individual aerosol particles from biomass burning in southern Africa:2.Compositions and aging of inorganic particles. Journal of Geophysical Research-Atmospheres 108, 8484, doi: 10.1029/2002JD002310.
Li, C., Tsay, S.-C., Hsu, N. C., Kim, J. Y., Howell, S. G., Huebert, B. J., Ji, Q., Jeong, M.-J., Wang, S.-H., Hansell, R. A., Bell, S. W., 2013. Characteristics and composition of atmospheric aerosols in Phimai, central Thailand during BASE-ASIA. Atmospheric Environment, 78, 60-71.
Lin, N.H., Tsay, S.C., Maring, H.B., Yen, M.C., Sheu, G.R., Wang, S.H., Chi, K.H., Chuang, M.T., Ou-Yang, C.F., Fu, J.S., Reid, J.S., Lee, C.T., Wang, L.C., Wang, J.L., Hsu, C.N., Sayer, A.M., Holben, B.N., Chu, Y.C., Nguyen, X.A., Sopajaree, K., Chen, S.J., Cheng, M.T., Tsuang, B.J., Tsai, C.J., Peng. C.M., Schnell, R.C., Conway, T., Chang. C.T., Linw, K.S., Tsai. Y.I., Lee, W.J., Chang, S.C., Liu, J.J., Chiang, W.L., Huang, S.J., Lin, T.H., Liu, G.R., 2013. An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS, Atmospheric Environment 78, 1-19.
Lin, C.-Y., Hsu, H.-M., Lee, Y., Kuo, C., Sheng, Y.-F., & Chu, D., 2009. A new transport mechanism of biomass burning from Indochina as identified by modeling studies. Atmospheric Chemistry & Physics, 9(20).
Liousse, C., Devaux, C., Dulac, F., Cachier, H., 1995. Aging of savanna biomass burning in southern Africa: Individual particle characterization of atmospheric aerosols and savanna fire samples. Journal of Atmospheric Chemistry, 22, 1–17.
Liu, H., Jacob, D.J., Bey, I., Yantosca, R.M., Duncan, B.N., 2000. Transport pathways for Asian pollution outflow over the Pacific: Interannual and season variations. Journal of Geophysical Research-Atmospheres 108, doi: 10.1029/2002JD003102.
Liu, W., Wang, Y. H., Russell, A., and Edgerton, E. S., 2005. Atmospheric aerosol over two urban-rural pairs in the southeastern United States: Chemical composition and possible sources, Atmos. Environ., 39(25), 4453–4470.
Liu, W., Wang, Y., Russell, A., Edgerton, E.S., 2006. Enhanced source identification of southeast aerosols using temperature-resolved carbon fractions and gas phase components. Atmospheric Environment 40, S445–S466.
Lobert, J.M., Scharffe, D.H., Hao, W.M., Kuhlbusch, T.A., Seuwen, R., Warnesk, P., Crutzen, P.J., 1991. Experimental evaluation of biomass burning emissions: Nitrogen and carbon containing compounds. In J. S Levine (ed.), Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications. MIT Press, Cambridge, Mass., pp.289-304.
Ma, Y., Weber, R. J., Lee, Y.-N., Orsini, D. A., Maxwell-Meier, K., Thornton, D. C., Bandy, A. R., Clarke, A. D., Blake, D. R., Sachse, G. W., Fuelberg, H. E., Kiley, C. M., Woo, J.-H., Streets, D. G., and Carmichael, G. R., 2003. Characteristics and influence of biosmoke on the fine-particle ionic composition measured in Asian outflow during the Transport and Chemical Evolution Over the Pacific (TRACE-P) experiment, J. Geophys. Res., 108(D21), 8816, doi:10.1029/2002JD003128.
Mazurek, M.A., Cass, G.R., Simoneit, B.R.T., 1991. Biological input to visibility-reducing aerosol particles in the remote arid Southwestern United States. Environmental Science and Technology 25, 684–694.
Narukawa, M., Kawamura, K., Takeuchi, N., Nakajima, T., 1999. Distribution of dicarboxylic acids and carbon isotopic ratios in aerosols from 1997 Indonesian forest fires. Geophysical Research Letters 26, 3101–3104.
McGowan, J.A., Hider, R.N., Chacko, E., Town, G.I., 2002. Particulate air pollution and hospital admissions in Christchurch, New Zealand. Australian and New Zealand Journal of Public Health 26, 23-29
Miyazaki, Y., Kondo, Y., Han, S., Koike, M., Kodama, D., Komazaki, Y., Tanimoto H., Matsueda, H., 2007. Chemical characteristics of water-soluble organic carbon in the Asian outflow. Journal of Geophysical Research, vol. 112, d22s30, doi:10.1029/2007JD009116.
Mkoma, S., Kawamura, K., & Fu, P., 2013. Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan. Atmospheric Chemistry and Physics, 13(20), 10325-10338.
Niemi, J. V., Tervahattu, H., Vehkamaki, H., Kulmala, M., Koskentalo, T., Sillampaa, M., 2004. Characterization and source identification of a fine particle episode in Finland. Atmospheric Environment, 38, 5003–5012.
Niemi, J.V., Saarikoski, S., Aurela, M., Tervahattu, H., Hillamo, R., Westphal, D.L., Aarnio, P., Koskentalo, T., Makkonen, U., Vehkamaki, H., Kulmala, M., 2009. Long-range transport episodes of fine particles in southern Finland during 1999–2007. Atmospheric Environment 43, 1255-1264.
Novakov, T., Andreae, M.O., Gabriel, R., Kirchstetter, T.W., Mayol-Bracero, .L., Ramanathan, V., 2000. Origin of carbonaceous aerosols over the tropical Indian Ocean: Biomass burning or fossil fuels? Geophysical Research Letters 27, 4061-4064.The World Fire Atlas (http://wfaadat.esrin.esa.int/)
Nyeki, S., Baltensperger, U., Schwikowski, M., 1996. The diurnal variation of aerosol chemical composition during the 1995 summer campaign at the Jungfraujoch high-alpine station (3454m), Switzerland. Journal of Aerosol Science 27, 105-106.
O’Dowd, C.D., Smith, M.H., Consterdine, I.E. , Lowe, J.A., 1997. Marine aerosol, sea-salt, and the marine sulphur Cycle: a short review. Atmospheric Enuironmenr 31, No.1, pp.73-80.
Ojanen, C., Pakkanen, T., Aurela, M., Makela, T., Merilainen, J., Hillamo, R., Aarnio, P., Koskentalo, T., Hamekoski, K., Rantanen, L., Lappi, M., 1998. Size distribution, composition and sources of inhalable particles in the Helsinki metropolitan area (in Finnish with an abstract in English). Paakaupunkiseudun julkaisusarja C7. Helsinki Metropolitan Area Council (YTV), Helsinki.
Olanders, B., Steenari, B.M., 1995. Charcterization of Ashes Form Wood and Straw. Biomass and Bioenergy , vol 8, No 2, 105-115.
Olmez, I., Sheffield, A. E., Gordon, G. E., Houck, J. E., Pritchett, L. C., Cooper, J. A., Dzubay, T. G., Bennett, R. L., 1988. Compositions of particles from selected sources in Philadelphia for receptor modeling applications. Journal of Air Pollution Control Association, 38, 1392–1402.
Oros, D.R., Abas, M.R., Omar, N.Y.M.J., Rahman, N.A., Simoneit, B.R.T., 2006. Identification and emission factors of molecular tracers in organic aerosols from biomass burning: Part 3. Grasses. Appl. Geochem. 21, 919–940.
Otto, A., Gondokusumo, R. and Simpson, M. J., 2006. Characterization and quantification of biomarkers from biomass burning at a recent wildfire site in Northern Alberta, Canada. Applied Geochemistry 21, 166-183.
Ou Yang, C.F., Lin, N.H., Sheu, G.R., Lee, C.T., Wang, J.L., 2012. Seasonal and diurnal variations of ozone at a high-altitude mountain baseline station in East Asia. Atmospheric Environment 46, 279-288.
Page, S.E., 2002. The amount of carbon released from peat and forest fires inIndonesia during 1997. Nature 420 (6911), 61-65.
Pakkanen, T. A., Loukkola, K., Korhonen, C. H., Aurela, M., Makela, T., Hillamo, R.E., Aarnio, P., Koskentalo, T., Kousa, A., Maenhaut, W., 2001b. Sources and chemical composition of atmospheric fine and coarse particles in the Helsinki area. Atmospheric Environment, 35, 5381–5391.
Pandey, R., Tyagi, A., 2012. Particulate Matter Emissions From Domestic Biomass Burning in a Rural Tribal Location in the Lower Himalayas in India: Concern Over Climate Change. Small-scale Forestry, doi:10.1007/s11842-011-9177-8.
Park, S.S., Bae, M.S., Schauer, J.J., Kim, Y.J., Cho, S.Y., Kim, S.J., 2006. Molecular composition of PM2.5 organic aerosol measured at an urban site of Korea during the ACE-Asia campaign. Atmospheric Environment 40, 4182–4198.
Pathak, R.K., Wang, T., Ho, K.F., Lee, S.C., 2011. Characteristics of summertime PM2.5 organic and elemental carbon in four major Chinese cities: Implications of high acidity for water-soluble organic carbon (WSOC). Atmospheric Environment 45, 318-325.
Pio, C.A., Legrand, M., Alves, C.A., Oliveira, T., Afonso, J., Caseiro, A., Puxbaum, H., Sanchez-Ochoa, A., Gelencser, A., 2008. Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmospheric Environment 42, 7530-7543.
Poirot, R.L., Wishinski, P.R., Hopke, P.K., Polissar, A.V., 2001. Comparative application of multiple receptor methods to identify aerosol sources in northern Vermont. Environmental Science & Technology 35, 4622-4636.
Puxbaum, H., Caseiro, A., Sanchez-Ochoa, A., Kasper-Giebl, A., Claeys, M., Gelencser, A., Legrand, M., Preunkert, S., Pio, C., 2007. Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background. Journal of Geophysical Research-Atmospheres 112. doi:10.1029/2006JD008114.
Radke, L.F., Hegg, D.A., Hobbs, P.V., Nance, J.D., Lyons, J.H., Laursen, K.K., Weiss, R.E., Riggan, P. J., Ward, D.E., 1991. Particulate and trace emissions from large biomass fires in NorthAmerica, in: Global Biomass Burning: Atmospheric, Climatic,and Biospheric Implications, edited by: Levine, J.S., pp.209–224, MIT Press, Cambridge, MA.
Ram, K. and Sarin, M. M., 2010. Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over Northern India, J. Aerosol Sci., 41, 88–98.
Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, JT., Washington, WM., Fu, Q., Sikka, DR., Wild, M., 2005. Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proceedings of the National Academy of Sciences of the United States of America 102, 5326-5333, doi: 10.1073/pnas.0500656102.
Ramdahl, T., 1983. Retene-a molecular marker of wood combustion in ambient air. Nature, 306, 580–582.
Ramadan, Z., Song, X.H., and Hopke, P.K., 2000. Identification of sources of Phoenix aerosol by positive matrix factorization. Journal of the Air and Waste Management Association 50, 1308-1320.
Randerson, J.T., Chen, Y., van der Werf, G.R., Rogers, B.M., Morton, D.C., 2012. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. 117, G04012. http://dx.doi.org/10.1029/2012JG002128.
Rolph, G.D., 2013. Real-time Environmental Applications and Display sYstem (READY) Website (http://www.ready.noaa.gov). NOAA Air Resources Laboratory, College Park, MD.
Reid, J., et al., 2009. Global monitoring and forecasting of biomass-burning smoke: description and lessons from the Fire Locating and Modeling of Burning Emissions (FLAMBE) program. IEEE J. Spec. Top. Appl. Earth Observations Remote Sens. (J-STARS) 2, 144–162.
Reid, J.S., Koppmann, R., Eck, T.F., Eleuterio, D.P., 2005. A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmospheric Chemistry and Physics 5, 799-825.
Rinehart, L.R., Fujita, E.M., Chow, J.C., Magliano, K., Zielinska, B., 2006. Spatial distribution of PM2.5 associated organic compounds in central California. Atmospheric Environment 40, 290–303.
Rissler, J., Vestin, A., Swietlicki, E., Fisch, G., Zhou, J., Artaxo, P., and Andreae, M. O., 2006. Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia, Atmos. Chem. Phys., 6, 471–491, doi:10.5194/acp- 6-471-2006.
Ruellan, S., Cachier, H., Caudichet, A., Masclet, P., Lacaux, J. P., 1999. Airborne aerosols over Africa during the Experiment for Regional Sources and Sinks of Oxidants (EXPRESSO). Journal of Geophysical Research, 104, 30673–30690.
Ryu, S.Y., Kwon, B.G., Kim, Y.J., Kim, H.H., Chun, K.J., 2007. Characteristics of biomass burning aerosol and its impact on regional air quality in the summer of 2003 at Gwangju, Korea. Atmospheric Research 84, 362-373.
Saarikoski, S., Sillanpää, M., Sofiev, M., Timonen, H., Saarnio, K., Teinilä, K., Karppinen, A., Kukkonen, J., Hillamo, R., 2007. Chemical composition of aerosols during a major biomass burning episode over northern Europe in spring 2006: experimental and modelling assessments. Atmospheric Environment, 41(17), 3577-3589.
Saarikoski, S., Timonen, H., Saarnio, K., Aurela, M., J¨arvi, L., Keronen, P., Kerminen, V.M., Hillamo, R., 2008. Sources of organic carbon in fine particulate matter in northern European urban air. Atmospheric Chemistry and Physics 8, 6281–6295.
Saarnio, K., Aurela, M., Timonen, H., Saarikoski, S., Teinilä, K., Mäkelä, T., Sofiev, M., Koskinen, J., Aalto, PP., Kulmala, M., Kukkonen, J., Hillamo, R., 2010. Chemical composition of fine particles in fresh smoke plumes from boreal wild-land fires in Europe. Science of the total environment, 408(12), 2527-2542.
Sang, X., Zhang, Z., Chan, C., & Engling, G., 2013. Source categories and contribution of biomass smoke to organic aerosol over the southeastern Tibetan Plateau. Atmospheric Environment, 78, 113-123.
Salam, A., Bauer, H., Kassin, K., Ullah, S. M., Puxbaum, H., 2003. Aerosol chemical characteristics of an island site in the Bay of Nengal (Bhola-Bangladesh). Journal of Environmental Monitoring, 5, 483–490.
Saxena, P., Hildemann, L.M., 1996. Water-soluble organic atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds. Journal of Atmospheric Chemistry 24, 57-109.
Schkolnik, G., Falkovich, A. H., Rudich, Y., Maenhaut,W., and Artaxo, P., 2005. New analytical method for the determination of levoglucosan, polyhydroxy compounds, and 2-methylerythritol and its application to smoke and rainwater samples, Environ. Sci. Technol., 39, 2744–2752.
Schauer, J. J., Kleeman, M. J., Cass, G. R., Simoneit, B. R. T., 1999. Measurement of emissions from air pollution sources. 1. C1 through C29 organic compounds from meat charbroiling. Environment Science and Technology, 33, 1566–1577.
Schauer, J.J., Kleeman, M.J., Cass, G.R., Simoneit, B.R.T., 2001. Measurement of emissions from air pollution sources. 3. C1-C29 organic compounds from fireplace combustion of wood. Environmental Science & Technology 35, 1716-1728.
Schichtel, B.A., Malm, W.C., Bench, G., Fallon, S., McDade, C.E., Chow, J.C., Watson, J.G., 2008. Fossil and contemporary fine particulate carbon fractions at 12 rural and urban sites in the United States. J. Geophys. Res. 113, D02311. doi:10.1029/2007JD008605.
Schmidl, C., Bauer, H., Dattler, A., Hitzenberger, R., Weissenboeck, G., Marr, I. L. and Puxbaum, H., 2008a. Chemical characterisation of particle emissions from burning leaves. Atmospheric Environment 42, 9070-9079, doi: DOI 10.1016/j.atmosenv.2008.09.010.
Schmidl, C., Marr, L. L., Caseiro, A., Kotianova, P., Berner, A., Bauer, H., Kasper-Giebl, A. and Puxbaum, H., 2008b. Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions. Atmospheric Environ, 42(1), 126-141.
Sempe´re´, R., Kawamura, K., 2003. Trans-hemispheric contribution of C2 -C10 α, ω-dicarboxylic acids, and related polar compounds to water-soluble organic carbon in the western Pacific aerosols in relation to photochemical oxidation reactions. Global Biogeochemical Cycles, vol.17, no.2, 1069, doi:10.1029/2002gb001980.
See, W.S., Balasubramanian, R., Rianawati, E., Karthikeyan, S., Streets, D.G., 2007. Characterization and source apportionment of particulate matter ≤ 2.5 μm in Sumatra, Indonesia, during a recent peat fire episode. Environmental Science and Technology 41(10), 3488–3494.
Shafizadeh, F., Furneaux, R.H., Cochran, T.G., Scholl, J.P., Sakai, Y., 1979. Production of levoglucosan and glucose from pyrolysis of cellulosic materials. Journal of Applied Polymer Science 23, 3525-3539.
Sheesley, R. J., Schauer, J. J., Chowdhury, Z., Cass, G. R., & Simoneit, B. R., 2003. Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia. Journal of Geophysical Research: Atmospheres (1984–2012), 108(D9).
Sheffield, A. E., Gordon, G. E., Currie, L. A., Riederer, G. E., 1994. Organic, lemental, and isotopic tracers of air pollution in Albuquerque, NM. Atmospheric Environment, 28, 1371–1384.
Sheu, G.R., Lin, N.H., Wang, J.L., Lee, C.T., Ou Yang, C.F., Wang S.H., 2010. Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan. Atmospheric Environment 44, 2393–2400.
Shimohara, T., Oishi, O., Utsunomiya, A., Mukai, H., Hatakeyama, S., Eun-Sun, J., Uno, I., Murano, K., 2001. Characterization of atmospheric air pollutants at two sites in northern Kyushu, Japan — chemical form, and chemical reaction. Atmospheric Environment 35, 667–681.
Simoneit, B. R. T. Elias, V. O., 2000. Organic tracers from biomass burning in atmospheric particulate matter over the ocean. Marine Chemistry, 69, 01–312.
Simoneit, B. R. T., Oros, D. R., Elias, V. O., 2000a. Molecular tracers for smoke from charring/burning of chitin biopolymer. Chemosphere: Global Change Science, 2, 101–105.
Simoneit, B. R. T., Rogge, W. F., Lang, Q., Jaffė, R., 2000b. Molecular haracterization of smoke from campfire burning of pine wood (Pinuselliottii). Chemosphere:Global Change Science, 2, 107–122.
Simoneit, B. R. T., Rogge, W. F., Mazurek, M. A., Standley, L. J., Hildemann, L. M., Cass, G. R., 1993. Lignin pyrolysis products, lignans and resin acids as specific tracers of plant classes in emissions from biomass combustion. Environment Science and Technology, 27, 2533–2541.
Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O., Fraser, . P., Rogge, W. F., Cass, G. R., 1999. Levoglucosan, a tracer for ellulose in biomass burning and atmospheric particles. Atmospheric Environment, 33, 173–182.
Simoneit, B.R.T., 2002. Biomass burning: a review of organic tracers for smoke from incomplete combustion. Applied Geochemistry 17, 129-162.
Simpson, I.J., Meinardi, S., Blake, D.R., Blake, N.J., Rowland, F.S., Atlas, E., Flocke, F., 2002. Abiomass burning source of C1–C4 alkyl nitrates. Geophysical Research Letter 29(24), 2168, doi:10.1029/2002GL016290.
Sillanpaa, M., Saarikoski, S., Pennanen, A., Makkonen, U., Spolnik, Z., Grieken, R., Koskentalo, T., Salonen, R.O., 2005. Chemical composition, mass size distribution and source analysis of long-range transported wildfire smokes in Helsinki. Science of the Total Environment 350, 119–135.
Stohl, A., Berg, T., Burkhart, J.F., Fjaraa, A.M., Forster, C., Herber, A., Hov, O., Lunder, C., McMillan, W.W., Oltmans, S., Shiobara, M., Simpson, D., Solberg, S., Stebel, K., Strom, J., Torseth, K., Treffeisen, R., Virkkunen, K., Yttri, K.E., 2007. Arctic smoke-record high air pollution levels in the European Arctic due to agricultural fires in eastern Europe in spring 2006. Atmospheric Chemistry and Physics 7, 511-534.
Streets, D. G., Yarber, K. F., Carmichael, G. R., 2003. Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles 17, 1099, doi:10.1029/2003GB002040.
Sullivan, A.P., Holden, A.S., Patterson, L.A., McMeeking, G.R., Kreidenweis, S.M., Malm, W.C., Hao, W.M., Wold, C.E., Collett Jr., J.L., 2008. A method for smoke marker measurements and its potential application for determining the contribution of biomass burning from wildfires and prescribed fires to ambient PM2.5 organic carbon. Journal of Geophysical Research 113, D22302, doi:10.1029/2008JD010216.
Surratt, J.D., Kroll, J.H., Kleindienst, T.E., Edney, E.O., Claeys, M., Sorooshian, A., Ng, N.L., Offenberg, J.H., Lewandowski, M., Jaoui, M., Flagan, R.C., Seinfeld, J.H., 2007a. Evidence for organosulfates in secondary organic aerosols. Environmental Science & Technology 41, 517-527.
Surratt, J.D., Lewandowski, M., Offenberg, J.H., Jaoui, M., Kleindienst, T.E., Edney, E.O., Seinfeld, J.H., 2007b. Effect of acidity on secondary organic aerosol formation from isoprene. Environmental Science & Technology 41, 5363-5369.
Suzuki, I., Hayashi, K., Igarashi, Y., Takahashi, H., Sawa, Y., Ogura, N., Akagi, T., Dokiya, Y., 2008. Seasonal variation of water-soluble ion species in the atmospheric aerosols at the summit of Mt. Fuji. Atmospheric Environment 42, 8027-8035.
Szidat, S., Ruff, M., Wacker, L., Synal H.A., Hallquist, M., Shannigrahi, A.S., Yttri, K.E., Dye, C., Simpson, D., 2008. Fossil and non-fossil sources of organic carbon (OC) and elemental carbon (EC) in Goteborg, Sweden, Atmospheric Chemistry Physics Discussion 8, 16255–16289.
Tanner, R.L., Leaderer, B.P., Spengler, J.D., 1981. Acidity of atmospheric aerosols. Environmental Science & Technology 15, 150-1153.
Tao, J., Zhang, L., Engling, G., Zhang, R., Yang, Y., Cao, J., Zhu, C., Wang, Q., Luo, L., 2013. Chemical composition of PM2.5 in an urban environment in Chengdu, China: Importance of springtime dust storms and biomass burning. Atmospheric Research 122, 270-283.
Thomas, W., 1998. Detection of biomass burning combustion products in Southeast Asia from backscatter data taken by the GOME spectrometer.
Tsai, Y. I., Sopajaree, K., Chotruksa, A., Wu, H.-C., & Kuo, S.-C., 2012. Source indicators of biomass burning associated with inorganic salts and carboxylates in dry season ambient aerosol in Chiang Mai Basin, Thailand. Atmospheric Environment 78, 93-104.
Vermote, E., Ellicott, E., Dubovik, O., Lapyonok, T., Chin, M., Giglio, L., Roberts, G.J., 2009. An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power. Journal Geophysical Research 114, D18205, doi:10.1029/2008JD011188.
Viana, M., Lopez, J.M., Querol, X., Alastuey, A., Garcia-Gacio, D., Blanco Heras, G., Lopez-Mahia, P., Pineiro-Iglesias, M., Sanz, M.J., Sanz, F., Chi, X., Maenhaut, W., 2008. Tracers and impact of open burning of rice straw residues on PM in Eastern Spain. Atmospheric Environment 42, 1941–1957.
Vignati, E., Facchini, M.C., Rinaldi, M., Scannell, C., Ceburnis, D., Sciare, J., Kanakidou, M., Myriokefalitakis, S., Dentener, F., O′Dowd, C.D., 2010. Global scale emission and distribution of sea-spray aerosol:Sea-salt and organic enrichment. Atmospheric Environment 44, 670-677.
Wai, K.M., Lin, N.-H., Wang, S.-H., Dokiya, Y., 2008. Rainwater chemistry at a high altitude station, Mt. Lulin, Taiwan: comparison with a background station, Mt. Fuji. Journal of Geophysical Research 113, D06305. http://dx.doi.org/10.1029/2006JD008248.
Wan, E.C.H., Yu, J.Z., 2007. Analysis of sugars and sugar polyols in atmospheric aerosols by chloride attachment in liquid chromatography/negative ion electrospray mass spectrometry. Environmental Science & Technology 41, 2459–2466.
Wang, G., Kawamura, K., Umemoto, N., Xie, M., Hu, S., Wang, Z., 2009. Water-soluble organic compounds in PM2.5 and size-segregated aerosols over Mount Tai in North China Plain. Journal of Geophysical Research 114(D19208). doi:10.1029/2008JD011390.
Wang, Q.Q., Shao, M., Liu, Y., Kuster, W., Goldan, P., Li, X.H., Liu, Y.A., Lu, S.H., 2007. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases. Atmospheric Environment 41, 8380–8390.
Wang, S.H., Lin, N.H., Chou, M.D., Woo, J.H., 2007. Estimate of radiative forcing of Asian biomass-burning aerosols during the period of TRACE-P. Journal of Geophysical Research 112, D10222, doi:10.1029/2006JD007564.
Wang, S.H., Tsay, S.C., Lin, N.H., Hsu, N.C., Bell, S.W., LI, C., Ji, Q., Jeong, M.J., Hansell, R.A., Welton, E.J., Holben, B.N., Sheu, G.R., Chu, Y.C., Chang, S.C., Liu, J.J., Chiang, W.L., 2011. First detailed observations of long-range transported dust over the northern South China Sea. Atmospheric Environment 45, 4804-4808.
Ward, T.J., Hamilton, R.F., Dixon, R.W., Paulsen, M., Simpson, C.D., 2006. Characterization and evaluation of smoke tracers in PM: results from the 2003 Montana wildfire season. Atmospheric Environment 40, 7005–7017.
Watson, J.G., Chow, J.C., Chen, L.-W.A., 2005. Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol Air Quality Research 5, 65–102.
Watson, J.G., Chow, J.C., Houck, J.E., 2001. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere 43, 1141-1151.
Weimer, S., Alfarra, M.R., Schreiber, D., Mohr, M., Prevot, A.S.H., Baltensperger, U., 2008. Organic aerosol mass spectral signatures from wood-burning emissions: influence of burning conditions and wood type. Journal of Geophysical Research 113, D10304. doi:10.1029/2007JD009309.
Wooster, M.J., Zhukov, B., Oertel, D., 2003. Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sensing of Environment 86, 83-107.
Yamasoe, M. A., Paulo, A., Miguel, A. H., Allen, A. G., 2000. Chemical composition of aerosol particles from different emissions of vegetation fires in the Amazon Basin: Water-soluble species and trace elements. Atmospheric Environment, 34, 1641-1653.
Yang, L., Yu, l., 2008. Measurements of Oxalic Acid, Oxalates, Malonic Acid, and Malonates in Atmospheric Particulates. Environmental Science and Technology 42, 9268–9275.
Yan,B., Zheng, M., Hu, Y.T., Lee, S., Kim, H.K., Russell, A.G., 2008. Organic composition of carbonaceous aerosols in an aged prescribed fire plume. Atmospheric Chemistry and Physics, 8, 6381–6394.
Yen, M.-C., Peng, C.-M., Chen, T.-C., Chen, C.-S., Lin, N.-H., Tzeng, R.-Y., Lee, Y.-A., Lin, C.-C., 2013. Climate and weather characteristics in association with the active fires in northern Southeast Asia and spring air pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment. Atmospheric Environment 78, 35-50.
Yu, J. Z., Xu, J., & Yang, H., 2002. Charring characteristics of atmospheric organic particulate matter in thermal analysis. Environmental science & technology, 36(4), 754-761.
Yuan, Z.B., Yu, J.Z., Lau, A.K.H., Louie, P.K.K., Fung, J.C.H., 2006. Application of positive matrix factorization in estimating aerosol secondary organic carbon in Hong Kong and its relationship with secondary sulfate. Atmos. Chem. Phys. 6, 25–34.
Yue, Z., Fraser, M.P., 2004. Polar organic compounds measured in fine particulate matter during TexAQS 2000. Atmospheric Environment 38, 3253–3261.
Zdr´ahal, Z., Oliveira, J., Vermeylen, R., Claeys, M., and Maenhaut, W., 2002. Improved method for quantifying levoglucosan and related monosaccharide anhydrides in atmospheric aerosols and application to samples from urban and tropical locations, Environ. Sci. Technol 36, 747–753.
Zhang, R.J., Cao, J.J., Lee, S.C., Shen, Z.X., Ho, K.F., 2007. Carbonaceous aerosols in PM10 and pollution gases in winter in Beijing. J. Environ. Sci. 19, 564–571.
Zhang, Y. X., Shao, M., Zhang, Y.-h., Zeng, L.-m., He, L.-y., Zhu, B., Wei, Y.-j. and Zhu, X.-l., 2007. Source profiles of particulate organic matters emitted from cereal straw burnings. Journal of Environmental Sciences 19, 167-175.
Zhang, Y., Schauer, J.J., Zhang, Y., Zeng, L., Wei, Y., Liu, Y. and Hao, M., 2008. Characteristics of Particulate Carbon Emissions from Real-World Chinese Coal Combustion. Environ. Sci. Technol., 42, 5068–5073.
Zhang, X., Hecobian, A., Zheng, M., Frank, N. H., and Weber, R.J., 2010. Biomass burning impact on PM2.5 over the southeastern US during 2007: integrating chemically speciated FRM filter mea-surements, MODIS fire counts and PMF analysis, Atmospheric Chemistry and Physics 10, 6839–6853, doi:10.5194/acp-10-6839.
Zhang, Z., Engling, G., Lin, C.-Y., Chou, C. C.-K., Lung, S.-C. C., Chang, S.-Y., Fan, S., Chan, C.-Y., Zhang, Y.-H., 2010. Chemical speciation, transport and contribution of biomass burning smoke to ambient aerosol in Guangzhou, a mega city of China. Atmospheric Environment, 44(26), 3187-3195.
Zhang, X., Liu, Z., Hecobian, A., Zheng, M., Frank, N.H., Edgerton, E.S., Weber, R.J., 2012. Spatial and seasonal variations of fine particle water-soluble organic carbon (WSOC) over the southeastern United States: implications for secondary organic aerosol formation. Atmospheric Chemistry and Physics 12, 6593–6607.
Zielinska, B., Samburova, V., 2011. Residential and non-residential biomass combustion: impacts on air quality. J.O. Nriagu (Ed.), Encyclopedia of Environmental Health, Elsevier, Burlington , 819–827
Zhu, C.S., Chen, C.C., Cao, J.J., Tsai, C.J., Chou, C.C.K, Liu, S.C., Roam, G.D., 2010. Characterization of carbon fractions for atmospheric fine particles and nanoparticles in a highway tunnel. Atmospheric Environment 44, 2688–2673.
泰國火災控制部門網站:http://www.dnp.go.th/forestfire/
中國東盟博覽會網站-泰國林業:http://www.caexpo.org
秦若鈺,2004。大氣常見有機物分析及有機/無機混和氣膠含水特性之研究。國立中央大學環境工程研究所碩士論文。
侯雅馨,2008。大氣氣膠腐植質含量分析及氣膠成分對氣膠含水量影響的研究。國立中央大學環境工程研究所碩士論文。
許紹鵬,2010。鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性。國立中央大學環境工程研究所碩士論文。
張佑嘉,2011。中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性。國立中央大學環境工程研究所碩士論文。
張家宏,2013。2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性。國立中央大學環境工程研究所碩士論文。
巫學蒼,2013。2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析。國立中央大學環境工程研究所碩士論文。
指導教授 李崇德(Chung-Te Lee) 審核日期 2014-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明