博碩士論文 100326011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.233.224.8
姓名 曾郁婷(Yu-ting Tseng)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
(Removal of an Endocrine Disrupting Chemical , Nonylphenol, from Aqueous Solutions Using UV/TiO2 Photocatalytic Decomposition Processes.)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
★ 吸附汞之三價鐵礦於生物還原溶解過程中元素汞的生成與移動潛勢★ 掩埋場滲出水環境之汞甲基化潛勢探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 傳統淨水與廢水處理程序對於內分泌干擾物質的去除效果有限,故常需倚賴高級氧化處理等技術以達到理想的去除率,而紫外光/二氧化鈦(UV/TiO2)光催化程序即為當中一項吸引人的處理技術,因此法可有效去除頑抗、難分解的有機物,且最終可將污染物礦化成CO2和H2O等無二次污染的產物。本研究嘗試應用UV/TiO2光催化程序處理含壬基苯酚(nonylphenol, NP)之水溶液,實驗採批次式,選用波長352 nm的紫外光燈管為光源,從中探討TiO2 劑量、pH值、離子效應及TiO2包埋與否對其光催化降解的影響。實驗結果顯示隨著TiO2劑量的增加,NP受光催化降解之效率也隨著提升,其中TiO2的最佳添加劑量為100 mg/L,在反應2小時內即可達到100%之NP去除效率,且光催化降解反應符合擬一階反應速率方程式。利用總有機碳分析儀量測最佳處裡效率下之溶液內有機碳含量時,顯示在UV/TiO2系統中照射紫外光兩小時後,即使NP已達100%去除,仍有23%之溶解性有機碳殘餘在溶液中,推測NP在反應過程中可能產生其他中間產物而尚未完全礦化。調整反應系統之酸鹼度後,觀察到相較於酸性(pH=3)及鹼性(pH=11)條件,系統於中性狀態下有較佳之光催化降解效率,此乃因在異相光催化機制中,污染物必須先與TiO2表面接觸,再藉由系統中具強氧化力之OH•的幫助,啟動後續氧化還原反應而達到催化降解之目的。由於TiO2之pHpzc約為6.5,而NP之pKa為10.28,故當反應溶液落在鹼性範圍時,TiO2及NP皆因帶負電型式,兩者相斥導致彼此接觸機會降低,因而催化效果不佳;在酸性及中性狀態下,TiO2及NP因靜電力/凡德瓦力的關係而互相吸引,雖然兩者接觸機會相似,但因在中性條件下,OH-之濃度相對較高,所能形成之OH•的濃度也相對提高,故其光催化降解的效率較佳。此外,在反應系統中添加NaCl及Na2SO4等離子化合物,卻未觀察到因離子化合物的加入而使TiO2顆粒產生不同程度的團聚,或者離子與污染物競爭TiO2表面活性位置之現象,簡言之, NP之光催化降解效率並未因離子化合物的加入而有顯著降低之趨勢。在TiO2包埋方面,發現不論利用海藻酸鈉或幾丁質,所形成之包埋顆粒其光催化降解效率皆劣於懸浮態且未包埋之顆粒,當中尤以幾丁質包埋之顆粒因網絡結構較為鬆散,易於反應攪拌過程中受到破壞。兩者經由掃描式電子顯微鏡(SEM)的觀察發現,大部分之TiO2皆被包覆於顆粒內部,減緩TiO2和污染物接觸機會,因此無法有效發揮TiO2光催化作用。
摘要(英) Due to the efficiency of conventional drinking and wastewater treatment processes to remove endocrine disruptors is frequently unsatisfactory, other technology units such as advanced oxidation processes oftentimes are needed in order to achieve ideal discharge quality. One of the appealing technologies is the UV/TiO2 photocatalytic decomposition process, as it has the capacity to nonspecifically oxidize organic compounds ultimately to CO2 and H2O, hence being able to successfully eliminate recalcitrant organic pollutants from the solution.
In this study, photo-degradation experiments of nonylphenol (NP) were conducted in batch reactors using P-25 Degussa particles and UV-A lamps with an emitting wavelength of 352 nm as the TiO2 and UV sources, respectively. In addition to investigating the effects of TiO2 dosage, solution pH and the ionic strength on NP removal during the photocatalytic decomposition process, the potential of applying immobilization techniques in this process was also assessed.
Experimental data showed that photo-degradation efficiency of NP increased with increasing amounts of TiO2, resulting in 100 mg/L as the optimal TiO2 dosage that caused 100% of NP removal in 2 hr. Further, the pseudo first order model was successfully used to explain the kinetic behavior of NP destruction in the solution as the model fitted the data well. However, results of TOC analysis on samples taken after 2-hr reactions showed that 23% of organic carbons remained in the solution, suggesting that some intermediates were produced and retained over the course of the experiment. When the pH of the system varied, higher NP removal was observed at pH 6-7 than at pH 3 and pH 11. This can be explained by the nature of the heterogeneous photocatalytic degradation process, which involves an initial contact between pollutants and the surface of TiO2 before the degradation kicks in. Given that the point of zero charge (pHpzc) of TiO2 is approximately 6.5 and the pKa of NP is 10.28 or so, under alkaline conditions both TiO2 and NP would have negatively-charged surfaces and may experience electrostatic repulsion when they proceed to each other; therefore, ineffective NP photo-degradation resulted from a decrease in the sorption of NP to TiO2 is anticipated. On the other hand, under acidic and neutral conditions, TiO2 particles and NP may have a better contact chance through the electrostatic pairing force and the van der Waals attractive force, therefore resulting in higher photo-decomposition rates; nonetheless, compared to acidic conditions, neutral conditions still have relatively high reduction rates because of more hydroxyl free radicals generated under such circumstances. Addition of ionic compounds such as NaCl and Na2SO4 did not lead to significant aggregation of of TiO2, nor was the competition between the ions and the pollutant (i.e., NP) for the active sites of TiO2 surface observed. In other words, the degradation efficiency was not affected to a great deal after the ionic compounds were supplemented into the system. Lastly, NP removal through immobilization of TiO2 particles using alginate or chitosan was worse than the use of the powder-formed TiO2 in the photo-degradation system. Scanning electron microscopic analysis of these immobilized particles indicated that the majority of TiO2 powders were entrapped inside the structure of the immobilized particles, thus preventing TiO2 from the contact of pollutants and further resulting in decreases in the degradation efficiency.
關鍵字(中) ★ 紫外光/二氧化鈦光催化降解
★ 內分泌干擾物質
★ 壬基苯酚
★ 包埋
關鍵字(英)
論文目次 致謝 i
摘要 ii
目錄 vi
圖目錄 ix
表目錄 xii
第一章 前言 1
1.1研究背景 1
1.2研究目的 5
第二章 文獻回顧 6
2.1新興污染物 6
2.1.1內分泌干擾物質定義與作用機制 6
2.2烷基苯酚簡介 8
2.2.1烷基苯酚物化特性、流佈及宿命 10
2.2.2烷基苯酚對生物體的影響及相關規範 18
2.2.3烷基苯酚常見處理技術 20
2.3紫外光/光觸媒光催化降解程序 23
2.3.1光化學反應原理 23
2.3.2光觸媒材料 26
2.3.3二氧化鈦光觸媒基本性質 27
2.3.4二氧化鈦光催化反應原理與機制 30
2.3.5二氧化鈦光催化降解動力學 31
2.4紫外光/光觸媒光催化降解程序之影響因子 33
2.4.1反應物初始濃度 33
2.4.2反應溶液pH值 34
2.4.3 TiO2劑量 35
2.4.4溶氧 36
2.4.5離子效應 37
2.5固定化技術 39
第三章 實驗設備、材料及方法 42
3.1實驗儀器 42
3.2實驗藥品 43
3.3實驗設備裝置 45
3.4實驗方法 47
3.5分析方法 51
3.5.1 NP濃度分析 51
3.5.2總有機碳(TOC)分析 51
第四章 結果與討論 53
4.1 P-25基本特性分析探討 53
4.1.1晶型結構鑑定 53
4.1.2表面型態分析 54
4.1.3比表面積及孔隙分析 54
4.2背景實驗 56
4.2.1 NP自然降解實驗 56
4.2.2 NP直接光解實驗 57
4.2.3 TiO2劑量對NP暗吸附影響實驗 60
4.2.4 pH值對TiO2暗吸附NP之影響實驗 61
4.3 UV/TiO2異相光催化降解實驗 63
4.3.1 TiO2劑量影響 63
4.3.2 pH值影響 65
4.3.3光源影響 68
4.3.4離子添加效應 69
4.4最佳組合探討 77
4.4.1 TOC礦化效率 77
4.5固定化二氧化鈦顆粒 80
4.5.1海藻酸鈉包埋顆粒 80
4.5.2幾丁質包埋顆粒 85
第五章 結論與建議 87
5.1結論 87
5.2建議 88
參考文獻 90
參考文獻 Ahel, M. and W. Giger (1993). "Aqueous solubility of alkylphenols and alkylphenol polyethoxylates." Chemosphere 26(8): 1461-1470.
Ahel, M. and W. Giger (1993). "Partitioning of alkylphenols and alkylphenol polyethoxylates between water and organic solvents." Chemosphere 26(8): 1471-1478.
Alaton, I. A., I. A. Balcioglu and D. W. Bahnemann (2002). "Advanced oxidation of a reactive dyebath effluent: comparison of O3, H2O2/UV-C and TiO2/UV-A processes." Water Research 36(5): 1143-1154.
Alhakimi, G., L. H. Studnicki and M. Al-Ghazali (2003). "Photocatalytic destruction of potassium hydrogen phthalate using TiO2 and sunlight: application for the treatment of industrial wastewater." Journal of Photochemistry and Photobiology A: Chemistry 154(2–3): 219-228.
Barber II LB, Leenheer JA, Pereira WE, Noyes TI, Brown GK, Tabor CF, Writer JH (1996)." Organic contamination of the Mississippi River from municipal and industrial wastewater." U.S. Geol. Survey Circ. 1133. Washington, DC: U.S. Geol. Survey: 114–35
Baker, V. A. (2001). "Endocrine disrupters — testing strategies to assess human hazard." Toxicology in Vitro 15(4–5): 413-419.
Bekbölet, M. and G. Özkösemen (1996). "A preliminary investigation on the photocatalytic degradation of a model humic acid." Water Science and Technology 33(6): 189-194.
Bekkouche, S., M. Bouhelassa, N. H. Salah and F. Z. Meghlaoui (2004). "Study of adsorption of phenol on titanium oxide (TiO2)." Desalination 166(0): 355-362.
Bester, K., N. Theobald and H. F. Schröder (2001). "Nonylphenols, nonylphenol-ethoxylates, linear alkylbenzenesulfonates (LAS) and bis (4-chlorophenyl)-sulfone in the German Bight of the North Sea." Chemosphere 45(6–7): 817-826.
Bhatkhande, D. S., S. P. Kamble, S. B. Sawant and V. G. Pangarkar (2004). "Photocatalytic and photochemical degradation of nitrobenzene using artificial ultraviolet light." Chemical Engineering Journal 102(3): 283-290.
Bolong, N., A. F. Ismail, M. R. Salim and T. Matsuura (2009). "A review of the effects of emerging contaminants in wastewater and options for their removal." Desalination 239(1–3): 229-246.
Byrne, J. A., B. R. Eggins, N. M. D. Brown, B. McKinney and M. Rouse (1998). "Immobilisation of TiO2 powder for the treatment of polluted water." Applied Catalysis B: Environmental 17(1–2): 25-36.
Chang, B. V., B. W. Chiang and S. Y. Yuan (2007). "Biodegradation of nonylphenol in soil." Chemosphere 66(10): 1857-1862.
Chang, B. V., F. Chiang and S. Y. Yuan (2005). "Anaerobic degradation of nonylphenol in sludge." Chemosphere 59(10): 1415-1420.
Chang, B. V., F. Chiang and S. Y. Yuan (2005). "Biodegradation of nonylphenol in sewage sludge." Chemosphere 60(11): 1652-1659.
Chang, B. V., C. L. Liu, S. Y. Yuan, C. Y. Cheng and W. H. Ding (2008). "Biodegradation of nonylphenol in mangrove sediment." International Biodeterioration & Biodegradation 61(4): 325-330.
Chen, C. C., C. S. Lu, Y. C. Chung and J. L. Jan (2007). "UV light induced photodegradation of malachite green on TiO2 nanoparticles." Journal of Hazardous Materials 141(3): 520-528.
Chen, Y., Z. Sun, Y. Yang and Q. Ke (2001). "Heterogeneous photocatalytic oxidation of polyvinyl alcohol in water." Journal of Photochemistry and Photobiology A: Chemistry 142(1): 85-89.
Cheng, C.-Y., C.-Y. Wu, C.-H. Wang and W.-H. Ding (2006). "Determination and distribution characteristics of degradation products of nonylphenol polyethoxylates in the rivers of Taiwan." Chemosphere 65(11): 2275-2281.
Choi, H., S. R. Al-Abed, D. D. Dionysiou, E. Stathatos and P. Lianos (2010). Chapter 8 TiO2-Based Advanced Oxidation Nanotechnologies for Water Purification and Reuse. Sustainability Science and Engineering. C. E. Isabel and I. S. Andrea, Elsevier. Volume 2: 229-254.
Choi, K. J., S. G. Kim, C. W. Kim and S. H. Kim (2005). "Effects of activated carbon types and service life on removal of endocrine disrupting chemicals: amitrol, nonylphenol, and bisphenol-A." Chemosphere 58(11): 1535-1545.
Chong, M. N., B. Jin, C. W. K. Chow and C. Saint (2010). "Recent developments in photocatalytic water treatment technology: A review." Water Research 44(10): 2997-3027.
Crini, G. and P.-M. Badot (2008). "Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature." Progress in Polymer Science 33(4): 399-447.
Dachs, J., J. M. Bayona, J. Fillaux, A. Saliot and J. Albaigés (1999). "Evaluation of anthropogenic and biogenic inputs into the western Mediterranean using molecular markers." Marine Chemistry 65(3–4): 195-210.
Dunbar, B., M. Patel, J. Fahey and C. Wira (2012). "Endocrine control of mucosal immunity in the female reproductive tract: Impact of environmental disruptors." Molecular and Cellular Endocrinology 354(1–2): 85-93.
Duong, C. N., J. S. Ra, J. Cho, S. D. Kim, H. K. Choi, J.-H. Park, K. W. Kim, E. Inam and S. D. Kim (2010). "Estrogenic chemicals and estrogenicity in river waters of South Korea and seven Asian countries." Chemosphere 78(3): 286-293.
Fu, M., Z. Li and H. Gao (2007). "Distribution characteristics of nonylphenol in Jiaozhou Bay of Qingdao and its adjacent rivers." Chemosphere 69(7): 1009-1016.
Garcia, J. C. and K. Takashima (2003). "Photocatalytic degradation of imazaquin in an aqueous suspension of titanium dioxide." Journal of Photochemistry and Photobiology A: Chemistry 155(1–3): 215-222.
Gaya, U. I. and A. H. Abdullah (2008). "Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems." Journal of Photochemistry and Photobiology C: Photochemistry Reviews 9(1): 1-12.
González, L. F., V. Sarria and O. F. Sánchez (2010). "Degradation of chlorophenols by sequential biological-advanced oxidative process using Trametes pubescens and TiO2/UV." Bioresource Technology 101(10): 3493-3499.
Guibal, E. (2005). "Heterogeneous catalysis on chitosan-based materials: a review." Progress in Polymer Science 30(1): 71-109.
Han, F., V. S. R. Kambala, M. Srinivasan, D. Rajarathnam and R. Naidu (2009). "Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review." Applied Catalysis A: General 359(1–2): 25-40.
Heemken, O. P., H. Reincke, B. Stachel and N. Theobald (2001). "The occurrence of xenoestrogens in the Elbe river and the North Sea." Chemosphere 45(3): 245-259.
Herrmann, J.-M. (1999). "Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants." Catalysis Today 53(1): 115-129.
Hidalgo, M. C., M. Maicu, J. A. Navío and G. Colón (2007). "Photocatalytic properties of surface modified platinised TiO2: Effects of particle size and structural composition." Catalysis Today 129(1–2): 43-49.
Hsu, L.-J., L.-T. Lee and C.-C. Lin (2011). "Adsorption and photocatalytic degradation of polyvinyl alcohol in aqueous solutions using P-25 TiO2." Chemical Engineering Journal 173(3): 698-705.
Ike M, Asano M, Belkada FD, Tsunoi S, Tanaka M, Fujita M (2002). " Degradation of biotansformation products of nonylphenol ethoxylates by ozonation and UV/TiO2 treatment." Water Science and Technology 46(0): 127-132
Jobling, M. (1996). "Wrasse: biology and use in aquaculture: M.D.J. Sayer, J.W. Treasurer and M.J. Costello (Editors), Fishing News Books, Oxford, 1996, 312 pp., price £45, ISBN 0 85238 2367." Aquaculture 147(1–2): 145-147.
Kaneco, S., M. A. Rahman, T. Suzuki, H. Katsumata and K. Ohta (2004). "Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide." Journal of Photochemistry and Photobiology A: Chemistry 163(3): 419-424.
Karci, A., I. Arslan-Alaton and M. Bekbolet "Advanced oxidation of a commercially important nonionic surfactant: Investigation of degradation products and toxicity." Journal of Hazardous Materials(0).
Kashiwada, S., H. Ishikawa, N. Miyamoto, Y. Ohnishi and Y. Magara (2002). "Fish test for endocrine-disruption and estimation of water quality of Japanese rivers." Water Research 36(8): 2161-2166.
Kerzhentsev, M., C. Guillard, J.-M. Herrmann and P. Pichat (1996). "Photocatalytic pollutant removal in water at room temperature: case study of the total degradation of the insecticide fenitrothion (phosphorothioic acid O,O-dimethyl-O-(3-methyl-4-nitro-phenyl) ester)." Catalysis Today 27(1–2): 215-220.
Kloas, W., I. Lutz and R. Einspanier (1999). "Amphibians as a model to study endocrine disruptors: II. Estrogenic activity of environmental chemicals in vitro and in vivo." Science of The Total Environment 225(1–2): 59-68.
Krýsa, J., G. Waldner, H. Měšt’ánková, J. Jirkovský and G. Grabner (2006). "Photocatalytic degradation of model organic pollutants on an immobilized particulate TiO2 layer: Roles of adsorption processes and mechanistic complexity." Applied Catalysis B: Environmental 64(3–4): 290-301.
Kurinobu, S., K. Tsurusaki, Y. Natui, M. Kimata and M. Hasegawa (2007). "Decomposition of pollutants in wastewater using magnetic photocatalyst particles." Journal of Magnetism and Magnetic Materials 310(2, Part 3): e1025-e1027.
Lee, P. C., M. Marquardt and J. J. Lech (1998). "Metabolism of nonylphenol by rat and human microsomes." Toxicology Letters 99(2): 117-126.
Li, Y., X. Duan, X. Li and D. Zhang (2013). "Photodegradation of nonylphenol by simulated sunlight." Marine Pollution Bulletin 66(1–2): 47-52.
Lin, S.-H., C.-H. Chiou, C.-K. Chang and R.-S. Juang (2011). "Photocatalytic degradation of phenol on different phases of TiO2 particles in aqueous suspensions under UV irradiation." Journal of Environmental Management 92(12): 3098-3104.
Liu, Z.-h., Y. Kanjo and S. Mizutani (2009). "Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment — physical means, biodegradation, and chemical advanced oxidation: A review." Science of The Total Environment 407(2): 731-748.
Lopez-Espinosa, M. J., C. Freire, J. P. Arrebola, N. Navea, J. Taoufiki, M. F. Fernandez, O. Ballesteros, R. Prada and N. Olea (2009). "Nonylphenol and octylphenol in adipose tissue of women in Southern Spain." Chemosphere 76(6): 847-852.
Maira, A. J., K. L. Yeung, C. Y. Lee, P. L. Yue and C. K. Chan (2000). "Size Effects in Gas-Phase Photo-oxidation of Trichloroethylene Using Nanometer-Sized TiO2 Catalysts." Journal of Catalysis 192(1): 185-196.
Manzano, M. A., J. A. Perales, D. Sales and J. M. Quiroga (1999). "The effect of temperature on the biodegradation of a nonylphenol polyethoxylate in river water." Water Research 33(11): 2593-2600.
Molina, G. C., C. H. Cayo, M. A. S. Rodrigues and A. M. Bernardes (2013). "Sodium isopropyl xanthate degradation by advanced oxidation processes." Minerals Engineering 45(0): 88-93.
Montgomery-Brown, J., J. E. Drewes, P. Fox and M. Reinhard (2003). "Behavior of alkylphenol polyethoxylate metabolites during soil aquifer treatment." Water Research 37(15): 3672-3681.
Mortazavi, S., A. Riyahi Bakhtiari, A. E. Sari, N. Bahramifar and F. Rahbarizade (2012). "Phenolic endocrine disrupting chemicals (EDCs) in Anzali Wetland, Iran: Elevated concentrations of 4-nonylphenol, octhylphenol and bisphenol A." Marine Pollution
Bulletin 64(5): 1067-1073.
Muzzarelli, R. A. A., M. Guerrieri, G. Goteri, C. Muzzarelli, T. Armeni, R. Ghiselli and M. Cornelissen (2005). "The biocompatibility of dibutyryl chitin in the context of wound dressings." Biomaterials 26(29): 5844-5854.
Nagao, T., K. Wada, H. Marumo, S. Yoshimura and H. Ono (2001). "Reproductive effects of nonylphenol in rats after gavage administration: a two-generation study." Reproductive Toxicology 15(3): 293-315.
Nagasaki, S., Y. Nakagawa and S. Tanaka (2003). "Sorption of nonylphenol on Na-Montmorillonite." Colloids and Surfaces A: Physicochemical and Engineering Aspects 230(1–3): 131-139.
Nakata, K. and A. Fujishima (2012). "TiO2 photocatalysis: Design and applications." Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13(3): 169-189.
Neamtu, M. and F. H. Frimmel (2006). "Photodegradation of endocrine disrupting chemical nonylphenol by simulated solar UV-irradiation." Sci Total Environ 369(1-3): 295-306.
Ning, B., N. J. D. Graham and Y. Zhang (2007). "Degradation of octylphenol and nonylphenol by ozone – Part I: Direct reaction." Chemosphere 68(6): 1163-1172.
Pal, A., S. Pan and S. Saha (2013). "Synergistically improved adsorption of anionic surfactant and crystal violet on chitosan hydrogel beads." Chemical Engineering Journal 217(0): 426-434.
Papageorgiou, S. K., F. K. Katsaros, E. P. Favvas, G. E. Romanos, C. P. Athanasekou, K. G. Beltsios, O. I. Tzialla and P. Falaras (2012). "Alginate fibers as photocatalyst immobilizing agents applied in hybrid photocatalytic/ultrafiltration water treatment processes." Water Research 46(6): 1858-1872.
Pelaez, M., N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari and D. D. Dionysiou (2012). "A review on the visible light active titanium dioxide photocatalysts for environmental applications." Applied Catalysis B: Environmental 125(0): 331-349.
Pelizzetti, E., C. Minero, V. Maurino, A. Sclafani, H. Hidaka, and N. Serpone (1989). "Photocatalytic degradation of NP ethoxylated surfactants." Environmental Science and Technology 23(0):1380–1385.
Pera-Titus, M., V. Garcı́a-Molina, M. A. Baños, J. Giménez and S. Esplugas (2004). "Degradation of chlorophenols by means of advanced oxidation processes: a general review." Applied Catalysis B: Environmental 47(4): 219-256.
Petrovic, M., S. Lacorte, P. Viana and D. Barceló (2002). "Pressurized liquid extraction followed by liquid chromatography–mass spectrometry for the determination of alkylphenolic compounds in river sediment." Journal of Chromatography A 959(1–2): 15-23.
Rêgo, T. V., T. R. S. Cadaval Jr, G. L. Dotto and L. A. A. Pinto (2013). "Statistical optimization, interaction analysis and desorption studies for the azo dyes adsorption onto chitosan films." Journal of Colloid and Interface Science 411(0): 27-33.
Raecker, T., B. Thiele, R. M. Boehme and K. Guenther (2011). "Endocrine disrupting nonyl- and octylphenol in infant food in Germany: Considerable daily intake of nonylphenol for babies." Chemosphere 82(11): 1533-1540.
Rao, Y. F. and W. Chu (2009). "A new approach to quantify the degradation kinetics of linuron with UV, ozonation and UV/O3 processes." Chemosphere 74(11): 1444-1449.
Renner R (1997)." European bans on surfactant trigger transatlantic debate." Environmental Science and Technology 31(0):316A-320A.
Rosenfeldt, E. J., P. J. Chen, S. Kullman and K. G. Linden (2007). "Destruction of estrogenic activity in water using UV advanced oxidation." Science of The Total Environment 377(1): 105-113.
Sangchay, W., L. Sikong and K. Kooptarnond (2012). "Comparison of photocatalytic reaction of commercial P25 and synthetic TiO2-AgCl nanoparticles." Procedia Engineering 32(0): 590-596.
Schwarzenbach, R.P., P.M. Gschwend, and D.M. Imboden (2003). Environmental Organic Chemistry, 2nd Ed, Wiley-Interscience
Serpone, N., P. Maruthamuthu, P. Pichat, E. Pelizzetti and H. Hidaka (1995). "Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors." Journal of Photochemistry and Photobiology A: Chemistry 85(3): 247-255.
Shih, Y.-h., C.-m. Zhuang, Y.-H. Peng, C.-h. Lin and Y.-m. Tseng (2012). "The effect of inorganic ions on the aggregation kinetics of lab-made TiO2 nanoparticles in water." Science of The Total Environment 435–436(0): 446-452.
Singh, S., H. Mahalingam and P. K. Singh (2013). "Polymer-supported titanium dioxide photocatalysts for environmental remediation: A review." Applied Catalysis A: General 462–463(0): 178-195.
Soares, A., B. Guieysse, B. Jefferson, E. Cartmell and J. N. Lester (2008). "Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters." Environment International 34(7): 1033-1049.
Sobczyński, A., Ł. Duczmal and W. Zmudziński (2004). "Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism." Journal of Molecular Catalysis A: Chemical 213(2): 225-230.
Sriwong, C., S. Wongnawa and O. Patarapaiboolchai (2008). "Photocatalytic activity of rubber sheet impregnated with TiO2 particles and its recyclability." Catalysis Communications 9(2): 213-218.
Stuart, M., D. Lapworth, E. Crane and A. Hart (2012). "Review of risk from potential emerging contaminants in UK groundwater." Science of The Total Environment 416(0): 1-21.
Subagio, D. P., M. Srinivasan, M. Lim and T.-T. Lim (2010). "Photocatalytic degradation of bisphenol-A by nitrogen-doped TiO2 hollow sphere in a vis-LED photoreactor." Applied Catalysis B: Environmental 95(3–4): 414-422.
Sumpter, J. P. (1998). "Xenoendocrine disrupters — environmental impacts." Toxicology Letters 102–103(0): 337-342.
Talmage SS. (1994). "Environmental and human safety of major surfactants: alcohol ethoxylates and alkylphenol ethoxylates." A report to the Soap and Detergent Association. Boca Raton (FL): Lewis Publishers.
Toor, A. P., A. Verma, C. K. Jotshi, P. K. Bajpai and V. Singh (2006). "Photocatalytic degradation of Direct Yellow 12 dye using UV/TiO2 in a shallow pond slurry reactor." Dyes and Pigments 68(1): 53-60.
Tsai, W.-T., M.-K. Lee, T.-Y. Su and Y.-M. Chang (2009). "Photodegradation of bisphenol-A in a batch TiO2 suspension reactor." Journal of Hazardous Materials 168(1): 269-275.
Vione, D., et al. (2005). "Degradation of phenol and benzoic acid in the presence of a TiO2-based heterogeneous photocatalyst." Applied Catalysis B: Environmental 58(1–2): 79-88.
Warhurst AM (1995). "An environmental assessment of alkylphenol ethoxylates and alkylphenols."
Xekoukoulotakis, N. P., C. Drosou, C. Brebou, E. Chatzisymeon, E. Hapeshi, D. Fatta-Kassinos and D. Mantzavinos (2011). "Kinetics of UV-A/TiO2 photocatalytic degradation and mineralization of the antibiotic sulfamethoxazole in aqueous matrices." Catalysis Today 161(1): 163-168.
Xi, Y., D. Li and W. San (2013). "Exposure to the endocrine disruptor nonylphenol alters structure and function of thyroid gland in rats." Regulatory Peptides 185(0): 52-56.
Xu, X.-R., S.-X. Li, X.-Y. Li, J.-D. Gu, F. Chen, X.-Z. Li and H.-B. Li (2009). "Degradation of n-butyl benzyl phthalate using TiO2/UV." Journal of Hazardous Materials 164(2–3): 527-532.
Yang, J., D. Li, X. Wang, X. Yang and L. Lu (2002). "Synthesis and microstructural control of nanocrystalline titania powders via a stearic acid method." Materials Science and Engineering: A 328(1–2): 108-112.
Ying, G.-G., R. S. Kookana and P. Dillon (2003). "Sorption and degradation of selected five endocrine disrupting chemicals in aquifer material." Water Research 37(15): 3785-3791.
Ying, G.-G., B. Williams and R. Kookana (2002). "Environmental fate of alkylphenols and alkylphenol ethoxylates—a review." Environment International 28(3): 215-226.
Yu, Z., S. Peldszus and P. M. Huck (2008). "Adsorption characteristics of selected pharmaceuticals and an endocrine disrupting compound—Naproxen, carbamazepine and nonylphenol—on activated carbon." Water Research 42(12): 2873-2882.
Yuan, S. Y., C. H. Yu and B. V. Chang (2004). "Biodegradation of nonylphenol in river sediment." Environmental Pollution 127(3): 425-430.
Zepp, R. G., Hoigne, J. and Bader. H (1987). "Nitrate-induced photooxidation of trace organic chemicals in water. "Environmental Science and Technology 21(0): 443–450
Zhu, C., L. Wang, L. Kong, X. Yang, L. Wang, S. Zheng, F. Chen, F. MaiZhi and H. Zong (2000). "Photocatalytic degradation of AZO dyes by supported TiO2 + UV in aqueous solution." Chemosphere 41(3): 303-309.
林欣熠,「低溫生長光觸媒二氧化鈦於風扇葉片之空氣清淨及保固性研究」,碩士論文,私立逢甲大學材料科學研究所,台中市(2009)。
黃東斌,「以紫外線/光觸媒過濾薄膜程序處理染料水溶液之研究」,碩士論文,國立台灣科技大學化學工程研究所,台北市(2005)。
張秋萍、滿政顗、巫芸璟、戴志遠、林佩虹,「以二氧化鈦/氧化鋁混合之光觸媒去除氣相丙酮」,環境污染控制評估研討會論文集(2006)。
鄭智鴻,「量身訂做的二氧化鈦光觸媒之合成及應用」,碩士論文,國立成功大學化學工程研究所,台南市(2006)。
鄭正桓,「環境介質中壬基苯酚聚乙氧基醇(NPnEO)類之光觸媒催化降解及電動力復育處理技術之研究」,碩士論文,國立高雄大學土木與環境工程研究所,高雄市(2008)。
陳民紘,「以動態静水壓刺激無支架組織工程軟骨之研究」,碩士論文,國立成功大學醫學工程研究所,台南市(2007)。
陳琨焯,「環境介質中壬基苯酚聚乙氧基醇(NPnEO)類之光觸媒催化降解及電動力復育處理技術之研究」,碩士論文,國立高雄大學土木與環境工程研究所,高雄市(2008)。
陳錫金,「界面活性劑Octylphenol Polyethoxylates生物降解與復育之研究」,博士論文,國立中央大學環境工程研究所,桃園縣(2005)。
陳志郎,「壬基苯酚暴露與生活飲食習慣及生殖健康」,博士論文,國立臺灣大學環境衛生研究所,台北市(2012)。
陳益國,「二氧化鈦光觸媒奈米粉末之製備及其光催化效果之研究」,碩士論文,國立雲林科技大學工業化學與災害防治研究所,雲林縣(2003)。
史慧萍,「好氧脫硝菌之篩選及其特性之研究」,碩士論文,國立台灣大學環境工程研究所,台北市(2000)。
楊倖僖,「臭氧結合紫外光/過氧化氫程序降解水中環境賀爾蒙類物質烷基苯酚之研究」,碩士論文,國立中央大學環境工程研究所,桃園縣(2012)。
袁菁、戴永惇、巫恩祺、陳怡忻,「以改質奈米碳管吸附液相壬基苯酚之研究」,土壤與地下水研討會論文集(2012)。
指導教授 林居慶 審核日期 2013-12-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明