博碩士論文 100326012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.118.9.146
姓名 吳政育(Zheng-Yu Wu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
(Adsorption of Chromate by MCM-41 Synthesized Using Water Purification Sludge Ash and Waste Glass as the Source of Silicate and Aluminum)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例
★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢
★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例
★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析★ 吸附汞之三價鐵礦於生物還原溶解過程中元素汞的生成與移動潛勢
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以富含矽鋁成分之淨水污泥灰與廢玻璃作為原料,合成出中孔徑材料MCM-41並進行表面胺官能基改質以及各項定性分析,最後於酸性環境下(pH ~ 3)進行六價鉻之吸附實驗,探討廢棄物資源化利用與處理廢水中帶負電污染物之可行性。研究結果顯示利用鹼融法與傳統水熱法將淨水污泥灰與玻璃灰製備成的中孔徑材料MCM-41粉末,於SAXS分析圖譜確定具有有序排列的六角型孔洞特徵峰出現;BET分析則指出本研究以廢棄物所合成出的中孔材料,其比表面積最高可達839 m2/g;而經由FTIR、29Si-NMR及EA的分析結果證明,本研究之迴流改質確實可達到胺基表面修飾之目的,且迴流8小時所得之胺官能基表面修飾的效果較迴流24小時為佳。此外,酸性環境下所進行的六價鉻氧化物陰離子之吸附平衡實驗結果可知,經胺官能基表面修飾後之材料較未改質前有更好的吸附效果,且經8小時改質之吸附效果比24小時好,推測可能是因為同重量之吸附劑含有較多之官能基,使得在酸性狀態下材料表面帶正電,與此時帶負電之六價鉻氧化物陰離子彼此間的靜電吸引作用所致;而等溫吸附實驗結果經吸附曲線擬合後,得知以廢棄物做為原料合成之MCM-41(液固比15)於改質前後其等溫吸附模式較符合Freundlich模式,表示材料表面吸附位置分佈並不均勻且位能不相同。綜合上述結果,證明可藉由本研究方法利用淨水污泥與廢玻璃作為合成MCM-41之替代矽鋁源料,並藉由表面胺基修飾增強對於於酸性環境下金屬氧陰離子之吸附效果,得到廢棄物資源化的效應。
摘要(英) In this study, ashes of water purification sludge and waste glass, two materials in which aluminum and silicate are abundant, were used as the source of silicone and aluminum to synthesize MCM-41 via the alkaline fusion method coupled with the traditional hydrothermal approach. In addition, surfaces of the MCM-41 particles were subsequently amino-functionalized for the application of chromate adsorption under acidic conditions (pH~3). The synthetic MCM-41 was characterized with a combination of SAXS, ASAP, TEM, SEM, FTIR, 29Si-NMR and EA techniques. Multiple lines of evidence first confirmed the success of the preparation processes, including (i) the observation of the signature peaks from the SAXS spectrum; (ii) the appearance of the ordered hexagonal holes from the TEM images; as well as (iii) the mesoporous property identified from the BET analysis, showing that the specific surface area of the particles was up to 839 m2/g. Further, FTIR, 29Si-NMR and EA measurements showed that the amine-refluxing method indeed resulted in the amino-functionalization on the MCM-41 surface, with 8-hr refluxing better than 24-hr. Results of the adsorption experiments conducted under acidic conditions showed that surface modification on the MCM-41 did lead to a higher chromate sorption efficiency, presumably due to the electrostatic interaction between the positively-charged surface of MCM-41 and the chromate anions at pH 3. Moreover, the adsorptive behavior was best explained by the Freundlich model, suggesting that the surface adsorption sites were not evenly distributed and the potential energy were not the same. Taken together, these results suggested that water sludge ashes and waste glass can be alternative sources of silicon and aluminum for MCM-41 synthesis, and adsorption of negatively-charged metal species such as chromate on to MCM-41 can be enhanced through appropriate functionality alternation on the surface of MCM-41.
關鍵字(中) ★ 淨水污泥灰
★ 廢玻璃
★ 中孔徑材料MCM-41
★ 胺基表面改質
★ 六價鉻
關鍵字(英) ★ Water purification sludge ash
★ Waste glass
★ MCM-41
★ Amino-functionalization
★ Chromium (VI)
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 x
第一章 前言 1
1-1 研究背景 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 淨水程序與淨水污泥 3
2-1-1 淨水程序概要 3
2-1-2 淨水污泥的產生與產量 4
2-1-3 淨水污泥之化學組成 5
2-1-4 淨水污泥之廢棄與回收再運用 7
2-2 玻璃生產與廢玻璃 10
2-2-1 玻璃生產概要 10
2-2-2 廢玻璃的產生與產量 12
2-2-3 廢玻璃之化學組成 13
2-2-4 廢玻璃之回收再利用 15
2-3 中孔徑分子篩 16
2-3-1 分子篩概要 16
2-3-2 發展背景 17
2-3-3 中孔徑材料MCM-41概要 18
2-3-4 廢棄物合成MCM-41 22
2-4 吸附理論與等溫吸附模式 24
2-5 六價鉻污染 28
2-5-1 鉻之簡介 28
2-5-2 六價鉻去除法 31
第三章 研究方法 32
3-1 研究架構 32
3-2 實驗材料與藥品 33
3-2-1 實驗材料 33
3-2-2 實驗藥品 35
3-3 實驗設備、儀器與分析方法 37
3-3-1 特殊實驗設備 37
3-3-2 實驗分析儀器 38
3-4 實驗方法與設計 41
第四章 結果與討論 47
4-1 表面改質前後之中孔材料MCM-41物化特性分析 47
4-1-1 結晶相分析結果 – SAXS 47
4-1-2 結構特性分析結果 – ASAP 51
4-1-3 微觀結構分析結果 – TEM 58
4-1-4 微觀樣貌分析結果 – SEM 61
4-1-5 氧化矽鍵結分析結果 – 29Si NMR 62
4-1-6 元素分析結果 – EA 65
4-1-7 官能基分析結果 – FTIR 67
4-1-8 物化分析結果小結 70
4-2 六價鉻吸附實驗 71
4-2-1 吸附接觸時間與表面電位分析 71
4-2-2 等溫吸附實驗 75
4-2-3 吸附結果小結 77
第五章 結論與建議 78
5-1 結論 78
5-2 建議 81
參考文獻 82
附錄 93
A-1 淨水污泥之物化特性 93
A-2 廢玻璃之物化特性 94
A-3 廢棄物原料混合粉末化學組成分析 95
A-4 不同液固比合成中孔徑材料MCM-41之化學組成 95
參考文獻 Abdo, M., Ewida, K., and Youssef, Y. (1993). ”Recovery of alum from wasted sludge produced from water treatment plants.” Journal of Environmental Science & Health Part A, 28(6), 1205-1216.
Adam, J., Blazso, M., Meszaros, E., Stöcker, M., Nilsen, M. H., Bouzga, A., Hustad, J. E., Grønli, M., and Øye, G. (2005). ”Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts.” Fuel, 84(12), 1494-1502.
Adjdir, M., Ali-Dahmane, T., Friedrich, F., Scherer, T., and Weidler, P. (2009). ”The synthesis of Al-MCM-41 from volclay—A low-cost Al and Si source.” Applied Clay Science, 46(2), 185-189.
Al-Othman, Z. A. (2006). Synthesis, modification, and application of mesoporous materials based on MCM-41, Oklahoma State University.
Algarra, M., Jiménez, M., Rodríguez-Castellón, E., Jiménez-López, A., and Jiménez-Jiménez, J. (2005). ”Heavy metals removal from electroplating wastewater by aminopropyl-Si MCM-41.” Chemosphere, 59(6), 779-786.
Antonakou, E., Lappas, A., Nilsen, M. H., Bouzga, A., and Stöcker, M. (2006). ”Evaluation of various types of Al-MCM-41 materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals.” Fuel, 85(14), 2202-2212.
Artkla, S., Kim, W., Choi, W., and Wittayakun, J. (2009). ”Highly enhanced photocatalytic degradation of tetramethylammonium on the hybrid catalyst of titania and MCM-41 obtained from rice husk silica.” Applied Catalysis B: Environmental, 91(1), 157-164.
AWWA (1981). ”Lime softening sludge treatment and disposal.” Journal of the American Water Works Association, 73(11), 600-608.
AWWA, S. D. C. (1978). ”Water Treatment Plant Sludge — An Update of the State of the Art.” American Water Works Association, 70.
Babatunde, A., and Zhao, Y. (2007). ”Constructive approaches toward water treatment works sludge management: An international review of beneficial reuses.” Critical Reviews in Environmental Science and Technology, 37(2), 129-164.
Beck, J., Vartuli, J., Roth, W., Leonowicz, M., Kresge, C., Schmitt, K., Chu, C., Olson, D., and Sheppard, E. (1992). ”A new family of mesoporous molecular sieves prepared with liquid crystal templates.” Journal of the American Chemical Society, 114(27), 10834-10843.
Benhamou, A., Basly, J., Baudu, M., Derriche, Z., and Hamacha, R. (2013). ”Amino-functionalized MCM-41 and MCM-48 for the removal of chromate and arsenate.” Journal of colloid and interface science, 404, 135-139.
Benhamou, A., Baudu, M., Derriche, Z., and Basly, J.-P. (2009). ”Aqueous heavy metals removal on amine-functionalized Si-MCM-41 and Si-MCM-48.” Journal of hazardous materials, 171(1), 1001-1008.
Blitz, I. P., Blitz, J. P., Gun’ko, V. M., and Sheeran, D. J. (2007). ”Functionalized silicas: Structural characteristics and adsorption of Cu (II) and Pb (II).” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 307(1), 83-92.
Brandes, E., Greenaway, H., and Stone, H. (1956). ”Ductility in Chromium.” Nature, 178(587).
Burke, A. M., Hanrahan, J. P., Healy, D. A., Sodeau, J. R., Holmes, J. D., and Morris, M. A. (2009). ”Large pore bi-functionalised mesoporous silica for metal ion pollution treatment.” Journal of hazardous materials, 164(1), 229-234.
Caponetti, E., Minoja, A., Saladino, M. L., and Spinella, A. (2008). ”Characterization of Nd–MCM-41 obtained by impregnation.” Microporous and Mesoporous Materials, 113(1), 490-498.
Carmo Jr, A. C., de Souza, L. K., da Costa, C. E., Longo, E., Zamian, J. R., and da Rocha Filho, G. N. (2009). ”Production of biodiesel by esterification of palmitic acid over mesoporous aluminosilicate Al-MCM-41.” Fuel, 88(3), 461-468.
Cesteros, Y., and Haller, G. (2001). ”Several factors affecting Al-MCM-41 synthesis.” Microporous and mesoporous materials, 43(2), 171-179.
Chandrasekar, G., You, K.-S., Ahn, J.-W., and Ahn, W.-S. (2008). ”Synthesis of hexagonal and cubic mesoporous silica using power plant bottom ash.” Microporous and Mesoporous Materials, 111(1), 455-462.
Chang, H.-L., Chun, C.-M., Aksay, I. A., and Shih, W.-H. (1999). ”Conversion of fly ash into mesoporous aluminosilicate.” Industrial & engineering chemistry research, 38(3), 973-977.
Chen, W., Zhang, A. M., Yan, X., and Han, D. (2002). ”Synthesis of well-aligned carbon nanotubes on MCM-41.” Studies in Surface Science and Catalysis, 142, 1237-1244.
Corinaldesi, V., Gnappi, G., Moriconi, G., and Montenero, A. (2005). ”Reuse of ground waste glass as aggregate for mortars.” Waste Management, 25(2), 197-201.
Corma, A. (1997). ”From microporous to mesoporous molecular sieve materials and their use in catalysis.” Chemical reviews, 97(6), 2373-2420.
De Jong, B., Glass, H.-J. A., Biekert, E., and Davis, H. (1989). ”Ullmann′s Encyclopedia of Industrial Chemistry.” VCH Verlagsgesellschaft mbH, Weinheim, West Germany.
Dhage, S., Paramasivam, R., Ravindar Rao, R., and Andey, S. (1985). ”Recovery of alum from water treatment sludge by liquid ion exchange (LIE) technique.” Journal of Indian Water Works Association, 17(2), 193-199.
Dharmappa, H., Hasia, A., and Hagare, P. (1997). ”Water treatment plant residuals management.” Water science and technology, 35(8), 45-56.
Emsley, J. (2011). Nature′s building blocks: an AZ guide to the elements, Oxford University Press.
Feng, X., Fryxell, G., Wang, L.-Q., Kim, A. Y., Liu, J., and Kemner, K. (1997). ”Functionalized monolayers on ordered mesoporous supports.” Science, 276(5314), 923-926.
Firouzi, A., Kumar, D., Bull, L., Besier, T., Sieger, P., Huo, Q., Walker, S., Zasadzinski, J., Glinka, C., and Nicol, J. (1995). ”Cooperative organization of inorganic-surfactant and biomimetic assemblies.” Science, 267(5201), 1138-1143.
Ghiaci, M., Kia, R., Abbaspur, A., and Seyedeyn-Azad, F. (2004). ”Adsorption of chromate by surfactant-modified zeolites and MCM-41 molecular sieve.” Separation and Purification Technology, 40(3), 285-295.
Glastonbury, R., Van der Merwe, W., Beukes, J., Van Zyl, P., Lachmann, G., Steenkamp, C., Dawson, N., and Stewart, H. (2010). ”Cr (VI) generation during sample preparation of solid samples: a chromite ore case study.” Water SA, 36(1), 105-110.
González, F., Pesquera, C., Perdigón, A., and Blanco, C. (2009). ”Synthesis, characterization and catalytic performance of Al-MCM-41 mesoporous materials.” Applied Surface Science, 255(17), 7825-7830.
Hamoudi, S., El-Nemr, A., and Belkacemi, K. (2010). ”Adsorptive removal of dihydrogenphosphate ion from aqueous solutions using mono, di-and tri-ammonium-functionalized SBA-15.” Journal of colloid and interface science, 343(2), 615-621.
Hanzel, R., and Rajec, P. (2000). ”Sorption of cobalt on modified silica gel materials.” Journal of Radioanalytical and nuclear chemistry, 246(3), 607-615.
Heidari, A., Younesi, H., and Mehraban, Z. (2009). ”Removal of Ni (II), Cd (II), and Pb (II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica.” Chemical Engineering Journal, 153(1), 70-79.
Hingston, J., Collins, C., Murphy, R., and Lester, J. (2001). ”Leaching of chromated copper arsenate wood preservatives: a review.” Environmental Pollution, 111(1), 53-66.
Holler, H., and Wirsching, U. (1985). ”Zeolite formation from fly-ash.” Fortschritte der mineralogie, 63(1), 21-43.
Idris, S. A., Alotaibi, K. M., Peshkur, T. A., Anderson, P., Morris, M., and Gibson, L. T. (2013). ”Adsorption kinetic study: effect of adsorbent pore size distribution on the rate of Cr (VI) uptake.” Microporous and Mesoporous Materials, 165, 99-105.
Ji, L., Katiyar, A., Pinto, N. G., Jaroniec, M., and Smirniotis, P. G. (2004). ”Al-MCM-41 sorbents for bovine serum albumin: relation between Al content and performance.” Microporous and mesoporous materials, 75(3), 221-229.
Kanthasamy, R. (2008). Characterization and Applications of Mesoporous Silica and Hollow Zeolite Structures, ProQuest.
Kikuchi, R. (2001). ”Recycling of municipal solid waste for cement production: pilot-scale test for transforming incineration ash of solid waste into cement clinker.” Resources, Conservation and Recycling, 31(2), 137-147.
Kresge, C. T., and Roth, W. J. (2013). ”The discovery of mesoporous molecular sieves from the twenty year perspective.” Chemical Society Reviews, 42(9), 3663-3670.
Kumar, P., Mal, N., Oumi, Y., Yamana, K., and Sano, T. (2001). ”Mesoporous materials prepared using coal fly ash as the silicon and aluminium source.” Journal of Materials Chemistry, 11(12), 3285-3290.
Lam, K. F., Yeung, K. L., and McKay, G. (2006). ”An investigation of gold adsorption from a binary mixture with selective mesoporous silica adsorbents.” The Journal of Physical Chemistry B, 110(5), 2187-2194.
Liu, J., Feng, X., Fryxell, G. E., Wang, L. Q., Kim, A. Y., and Gong, M. (1998). ”Hybrid mesoporous materials with functionalized monolayers.” Advanced Materials, 10(2), 161-165.
Masschelein, W., Devleminck, R., and Genot, J. (1985). ”The feasibility of coagulant recycling by alkaline reaction of aluminium hydroxide sludges.” Water Research, 19(11), 1363-1368.
McLellan, G., and Shand, E. (1984). Glass Engineering Handbook. (Retroactive Coverage).
Meynen, V., Cool, P., and Vansant, E. (2009). ”Verified syntheses of mesoporous materials.” Microporous and mesoporous materials, 125(3), 170-223.
Norena-Franco, L., Hernandez-Perez, I., Aguilar-Pliego, J., and Maubert-Franco, A. (2002). ”Selective hydroxylation of phenol employing Cu–MCM-41 catalysts.” Catalysis today, 75(1), 189-195.
Ojovan, M. (2004). ”Glass formation in amorphous SiO2 as a percolation phase transition in a system of network defects.” Journal of Experimental and Theoretical Physics Letters, 79(12), 632-634.
Park, H.-J., and Tavlarides, L. L. (2008). ”Adsorption of chromium (VI) from aqueous solutions using an imidazole functionalized adsorbent.” Industrial & Engineering Chemistry Research, 47(10), 3401-3409.
Peters, J., and Basta, N. (1996). ”Reduction of excessive bioavailable phosphorus in soils by using municipal and industrial wastes.” Journal of Environmental Quality, 25(6), 1236-1241.
Putnis, A. (1992). An introduction to mineral sciences, Cambridge University Press.
Reindl, J. (2003). Reuse/recycling of glass cullet for non-container uses, Dane County Department of Public Works, Madison, WI.
Rostamian, R., Najafi, M., and Rafati, A. A. (2011). ”Synthesis and characterization of thiol-functionalized silica nano hollow sphere as a novel adsorbent for removal of poisonous heavy metal ions from water: kinetics, isotherms and error analysis.” Chemical Engineering Journal, 171(3), 1004-1011.
Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G., and Sing, K. S. (2013). Adsorption by powders and porous solids: principles, methodology and applications, Academic press.
Saad, R., Belkacemi, K., and Hamoudi, S. (2007). ”Adsorption of phosphate and nitrate anions on ammonium-functionalized MCM-48: Effects of experimental conditions.” Journal of colloid and interface science, 311(2), 375-381.
Saad, R., Hamoudi, S., and Belkacemi, K. (2008). ”Adsorption of phosphate and nitrate anions on ammonium-functionnalized mesoporous silicas.” Journal of Porous Materials, 15(3), 315-323.
Santos, V. C. G. D., Salvado, A. d. P. A., Dragunski, D. C., Peraro, D. N. C., Tarley, C. R. T., and Caetano, J. (2012). ”Highly improved chromium (III) uptake capacity in modified sugarcane bagasse using different chemical treatments.” Química Nova, 35(8), 1606-1611.
Scancar, J., and Milacic, R. (2014). ”A critical overview of Cr speciation analysis based on high performance liquid chromatography and spectrometric techniques.” Journal of Analytical Atomic Spectrometry, 29(3), 427-443.
Scheirs, J. (2000). Compositional and failure analysis of polymers: a practical approach, John Wiley & Sons.
Schubert, U., and Hüsing, N. (2012). Synthesis of inorganic materials, John Wiley & Sons.
Selvaraj, M., Pandurangan, A., Seshadri, K., Sinha, P., and Lal, K. (2003). ”Synthesis, characterization and catalytic application of MCM-41 mesoporous molecular sieves containing Zn and Al.” Applied Catalysis A: General, 242(2), 347-364.
Shayan, A., and Xu, A. (2004). ”Value-added utilisation of waste glass in concrete.” Cement and Concrete Research, 34(1), 81-89.
Sinha, A., Seelan, S., Akita, T., Tsubota, S., and Haruta, M. (2003). ”Vapor phase propylene epoxidation over Au/Ti-MCM-41 catalysts prepared by different Ti incorporation modes.” Applied Catalysis A: General, 240(1), 243-252.
Souza, M. J., Araujo, A. S., Pedrosa, A. M., Marinkovic, B. A., Jardim, P. M., and Morgado Jr, E. (2006). ”Textural features of highly ordered Al-MCM-41 molecular sieve studied by X-ray diffraction, nitrogen adsorption and transmission electron microscopy.” Materials Letters, 60(21), 2682-2685.
Tanev, P. T., Chibwe, M., and Pinnavaia, T. J. (1994). ”Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds.”
Twort, A. C., Ratnayaka, D. D., and Brandt, M. J. (2000). Water supply, Butterworth-Heinemann.
Vallet-Regi, M., Ramila, A., Del Real, R., and Perez-Pariente, J. (2001). ”A new property of MCM-41: drug delivery system.” Chemistry of Materials, 13(2), 308-311.
Wang, G., Otuonye, A. N., Blair, E. A., Denton, K., Tao, Z., and Asefa, T. (2009). ”Functionalized mesoporous materials for adsorption and release of different drug molecules: A comparative study.” Journal of Solid State Chemistry, 182(7), 1649-1660.
Wang, G., Wang, Y., Liu, Y., Liu, Z., Guo, Y., Liu, G., Yang, Z., Xu, M., and Wang, L. (2009). ”Synthesis of highly regular mesoporous Al-MCM-41 from metakaolin.” Applied Clay Science, 44(1), 185-188.
Wise, D. L., Wnek, G. E., Trantolo, D. J., Cooper, T. M., and Gresser, J. D. (1998). Photonic Polymer Systems: Fundamentals: Methods, and Applications, CRC Press.
Xu, J., Chu, W., and Luo, S. (2006). ”Synthesis and characterization of mesoporous V-MCM-41 molecular sieves with good hydrothermal and thermal stability.” Journal of Molecular Catalysis A: Chemical, 256(1), 48-56.
Yang, H., Deng, Y., Du, C., and Jin, S. (2010). ”Novel synthesis of ordered mesoporous materials Al-MCM-41 from bentonite.” Applied Clay Science, 47(3), 351-355.
Yokoi, T., Tatsumi, T., and Yoshitake, H. (2004). ”Fe< sup> 3+ coordinated to amino-functionalized MCM-41: an adsorbent for the toxic oxyanions with high capacity, resistibility to inhibiting anions, and reusability after a simple treatment.” Journal of colloid and interface science, 274(2), 451-457.
Yoshitake, H., Yokoi, T., and Tatsumi, T. (2002). ”Adsorption of chromate and arsenate by amino-functionalized MCM-41 and SBA-1.” Chemistry of Materials, 14(11), 4603-4610.
Yu, H., Xue, X., and Huang, D. (2009). ”Synthesis of mesoporous silica materials (MCM-41) from iron ore tailings.” Materials Research Bulletin, 44(11), 2112-2115.
江康鈺、陳宜晶、簡光勵 (2003)。 淨水污泥燒製磚材之材料特性研究。自來水會刊雜誌, 23(3),頁 38-48。
李中光、劉新校、侯佳蕙 (2013)。 淺談製革廢水處理。環保簡訊, 20(3)。
林志鴻(2010)。淨水污泥再利用於水泥生料之研究。國立中央大學環境工程研究所,桃園市。
林忠逸(2003)。水處理工程廢棄污泥及煉鋼廢爐渣燒製環保水泥之材料特性研究。國立中央大學環境工程研究所,桃園市。
姜佳伶(2007)。淨水場沉澱及過濾單元濁度去除及其衍生廢污量之研究。國立中央大學環境工程研究所,桃園市。
洪仁陽、張敏超、邵信、張王冠 (2003)。 淨水廠之汙泥減量技術。自來水會刊雜誌, 22(1-2),頁 61-66。
洪嘉祥(2000)。熱調理對污泥流變性質與脫水效率之相關研究。國立台灣大學環境工程學研究所,台北市。
徐如人、龐文琴(2004)。無機合成與製備化學。台北市:五南圖書出版股份有限公司。
康世芳 (2001)。 淨水污泥餅再利用技術調查及應用於台北自來水事業處淨水場可行性評估, 台北自來水事業處委託研究計劃研究報告書。 台北。
張宇萱(2012)。以下水污泥灰合成中孔徑分子篩之表面改質進行水中染料與重金屬吸附研究。國立中央大學環境工程研究所,桃園市。
張添晉、王愫懃(2010)。廢玻璃與廢燈管資源回收循環。「中技社2010年環境與能源研討會」發表之論文, 。
黃子光(2010)。下水污泥合成中孔徑分子篩及表面改質吸附重金屬之研究。國立中央大學環境工程研究所,桃園市。
黃志彬 (2004)。 淨水污泥混合營建廢棄土製磚與燒結人造骨材的研究。工程科技通訊, 73,頁 125-129。
楊淑雯(2004)。中孔洞分子篩SBA-15之表面修飾。國立中央大學化學研究所,桃園市。
廖明聰(2004)。以淨水污泥做為綠美化用地之土壤改良劑。屏東科技大學環境工程與科學系,屏東縣。
盧柏雅(2012)。利用淨水污泥灰與廢玻璃水熱合成鋁矽質中孔徑MCM-41之特性研究。國立中央大學環境工程研究所,桃園市。
蕭宇廷(2012)。淨水污泥餅作為吸附材料處理含磷廢水之研究。國立中央大學環境工程研究所,桃園市。
顏笠安(2009)。淨水場混凝污泥質量特性與脫水泥餅再利用初步評估。國立中央大學土木工程研究所,桃園市。
CARMEUSE (Website). .
EU (Website). .
SA Water (Website). .
US EPA (Website). .
WHO (Website). .
日本環境省 (網站)。 .
台灣自來水公司第三管理處 (網站)。 .
行政院環境保護署 (網站)。 .
經濟部工業局 (網站)。 .
指導教授 林居慶(Chu-Ching Lin) 審核日期 2015-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明