博碩士論文 100326013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.145.175.243
姓名 蘇筠潔(Yun-jie Su)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以鈰及銅改質LaNiO3觸媒行CO2/CH4重組反應之探討
(Modifying LaNiO3 catalyst with Ce and Cu for carbon dioxide reforming of methane)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 二氧化碳/甲烷重組反應可將同為溫室氣體之二氧化碳與甲烷轉化成合成氣(CO + H2),此氣體可用於生產甲醇或更高經濟價值的有機化合物,為一項值得研發的技術。為提高應用於此反應之LaNiO3觸媒的反應活性、穩定性及抗積碳能力,藉Ce及Cu的添加來製備改質之觸媒。並比較LaNiO3、La1-xCexNiO3與La0.9Ce0.1Ni1-yCuyO3三種觸媒於之諸特性。
研究結果發現,在CO2/CH4進氣比例為1、空間流速10000 h-1、反應溫度400~800°C、一大氣壓之操作參數下,LaNiO3觸媒於800°C之CH4和CO2之轉化率分別為95%和93%,H2和CO選擇率分別為57%和49%。以Ce部分取代La合成La1-xCexNiO3(x = 0.1)之觸媒於800°C之CH4和CO2之轉化率亦均高於90%,和LaNiO3觸媒無顯著差別,但提升H2選擇率至62%。再以Cu部分取代Ni合成出La0.9Ce0.1Ni1-yCuyO3(y ≤ 0.5)之觸媒,其CH4和CO2之轉化率和H2選擇率與LaNiO3和La0.9Ce0.1NiO3觸媒無顯著差別,但CO選擇率隨著Cu的添加比例為0.1、0.3、0.5而略為上升,於800°C之CO選擇率分別為49%、50%、51%。
經H2-TPR分析,La1-xCexNiO3觸媒具有儲氧釋氧能力,可利於激活C-H鍵以提升H2選擇率。而La0.9Ce0.1Ni1-yCuyO3觸媒不僅有儲氧釋氧能力亦可降低觸媒還原溫度,表示活性佳,其所提供的氧原子不僅利於激活C-H鍵,還利於和觸媒表面的碳反應形成CO。故結果顯示La0.9Ce0.1Ni0.7Cu0.3O3觸媒有最佳的穩定性,反應時間可長達84小時。ESCA分析結果也證實添加Ce和Cu至LaNiO3作改質之觸媒,可抑制積碳的生成。
摘要(英) CH4 reforming of CO2 reaction could transform the greenhouse gas (CH4 and CO2) to synthesis gas (CO and H2). The synthesis gas could be used to produce methanol, liquid fuel and so on. To enhance the activity and stability of the LaNiO3 catalyst used in this reforming reaction, the catalyst was substituted by Ce and Cu elements. The activities of LaNiO3, La1-xCexNiO3 and La0.9Ce0.1Ni1-yCuyO3 for CO2/CH4 reforming are then experimentally compared.
The results show that conversions of CH4 and CO2 over LaNiO3 catalyst are 95% and 93%, and the selectivites of H2 and CO achieved are 57% and 49%, respectively, at 800 oC. La of LaNiO3 catalyst was partially substituted by Ce to form La1-xCexNiO3 (x = 0.1) catalyst, the conversions of CH4 and CO2 are both also more than 90%, which are not much different from LaNiO3 catalysts, however, the selectivity of H2 is increased to 62%. Ni of LaNiO3 catalyst was partially substituted by Cu to form La0.9Ce0.1Ni1-yCuyO3 (y ≤ 0.5) catalyst. The conversions of CH4 and CO2 and the selectivities of H2 are not much different from LaNiO3 and La1-xCexNiO3 catalysts, however, the selectivity of CO increases slightly with increasing Cu (y = 0.1, 0.3, 0.5). The selectivities of CO with three catalysts (y = 0.1, 0.3, 0.5) are 49%, 50%, 51%, respectively, at 800 oC.
The H2-TPR result shows that La1-xCexNiO3 (x = 0.1) catalyst provides the lattice oxygen vacancies, which activate C-H bond, and increase the selectivity of H2. The H2-TPR result also confirms that Cu metals are of the capability for storage and provision of the oxygen and can be reduced easily, experimental results also prove the good activity of La0.9Ce0.1Ni1-yCuyO3 (y ≤ 0. 5) catalyst. The oxygen atoms of La0.9Ce0.1Ni1-yCuyO not only activate C-H bond but also react with carbon which form on catalyst surface to form CO. Therefore, La0.9Ce0.1Ni0.7Cu0.3O3 catalyst has the best stability and the reaction time can be extended up to 84 hours. Additionally, the ESCA results show that adding Ce or Cu into LaNiO3 catalyst is beneficial to suppress carbon deposition.
關鍵字(中) ★ Perovskite型觸媒
★ CO2/CH4重組反應
★ 合成氣
★ 產氫
關鍵字(英) ★ Perovskite-type oxide
★ CO2 reforming of Methane
★ Syngas
★ Hydrogen production
論文目次 摘要......................................................I
Abstract.................................................II
目錄......................................................IV
圖目錄....................................................VII
表目錄....................................................X
第一章 前言..............................................1
1.1 研究緣起...........................................1
1.2 研究目的...........................................3
第二章 文獻回顧...........................................4
2.1 溫室氣體的來源與特性.................................4
2.2 二氧化碳的減量技術及再利用.............................5
2.2.1 前處理技術..........................................5
2.2.2 後續處理技術.........................................6
2.2.3 二氧化碳再利用.......................................6
2.3 以甲烷重組反應生成合成氣...............................6
2.4 二氧化碳行甲烷重組反應的反應機制及動力學.................10
2.5 Perovskite型觸媒...................................14
2.6.1 Perovskite型觸媒介紹...............................14
2.6.2 Perovskite型觸媒製備方法............................15
2.6.3 Perovskite型觸媒改質...............................16
2.6 Perovskite型觸媒應用於二氧化碳之甲烷重組反應............17
第三章 研究方法...........................................23
3.1 研究流程及架構......................................23
3.2 實驗藥品、氣體及設備.................................25
3.2.1 實驗藥品...........................................25
3.2.2 實驗氣體...........................................25
3.2.3 實驗儀器設備........................................26
3.3 觸媒材料製備........................................26
3.4 觸媒材料之物化特性分析................................28
3.4.1 掃描式電子顯微鏡 (SEM)...............................28
3.4.2 X光粉末繞射分析儀 (XRD)..............................29
3.4.3 高解析度比表面積分析儀 (BET)........................ 29
3.4.4 氫氣程溫還原 (H2-TPR)...............................30
3.4.5 化學分析能譜儀 (ESCA)...............................32
3.5 觸媒活性測試........................................32
3.5.1 反應設備...........................................33
3.5.2 觸媒於二氧化碳/甲烷重組反應活性測試.....................34
3.5.3 實驗結果之計算......................................35
第四章 結果與討論.........................................36
4.1 製備條件對LaNiO3觸媒活性之影響........................36
4.1.1 鍛燒溫度對LaNiO3觸媒的成相分析........................37
4.1.2 鍛燒溫度之影響......................................38
4.1.3 鍛燒持溫時間之影響...................................40
4.2 不同反應條件對LaNiO3觸媒活性之影響.....................42
4.2.1 溫度對重組反應之影響.................................42
4.2.2 CO2/CH4比例對重組反應之影響..........................45
4.2.3 空間流速對重組反應之影響..............................47
4.3 以Ce部分取代La對LaNiO3活性之影響......................49
4.3.1 La1-xCexNiO3 (x≤0.5)觸媒之活性測試..................49
4.3.2 La1-xCexNiO3 (x≤0.5)觸媒之特性分析..................53
4.4 以Cu部分取代Ni對La0.9Ce0.1Ni1-yCuyO3活性之影響........62
4.4.1 La0.9Ce0.1Ni1-yCuyO3 (y≤0.5)觸媒之活性測試..........62
4.4.2 La0.9Ce0.1Ni1-yCuyO3 (y≤0.5)觸媒之特性分析..........65
4.5 La1-xCexNi1-yCuyO3(x≤0.5, y≤0.5)觸媒之長效連續試驗...71
4.6 La1-xCexNi1-yCuyO3(x≤0.5, y≤0.5)觸媒之ESCA特性分析..73
第五章 結論與建議.........................................78
5.1 結論..............................................78
5.2 建議..............................................79
參考文獻...................................................80
參考文獻 [1] 經濟部能源局100年年報,101年6月。
[2] 行政院能源產業技術白皮書,2012年。
[3] 陳維新,江金龍,“空氣污染與防制”,高立圖書有限公司,2001年。
[4] G. Valderramaa, A. Kiennemannb, M. R. Goldwasserc. “La-Sr-Ni-Co-O based perovskite-type solid solutions as catalyst precursors in the CO2 reforming of methane.” Journal of Power Sources, 195, 1765-1771 (2010).
[5] I. Wender. “Reactions of synthesis gas.” Fuel Processing Technology, 48, 189-297 (1996).
[6] O. Bičáková, P. Straka. “Production of hydrogen from renewable resources and its effectiveness.” International Jourmal of Hydrogen Energy, 37, 11563-11578 (2012).
[7] B. Steinhauer, M. R. Kasireddy, J. Radnik, A. Martin. “Development of Ni-Pd bimetallic catalysts for the utilization of carbon dioxide and methane by dry reforming.” Applied Catalysis A: General, 366, 333-341 (2009).
[8] W. D. Zhang, B. S. Liu, C. Zhu, Y. L. Tian. “Preparation of La2NiO4/ZSM-5 catalyst and catalytic performance in CO2/CH4 reforming to syngas.” Applied Catalysis A: General, 292, 138-143 (2005).
[9] M. S. Fan, A. Z. Abdullah, S. Bhatia. “Hydrogen production from carbon dioxide reforming of methane over Ni-Co/MgO-ZrO2 catalyst: Process optimization.” International Journal of Hydrogen Energy, 36, 4875-4886 (2011).
[10] S. M. Lima, J. M. Assaf, M. A. Pena, J. L. G. Fierro. “Structural features of La1-xCexNiO3 mixed oxides and performance for the dry reforming of methane.” Applied Catalysis A: General, 311, 94-104 (2006).
[11] R. Pereniguez, V. M. Gonzalez-DelaCruz, J. P. Holgado. “Synthesis and characterization of a LaNiO3 perovskite as precursor for methane reforming reactions catalysts.” Applied Catalysis B: Environmental, 93, 346-353 (2010).
[12] G. S. Gallego, J. G. Marĺn, C. Batiot-Dupeyrat, J. Barrault, F. Mondragón. “Influence of Pr and Ce in dry methane reforming catalysts produced from La1-xAxNiO3-δ perovskites.” Applied Catalysis A: General, 369, 97-103 (2009).
[13] K. Sutthiumporn, T. Maneerung, Y. Kathiraser, S. Kawi. “CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe): Roles of lattice oxygen on C-H activation and carbon suppression.” International Journal of Hydrogen Energy, 37, 11195-11207 (2012).
[14] R. J. H. Voorhoeve, D. W. Johnson, J. P. Remeika, P. K. Gallagher. “Rare-earth manganites: Catalysts with low ammonia yield in the reduction of nitrogen oxides.” Science, 195, 827 (1977).
[15] E. J. Dlugokencky, R. C. Myers, P. M. Lang, K. A. Masarie, A. M. Crotwell, K. W. Thoning, B. D. Hall, J. W. Elkins, and L. P. Steele. “Conversion of NOAA atmospheric dry air CH4 mole fractions to a gravimetrically-prepared standard scale.” Journal of Geophysical Research, 110, 1029 (2005).
[16] 顧洋、申永順,“國際間溫室氣體管理標準化之發展及因應策略”,科學與工程技術期刊,第一卷第三期,94年。
[17] 蔣本基、顧洋、鄭耀文、林志森,“我國溫室氣體減量整體因應策略”,科學與工程技術期刊,第二卷第一期,95年。
[18] 談駿嵩、鄭旭翔,“台灣在二氧化碳回收及再利用上之研究現況”,國立清華大學化學工程學系,2011年。
[19] J. T. Yeh, H. W. Pennline. “Study of CO2 absorption and desorption in a packed column.” Energy Fuels, 15, 274-278 (2001).
[20] G. A. Olah, A. Goeppert, G. K. Surya Prakash. “Chemical recycling of carbon dioxide to methanol and dimethyl ether: From greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons.” Journal of Organic Chemistry, 74, 487-498 (2009).
[21] 洪正宗、許世雄、王淑麗,“二氧化碳捕獲技術現況及發展”,石油季刊,第46卷第3期35-47頁,台灣中油股份有限公司煉製研究所,99年。
[22] 胡興中,“觸媒原理與應用”,高立圖書有限公司,(2002)。
[23] A. P. E. York, T. C. Xiao, M. L. H. Green. “Catalysis reviews: science and engineering.” Catalysis Reviews, 49, 511-560 (2007).
[24] Y. Hu, E. Ruckenstein, H. K. Bruce, C. Gates. “Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming.” Advances in Catalysis, 48, 297 (2004).
[25] F. Fischer, H. Tropsch, “Conversion of methane into hydrogen and carbon monoxide.” Brennstoff Chem., 3, 39 (1928).
[26] M. C. J. Bradford, M. A. Vannice. “CO2 reforming of CH4.” Catalysis Reviews: Science and Engineering, 41, 1-42 (1999).
[27] G. S. Gallego, F. Mondragόn, J. Barrault, J. M. Tatibouet, C. B. Dupeyrat. “Carbon dioxide reforming of methane over La2NiO4 as catalyst precursor-Characterization of carbon deposition.” Catalysis Today, 133-135, 200-209 (2008).
[28] M. S. Fan, A. Z. Abdullah, S. Bhatia. “Catalytic technology for carbon dioxide reforming of methane to synthesis gas.” ChemCatChem, 1, 192-208 (2009).
[29] L. D. Vella, J. A. Villoria, S. Specchia, N. Mota, J. L. G. Fierro, V. Specchia. “Catalytic partial oxidation of CH4 with nickel–lanthanum-based catalysts.” Catalysis Today, 171, 84-96 (2011).
[30] P. E. Nolan, D. C. Lynch, A. H. Cutler. “Carbon deposition and hydrocarbon formation on group VIII metal catalyst.” The Journal of Physical Chemistry B, 102, 4165-4175 (1998).
[31] S. G. Wang, Y. W. Li, J. X. Lu, M. Y. He, H. J. Jiao, “A detailed mechanism of thermal CO2 reforming of CH4.” Journal of Molecular Structure, 673, 181-189 (2004).
[32] G. Valderrama, M. R. Goldwasser, C. U. Navarro, J. M. Tatibouët, J. Barrault, C. Batiot-Dupeyrat, F. Martĺnez. “Dry reforming of methane over Ni perovskite type oxides.” Catalysis Today, 107-108, 785-791 (2005).
[33] J. Rostrup-Nielsen. “Steam reforming of hydrocarbons. A historical perspective. ” Surface Science and Catalysis, Vol. 147, 121-126 (2004).
[34] J. Xu, L. Chen, K. F. Tan, A. Borgna, M. Saeys. “Effect of boron on the stability of Ni catalysts during steam methane reforming.” Journal of Catalysis, 261, 158-165 (2009).
[35] M. R. Goldwasser, M. E. Rivas, E. Pietri, M. J. Perez-Zurita, M. L. Cubeiro, L. Gingembre, L. Leclercq, G. Leclercq, “Perovskites as catalysts precursors: CO2 reforming of CH4 on Ln1−xCaxRu0.8Ni0.2O3 (Ln = La, Sm, Nd).” Applied Catalysis A: General, 255, 45-57 (2003).
[36] X. Li, H. B. Zhang, F. Chi, S. J. Li, B. K. Xu, M. Y. Zhao, “Synthesis of nano-crystalline composite oxides La1-xSrxFe1-yCoyO3 with the perovskite structure using polyethylene glycol-gel method.” Materials Science and Engineering, 18, 209-213 (1993).
[37] J. S. Choi, K. I. Moon, Y. G. Kima, J. S. Lee, C. H. Kimb, D. L. Trimm, “Stable carbon dioxide reforming of methane over modified Ni/Al2O3 catalysts.” Catalysis Letters, 52, 43-47 (1998).
[38] S. G. Wang, D. B. Cao, Y. W. Li, J Wang, H. Jiao. “CO2 reforming of CH4 on Ni(111): A density functional theory calculation.” The Journal of Physical Chemistry B, 110, 9976-9983 (2006).
[39] M. Haghighi, Z. Q. Sun, J. h. Wu, J. Bromly, H. L. Wee, E. Ng, Y. Wang, D. K. Zhang. “On the reaction mechanism of CO2 reforming of methane over a bed of coal char.” Proceedings of the Combustion Institute, 31, 1983-1990 (2007).
[40] X. Li, S. Li, Y. Yang, M. Wu, F. He. “Coke formation and coke species of nickel-based catalysts in CO2 reforming of CH4.” Catalysis Letters, 118, 1-2 (2007).
[41] M. E. Rivas, J. L. G. Fierro, M. R. Goldwasser, E. Pietri, M. J. Pérez-Zurita, A. Griboval-Constant, G. Leclercq. “Structural features and performance of LaNi1-xRhxO3 system for the dry reforming of methane.” Applied Catalysis A: General, 344, 10-19 (2008).
[42] C. Batiot-Dupeyrat, G. Valderrama, A. Meneses, F. Martinez, J. Barrault, J. M. Tatibouët. “Pulse study of CO2 reforming of methane over LaNiO3.” Applied Catalysis A: General, 248, 143-151 (2003).
[43] Y. Cui, H. Xu, Q. Ge, W. Li. “Kinetic study on the CH4/CO2 reforming reaction: Ni-H in Ni/α-Al2O3 catalysts greatly improves the initial activity.” Journal of Molecular Catalysis A, 243, 226-232 (2006).
[44] 許維真,“鈣鈦礦型 LaNiO3觸媒應用於 CH4/CO2重組反應之研究”, 碩士論文,國立成功大學,97年1月。
[45] R. J. H. Voorhoeve. “Perovskite-related oxides as oxidation-reduction catalysts.” Advanced Material in Catalysis, 129-180 (1977).
[46] Y. Marinova, J. M. Hohemberger, E. Cordoncillo, P. Escribano, J. B. Carda. “Study of solid solutions, with perovskite structure, for application in the field of the ceramic pigments.” Journal of the European Ceramic Society, 23, 213-220 (2003).
[47] M. P. Pechini. “Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor.” US Patent, 3, 330-697 (1967).
[48] M. P. Pechini. “Barium titanium citrate, barium titanate and processes for producing same.” U.S. Pat., 3, 231-328 (1966).
[49] J. Zhua, A. Thomas. “Perovskite-type mixed oxides as catalytic material for NO removal.” Applied Catalysis B: Environmental, 92, 225-233 (2009).
[50] H. Falcόn, J. A. Barbero, J. A. Alonso, M. J. MartÍnez-Lope, J. L. G. Fierro. “SrFeO3 perovskite oxides: chemical features and performance for methane combustion.” Journal of Materials Chemistry, 14, 2325-2333 (2002).
[51] E. Pietri, A. Barrios, O. Gorlzalez, M. R. Goldwasser, M. J. Pérez-Zurita, M. L. Cubeiro, J. Goldwasser , L. Leclercq, G. Leclercq, L. Gingembre. “Perovskites as catalysts precursors for methane reforming: Ru based catalysts.” Surface Science and Catalysis, 136, 381 (2001).
[52] J. Guo, H. Lou, Y. Zhu, X. Zheng. “La-based perovskite precursors preparation and its catalytic activity for CO2 reforming of CH4.” Materials Letters, 57, 4450-4455 (2003).
[53] S. T. Shen, H. S. Weng, “Comparative study of catalytic reduction of nitric oxide with carbon monoxide over the La1-xSrxBO3 (B = Mn, Fe, Co and Ni) catalysts.” Industrial Engineering Chemistry Research, 37, 2654-2661 (1998).
[54] S. M. Lima, J. M. Assaf. “Ni-Fe catalysts based on perovskite-type oxides for dry reforming of methane to syngas.” Catalysis Letters, 108, 1-2 (2006).
[55] A. J. Vizcaino, A. Carrero, J. A. Calles. “Hydrogen production by ethanol steam reforming over Cu-Ni supported catalysts.” International Journal of Hydrogen Energy, 32, 1450-1461 (2007).
[56] G. S. Gallego, C. Batiot-Dupeyrat, J. Barrault, E. Florez, F. Mondragόn. “Dry reforming of methane over LaNi1-yByO3-δ (B = Mg, Co) perovskites used as catalyst precursor.” Applied Catalysis A: Chemical, 334, 251-258 (2008).
[57] R. Pereñíguez, V. M. González-DelaCruz, J. P. Holgado, A. Caballero. “Synthesis and characterization of a LaNiO3 perovskite as precursor for methane reforming reactions catalysts.” Applied Catalysis B: Environmental, 93, 346-353 (2012).
[58] G. R. Moradi, F. Khosravian, M. Rahmanzadeh. “Effects of partial substitution of Ni by Cu in LaNiO3 perovskite catalyst for dry methane reforming.” Chinese Journal of Catalysis, 33, 797-801 (2012).
[59] M.H. Pham, V. Goujard, J.M. Tatibouet, C. Batiot-Dupeyrat. “Activation of methane and carbon dioxide in a dielectric-barrier discharge-plasma reactor to produce hydrocarbons-Influence of La2O3/γ-Al2O3 catalyst.” Catalysis Today, 171, 67-71 (2011).
[60] G. Valderrama, M. R. Goldwasser, C. U. Navarro, J. M. Tatibouët, J. Barrault, C. Batiot-Dupeyrat, F. Martínez. “Dry reforming of methane over Ni perovskite type oxides.” Catalysis Today, 107-108, 785-791 (2005).
[61] J. Zhu, X. Peng, L. Yao, X. Deng, H. Dong, D. Tong,C. Hu. “Synthesis gas production from CO2 reforming of methane over Ni-Ce/SiO2 catalyst: The effect of calcination ambience.” International Journal of Hydrogen Energy, 38, 117-126 (2013).
[62] Y. Li, D. Li, G. Wang. “Methane decomposition to COx-free hydrogen and nano-carbon material on group 8–10 base metal catalysts: A review.” Catalysis Today, 162, 1-48 (2011).
[63] M. Garcia-Dieguez, I.S. Pieta, M.C. Herrera, M.A. Larrubia, L.J. Alemany. “Nanostructured Pt- and Ni-based catalysts for CO2-reforming of methane.” Journal of Catalysis, 270, 136-145 (2010).
[64] M. Aono, S. Aizawa, N. Kitazawa, Y. Watanabe. “XPS study of carbon nitride films deposited by hot filament chemical vapor deposition using carbon filament.” Thin Solid Films, 516, 648-651 (2008).
[65] K. Tabata, Y. Hirano, E. Suzuki. “XPS studies on the oxygen species of LaMn1-xCuxO3+λ.” Applied Catalysis A: General, 170, 245-254 (1998).
[66] S. M. Lima, J. M. Assaf, M. A. Pena, J. L. G. Fierro. “Structural features of La1-xCexNiO3 mixed oxides and performance for the dry reforming of methane.” Applied Catalysis A: General, 311, 94-104 (2006).
指導教授 張木彬(Moo-been Chang) 審核日期 2013-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明