博碩士論文 100326024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.141.41.187
姓名 方緯宸(Wei-chen Fang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以COMSOL Multiphysics模擬氣懸微粒於靜電集塵式細胞株暴露系統中之運動軌跡
(Numerical simulation of ESP type Air-Liquid Interface (ALI) cell exposure system using COMSOL Multiphysics)
相關論文
★ 熱昇華廢棄相紙資源化研究★ 地勤公司從業人員搬運作業肌肉骨骼傷害風險評估
★ 高階製程安全管理架構★ In Situ Measurements of CCN Activity and Aerosol Optical Properties at Biomass Burning Source and Receptor Regions
★ 社區改造碳排放及減量計算分析與探討★ 中小型燃煤鍋爐粒狀污染物、硫氧化物及氮氧化物經串聯控制設備後之去除效率探討研究-以桃園市為例
★ 整合填充型水洗技術於潔淨室外氣空調箱 以去除酸鹼氣態分子污染物之研究★ 固定污染源揮發性有機物(VOCs)自廠係數建置-以某矽晶圓製造廠為例
★ 高層建築大樓室內空氣品質之探討-以某企業大樓為例★ 公路交通運輸對於山谷地形郊區空氣品質之影響
★ 以沸石轉輪焚化系統處理變壓器塗裝作業VOCs效率探討★ 以數值模擬分析狹縫型虛擬衝擊器之效能
★ 研究微粒帶電性質與呼吸毒性之關聯: 以小鼠暴露奈米黑碳微粒實驗為例★ 靜電集塵式ALI暴露系統之設計、開發與評估
★ 以石英晶體微天平量測細懸浮微粒PM2.5質量濃度之可行性探討★ 以HTDMA與HT DMA-APM系統探討無機鹽奈米微粒的吸溼行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以有限元素分析法 COMSOL Multiphysics 耦合流場與電場模擬帶電氣懸微粒於靜電集塵式細胞株暴露系統(ALI)中的運動軌跡。過往的文獻提出許多細胞株暴露系統研究呼吸暴露的危害,但這些系統並未實際的定量分析微粒在細胞株沉積的量。特別是在不同的操作參數條件下,微粒的運動軌跡和在系統中的暴露情形皆不相同。因此本研究希冀以數值模擬的方式,輔助靜電集塵式細胞株暴露系統的建構,並以數值模擬結果和實驗結果相互驗證和分析,建構一可信之微粒數值模擬方法。為系統化評估數值模擬結果和實驗結果,以三個評估指標總貫穿率(P)、區域沉積比率(f)和第2區的相對沉積密度(β)分析不同流量、電壓、粒徑大小和電極距離下微粒運動軌跡的變化。
首先,由數值模擬和實驗相互搭配確實改進靜電集塵式ALI系統,改變漸擴角度降低迴流在系統中的產生,並根據使用環境和實驗結果更換材質。本研究中藉由流場流線圖和微粒運動軌跡圖分析流量1.5 lpm和流量0.6 lpm對微粒的影響,並以此改進構型設計。依據Model A和Model B的模擬結果和實驗結果顯示,在電極距離20 mm和流量0.6 lpm下粒徑大小100 nm的微粒於Model B中僅需施加電壓1 kV,即可達到Model A需施加電壓6 kV才達到的完全收集。此一結果顯示改良後的靜電集塵式ALI系統Model B確實較佳,亦突顯施加電壓對於微粒在系統中的暴露量影響是存在的。而微粒的粒徑大小與電壓的關係在研究中也充分展現,例如Model B在電極距離20 mm和流量0.6 lpm的條件下,施加電壓0.5 kV的微粒在粒徑50 nm的總貫穿率約為60 %,而微粒粒徑200 nm的總貫穿率約為80 %,二者的差異代表大粒徑的微粒要達到與小粒徑的微粒相同的總貫穿率需要增加電壓來降低總貫穿率的值。電極距離的變化會造成電場強度和微粒受電場影響時間改變,兩因子的競爭由微粒軌跡線可判斷之。
摘要(英) In the literatures many exposure systems were proposed to study inhalation toxicology, however, the particle deposition flux or the exposed dose had not been well defined in these exposure systems. Moreover, Particle trajectory and deposition were highly depending on operation conditions. Therefore, in this study, we developed a new ESP type air-liquid interface (ALI) cell exposure system and numerically characterized its performance. The commercial CFD software, COMSOL Multiphysics, was coupling the fluid field and the electric field to simulate dynamic trajectory of charged particles in the system and to determine the particle deposition flux. The aim of this study was to establish a numerical simulation scheme to design and to develop an ESP type ALI system. Based on the numerical simulation it was found decreasing expanded degree of the upper exposure chamber would reduce reflux and mitigate unwanted particle loss. Therefore, the new configuration of the exposure chamber was re-designed by considering smoother streamline and particle trajectory to reduce unnecessary spaces and particle loss. The original design, Model A, needs 6 kV to achieve 100% collection of 100 nm particles, but the revised design, Model B, only requires 1 kV. In other words, Model B is more effective than Model A on particle collection.
To further systematically evaluate the performance of the system, three indicators, including total penetration (P), region deposition ratio (f) and relative deposition density in region 2, were introduced. Higher flow rate would case lower total penetration because of more significant re-circulated flow. Although in 0 kV the region deposition ratio was not obviously changing with particle size, the size effect was not negligible when applying voltage. In addition, the applied electric field would increase particle deposition in region 2 and result in more uniform particle depositasion pattern.
關鍵字(中) ★ 數值模擬
★ 微粒
關鍵字(英) ★ Numerical Simulation
★ Particle
論文目次 摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 X
符號說明 XI
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 目的 3
第二章 文獻回顧 5
2-1 氣液介面暴露系統文獻 5
2-2 微粒運動軌跡模擬 11
2-2-1 數值模擬方法發展 13
2-2-2 微粒運動軌跡模擬公式發展 17
2-2-3 影響微粒運動軌跡因子 18
2-3 微粒運動軌跡模擬套裝軟體比較 19
第三章 研究方法 22
3-1 數值模擬操作步驟 22
3-2 網格 27
3-3 物理量 32
3-3-1 流場 32
3-3-2 電場 32
3-3-3 微粒運動軌跡追蹤 33
3-4 螢光微粒試驗 36
3-5 系統評估標準 38
第四章 結果與討論 41
4-1 系統構型 41
4-2 顆粒追蹤模組驗證 45
4-3 貫穿率(P) 48
4-3-1 不同粒徑的總貫穿率 48
4-3-2 流量對總貫穿率的影響 49
4-3-3 不同粒徑在單位電場強度的總貫穿率 51
4-3-4 實驗結果與模擬結果的總貫穿率 53
4-4 區域沉積比率(f) 54
4-4-1 導流錐體帶電驗證 54
4-4-2 不同流量和電極距離與指標f的關係 55
4-4-3 電極距離與指標f的關係和對微粒軌跡的影響 56
4-4-4 粒徑與與指標f的關係 61
4-5 第2區的相對沉積密度(β) 64
4-5-1 粒徑與指標β的關係 64
4-5-2 電極距離與指標β的關係 65
4-5-3 Model A與Model B均勻度比較 67
4-5-4 比較Model B模擬結果和實驗結果 68
第五章 結論 70
參考文獻 73
附錄 79
口試委員意見回覆 81
參考文獻 1. Taniguchi N. On the basic concept of ’nano-technology’. Bulletin of the Japan Society of Precision Engineering. 1974:18-23.
2. Brook RD, Brook JR, Urch B, Vincent R, Rajagopalan S, Silverman F. Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation. 2002;105:1534-6.
3. Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL. Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. New England Journal of Medicine. 2000;343:1742-9.
4. Vedal S. Ambient particles and health: Lines that divide. Journal of the Air & Waste Management Association. 1997;47:551-81.
5. Burnett RT, Cakmak S, Brook JR, Krewski D. The role of particulate size and chemistry in the association between summertime ambient air pollution and hospitalization for cardiorespiratory diseases. Environmental Health Perspectives. 1997;105:614-20.
6. Nanoscience and nanotechnologies:opportunities and uncertainties 2004.
7. Åkerstedt HO, Högberg SM, Lundström TS, Sandström T. The effect of cartilaginous rings on particle deposition by convection and Brownian diffusion. Natural Science. 2010;Vol.2, No.7 769-79
8. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113.
9. Dreher KL. Health and environmental impact of nanotechnology: Toxicological assessment of manufactured nanoparticles. Toxicological Sciences. 2004;77:3-5.
10. Service RF. Nanotechnology grows up. Science. 2004;304:1732-4.
11. Kipen HM, Laskin DL. Smaller is not always better: nanotechnology yields nanotoxicology. American journal of physiology Lung cellular and molecular physiology. 2005;289:L696-7.
12. Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJA. Nanotoxicology. Occupational and Environmental Medicine. 2004;61:727-8.
13. de Haar C, Hassing I, Bol M, Bleumink R, Pieters R. Ultrafine carbon black particles cause early airway inflammation and have adjuvant activity in a mouse allergic airway disease model. Toxicological Sciences. 2005;87:409-18.
14. Nemmar A, Hoylaerts MF, Hoet PHM, Dinsdale D, Smith T, Xu H, Vermylen J, Nemery B. Ultrafine particles affect experimental thrombosis in an un vivo hamster model. American Journal of Respiratory and Critical Care Medicine. 2002;166:998-1004.
15. Aufderheide M. Direct exposure methods for testing native atmospheres. Experimental and Toxicologic Pathology. 2005;57, Supplement 1:213-26.
16. Tippe A, Heinzmann U, Roth C. Deposition of fine and ultrafine aerosol particles during exposure at the air/cell interface. Journal of Aerosol Science. 2002;33:207-18.
17. Bitterle E, Karg E, Schroeppel A, Kreyling WG, Tippe A, Ferron GA, Schmid O, Heyder J, Maier KL, Hofer T. Dose-controlled exposure of A549 epithelial cells at the air–liquid interface to airborne ultrafine carbonaceous particles. Chemosphere. 2006;65:1784-90.
18. Stevens JP, Zahardis J, MacPherson M, Mossman BT, Petrucci GA. A new method for quantifiable and controlled dosage of particulate matter for in vitro studies: The electrostatic particulate dosage and exposure system (EPDExS). Toxicology in Vitro. 2008;22:1768-74.
19. Schulz H, Brand P, Heyder J. Particle deposition in the respiratory tract. Lung biology in health and disease. 2000;143:229-77.
20. Tippe A, Perzl M, Li W, Schulz H. Experimental analysis of flow calculations based on HRCT imaging of individual bifurcations. Respiration Physiology. 1999;117:181-91.
21. Aufderheide M, Mohr U. CULTEX — an alternative technique for cultivation and exposure of cells of the respiratory tract to airborne pollutants at the air/liquid interface. Experimental and Toxicologic Pathology. 2000;52:265-70.
22. Sillanpää M, Geller MD, Phuleria HC, Sioutas C. High collection efficiency electrostatic precipitator for in vitro cell exposure to concentrated ambient particulate matter (PM). Journal of Aerosol Science. 2008;39:335-47.
23. Savi M, Kalberer M, Lang D, Ryser M, Fierz M, Gaschen A, Rička J, Geiser M. A novel exposure system for the efficient and controlled deposition of aerosol particles onto cell cultures. Environmental Science & Technology. 2008;42:5667-74.
24. Pósfai M, Anderson JR, Buseck PR, Sievering H. Compositional variations of sea-salt-mode aerosol particles from the North Atlantic. Journal of Geophysical Research: Atmospheres. 1995;100:23063-74.
25. Pósfai M, Simonics R, Li J, Hobbs PV, Buseck PR. Individual aerosol particles from biomass burning in southern Africa: 1. Compositions and size distributions of carbonaceous particles. Journal of Geophysical Research: Atmospheres. 2003;108:8483.
26. Utsunomiya S, Jensen KA, Keeler GJ, Ewing RC. Direct identification of trace metals in fine and ultrafine particles in the Detroit urban atmosphere. Environ Sci Technol. 2004;38:2289-97. Epub 2004/05/01.
27. Fierz M, Kaegi R, Burtscher H. Theoretical and experimental evaluation of a portable electrostatic TEM sampler. Aerosol Science and Technology. 2007;41:520-8.
28. Patankar SV. Numerical heat transfer and fluid flow. Washington : New York :: Hemisphere Pub. Corp. ; McGraw-Hill; 1980.
29. Eržen D, Verboncoeur JP, Duhovnik J, Jelić N. Simulations of single charged particle motion in external magnetic and electric fields. The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics. 2009;54:409-15.
30. Mora JFDL, Rosner DE. Effects of inertia on the diffusional deposition of small particles to spheres and cylinders at low Reynolds numbers. Journal of Fluid Mechanics. 1982;125:379-95.
31. Yu CP, Chandra K. Precipitation of submicron charged particles in human lung airways. Bltn Mathcal Biology. 1977;39:471-8.
32. Ingham DB. Deposition of charged particles near the entrance of a cylindrical tube. Journal of Aerosol Science. 1980;11:47-52.
33. Zhu G, Zhang Y, Ren J, Qiu T, Wang T. Flow simulation and analysis in a vertical-flow sedimentation tank. Energy Procedia. 2012;16, Part A:197-202.
34. Longest PW, Tian G, Delvadia R, Hindle M. Development of a stochastic individual path (SIP) model for predicting the deposition of pharmaceutical aerosols: Effects of turbulence, polydisperse aerosol size, and evaluation of multiple lung lobes. Aerosol Science and Technology. 2012;46:1271-85.
35. Behr M, Tezduyar TE. Finite element solution strategies for large-scale flow simulations. Computer Methods in Applied Mechanics and Engineering. 1994;112:3-24.
36. Movahhedy M, Gadala MS, Altintas Y. Simulation of the orthogonal metal cutting process using an arbitrary lagrangian–eulerian finite-element method. Journal of Materials Processing Technology. 2000;103:267-75.
37. Gidaspow D. Multiphase flow and fluidization: Continuum and kinetic theory descriptions 1994.
38. Huerta A, Liu WK. Viscous flow with large free surface motion. Computer Methods in Applied Mechanics and Engineering. 1988;69:277-324.
39. Boemer A, Qi H, Renz U. Eulerian simulation of bubble formation at a jet in a two-dimensional fluidized bed. International Journal of Multiphase Flow. 1997;23:927-44.
40. Hu HH, Patankar NA, Zhu MY. Direct numerical simulations of fluid–solid systems using the arbitrary lagrangian–eulerian technique. Journal of Computational Physics. 2001;169:427-62.
41. McDonough JM. Lectures in computational fluid dynamics of uncompressible flow: Mathematics, algorithms and implementations 2007.
42. Hu HH. Direct simulation of flows of solid-liquid mixtures. International Journal of Multiphase Flow. 1996;22:335-52.
43. Hu H, Joseph D, Crochet M. Direct simulation of fluid particle motions. Theoret Comput Fluid Dynamics. 1992;3:285-306.
44. Johnson AA. Mesh generation and update strategies for parallel computation of flow problems with moving boundaries and interfaces: University of Minnesota; 1995.
45. Johnson AA, Tezduyar TE. Simulation of multiple spheres falling in a liquid-filled tube. Computer Methods in Applied Mechanics and Engineering. 1996;134:351-73.
46. Johnson AA, Tezduyar TE. 3D Simulation of fluid-particle interactions with the number of particles reaching 100. Computer Methods in Applied Mechanics and Engineering. 1997;145:301-21.
47. Johnson AA, Tezduyar TE, Army High Performance Computing Research C, University of M. Advanced mesh generation and update methods for 3D flow simulations. Minneapolis, Minn.: Army High Performance Computing Research Center; 1998.
48. Hansbo P. The characteristic streamline diffusion method for the time-dependent incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering. 1992;99:171-86.
49. Glowinski R, Pan TW, Hesla TI, Joseph DD. A distributed Lagrange multiplier/fictitious domain method for particulate flows. International Journal of Multiphase Flow. 1999;25:755-94.
50. Singh P, Joseph DD, Hesla TI, Glowinski R, Pan TW. A distributed Lagrange multiplier/fictitious domain method for viscoelastic particulate flows. Journal of Non-Newtonian Fluid Mechanics. 2000;91:165-88.
51. Salmanzadeh M, Rahnama M, Ahmadi G. Effect of sub-grid scales on large eddy simulation of particle deposition in a turbulent channel flow. Aerosol Science and Technology. 2010;44:796-806.
52. Hinds WC. Aerosol technology: Properties, behavior, and measurement of airborne particles. New York: Wiley; 1999.
53. Hinze JO. Turbulence: McGraw-Hill; 1975.
54. Ahmadi G. Overview of digital simulation procedures for aerosols transport in turbulent flows. Particles in Gases and Liquids 3: Detection, Characterization, and Control: Springer; 1993.
55. 陳俊杉、林欣瑞、楊馥菱、謝尚賢. 模擬多球體在黏性流的動態運動. 2012.
56. Teike G, Dietzel M, Michaelis B, Schomburg H, Sommerfeld M. Multiscale lattice–boltzmann approach for electrophoretic particle deposition. Aerosol Science and Technology. 2011;46:451-64.
57. Einstein A. Investigations on the theory of the brownian movement. 1905.
58. Segre E. From X-rays to quarks: Modern physicists and their discoveries: Dover Publications, Incorporated; 2012.
59. Perrin J. Brownian movement and molecular reality: Taylor and Francis; 1910.
60. Lemons D, Gythiel A. Paul Langevin’s 1908 paper "On the theory of brownian motion" ["Sur la théorie du mouvement brownien," Comptes-rendus Académie des Sciences (PParis) 146, 530-533 (1908)]. American Journal of Physics. 1997;65:1079-81.
61. Högberg SM, Åkerstedt HO, Lundström TS, Freund JB. Respiratory deposition of fibers in the non-inertial regime—development and application of a semi-analytical model. Aerosol Science and Technology. 2010;44:847-60.
62. Palacios S, Romero-Rochin V, Volke-Sepulveda K. Brownian motion in typical microparticle systems. 2011.
63. 王子瑜、曹恒光. Brownian motion, langevin equation, and brownian dynamics. 物理雙月刊. 2005.
64. DeCarlo PF, Slowik JG, Worsnop DR, Davidovits P, Jimenez JL. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol Science and Technology. 2004;38:1185-205.
65. Friedlander S, Pui DH. Emerging issues in nanoparticle aerosol science and technology. J Nanopart Res. 2004;6:313-20.
66. Huffman JA, Jayne JT, Drewnick F, Aiken AC, Onasch T, Worsnop DR, Jimenez JL. Design, modeling, optimization, and experimental tests of a particle beam width probe for the aerodyne aerosol mass spectrometer. Aerosol Science and Technology. 2005;39:1143-63.
67. Jayne JT, Leard DC, Zhang X, Davidovits P, Smith KA, Kolb CE, Worsnop DR. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Science and Technology. 2000;33:49-70.
68. Liu P, Ziemann PJ, Kittelson DB, McMurry PH. Generating particle beams of controlled dimensions and divergence: I. Theory of particle motion in aerodynamic lenses and nozzle expansions. Aerosol Science and Technology. 1995;22:293-313.
69. Champion JA, Katare YK, Mitragotri S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. Journal of Controlled Release. 2007;121:3-9.
70. Hirt CW, Amsden AA, Cook JL. An arbitrary lagrangian–eulerian computing method for all flow speeds. Journal of Computational Physics. 1997;135:203-16.
71. Cooper DW. Particulate contamination and microelectronics manufacturing: An introduction. Aerosol Science and Technology. 1986;5:287-99.
72. Haider A, Levenspiel O. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technology. 1989;58:63-70.
73. Auzerais F, Payatakes AC, Okuyama K. Dendritic deposition of uncharged aerosol particles on an uncharged fiber in the presence of an electrical field. Chemical Engineering Science. 1983;38:447-67.
74. Gupta D, Peters MH. A Brownian dynamics simulation of aerosol deposition onto spherical collectors. Journal of Colloid and Interface Science. 1985;104:375-89.
75. Li A, Ahmadi G. Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. Aerosol Science and Technology. 1992;16:209-26.
76. Inaba H, Tapley B. Generalized random processes: A theory and the white gaussian process. SIAM Journal on Control. 1975;13:719-35.
77. 張簡亞乾. National Central University; 2013.
78. Willeke K, Baron PA. Aerosol measurement: Principles, techniques, and applications: John Wiley & Sons, Incorporated; 1992.
指導教授 蕭大智(Ta-chih Hsiao) 審核日期 2013-9-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明