博碩士論文 100326026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:44.192.254.246
姓名 陳彥地(Yan-Di Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以水熱法製備MWCNTs/TiO2及其光催化特性
(Photocatalytic activity of multi-walled carbon nanotube supported TiO2 photocatalyst by hydrothermal method)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用無機的四氯化鈦為鈦源,並以改質過後的碳管為載體,利用水熱法製備出MWCNTs : TiO2質量比為(1%、3%、5%、7%、10%)的MWCNTs/TiO2,並探討不同MWCNTs : TiO2與製備溫度,對於複合材料的表面特性、鍵結結構、晶相變化與光催化活性之影響。X射線繞射分析儀(XRD)分析結果顯示,本研究所製備之二氧化鈦為銳鈦礦晶型,而經由SEM與TEM觀察得知,二氧化鈦會生長在碳管上以及團聚的現象,且碳管有助於降低二氧化鈦群聚的程度,並隨著MWCNTs : TiO2的不同,二氧化鈦與MWCNTs的鍵結情況與分散情況也會有所不同。ASAP量測結果則顯示,碳管的添加有助於比表面積的上升,不同MWCNTs : TiO2的複合材料,其比表面積、孔徑分佈亦會有所改變,其中以MWCNTs : TiO2為5%時的比表面積最大。藉由在紫外光與可見光系統中,光催化降解水楊酸結果顯示,以MWCNTs : TiO2為5%為最佳,且隨製備溫度的上升,降解效果越好。
摘要(英) This research utilized inorganic titanium tetrachloride as the precursor of titanium dioxide and the carbon tube as carrier to produce MWCNTs/TiO2 by hydrothermal method. The influences of the ratio of MWCNTs/TiO2 and the synthesis temperature on the surface characteristics, the crystal structure, and the catalytic ability of MWCNTs/TiO2 were investigated. According to the XRD analysis, the TiO2 synthesized in this work was anatase. Through SEM and TEM, it is found that the TiO2 would grow on the carbon tube and stick together and the amount of carbon tube will decrease the aggregation of TiO2. The results of ASAP revealed that the addition of carbon nanotubes would increase the surface area. When the MWCNTs : TiO2 was 5 %, the surface area was the largest. The photocatalytic abilities of the synthesized MWCNTs/TiO2 were examined by photodegradation of salicylic acid. It was found that when MWCNTs : TiO2 was 5%, the photocatalytic ability was the highest. Also, the photocatalytic ability of the MWCNTs/TiO2 increased with increasing hydrothermal temperature.
關鍵字(中) ★ 四氯化鈦
★ 光降解
★ MWCNTs/TiO2
關鍵字(英) ★ TiCl4
★ photodegradation
★ MWCNTs/TiO2
論文目次 摘要 i
Abstract ii
誌謝 iii
圖目錄 vi
表目錄 ix
第一章 前言 1
1-1研究緣起 1
1-2研究內容與目的 3
1-3研究流程 4
第二章 文獻回顧 5
2-1奈米碳管 5
2-2 二氧化鈦光觸媒 12
2-3二氧化鈦/碳材複合材料 21
第三章 實驗方法 29
3-1 實驗材料與設備 29
3-2 實驗方法 32
第四章 結果與討論 38
4-1奈米碳管特性分析 38
4-2 MWCNTs/TiO2複合材料特性分析 45
4-3 液相光催化降解水楊酸 71
第五章 結論與建議 88
5-1 結論 88
5-2建議 90
參考文獻 92
參考文獻 Abbasi, S., Zebarjad, S. M., and Noie Baghban, S. H., “Decorating and filling of multi-walled carbon nanotubes with TiO2 nanoparticles via wet chemical method”, Engineering, 5, 207-212 (2013)
Agana, B. A., Reeve, D., and Orbell, J. D., “Performance optimization of a 5 nm TiO2 ceramic membrane with respect to beverage production wastewater”, Desalination, 311, 162-172 (2013)
Araña, J., Doña-Rodr´ıguez, J. M., Rendón, E. T., Cabo, C. G. i., González-D´ıaz, O., Herrera-Melián, J. A., Pérez-Peña, J., Colón, G., Nav´ıo, J. A., and Bae, K., “TiO2 activation by using activated carbon as a support Part I. Surface characterisation and decantability study”, Applied Catalysis B: Environmental, 44, 161-172 (2003)
Avetik R. Harutyunyan, Bhabendra K. Pradhan, Chang, J., Chen, G., and Eklund, P. C., “Purification of single-wall carbon nanotubes by selective microwave heating of catalyst particles”, The Journal of Physical Chemistry B, 106, 8671-8675 (2002)
Bünger, U. and Zittel, W., “Hydrogen storage in carbon nanostructures – still a long road from science to commerce”, Applied Physics A Materials Science & Processing, 72, 147-151 (2001)
Batool, S. S., Imran, Z., Israr Qadir, M., Usman, M., Jamil, H., Rafiq, M. A., Hassan, M. M., and Willander, M., “Comparative analysis of Ti, Ni, and Au electrodes on characteristics of TiO2 nanofibers for humidity sensor application”, Journal of Materials Science & Technology, 29, 411-414 (2013)
Berkmans, A., Ramakrishnan, S., Jain, G., and Haridoss, P., “Aligning carbon nanotubes, synthesized using the arc discharge technique, during and after synthesis”, Carbon, 55, 185-195 (2013)
Cao, Y., Liang, Y., Dong, S., and Wang, Y., “A multi-wall carbon nanotube (MWCNT) relocation technique for atomic force microscopy (AFM) samples”, Ultramicroscopy, 103, 103-8 (2005)
Chen, J., Bai, F.-Q., Wang, J., Hao, L., Xie, Z.-F., Pan, Q.-J., and Zhang, H.-X., “Theoretical studies on spectroscopic properties of ruthenium sensitizers absorbed to TiO2 film surface with connection mode for DSSC”, Dyes and Pigments, 94, 459-468 (2012)
Choi, W., Termin, A., and Hoffmann, M. R., “The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics ”, The Journal of Physical Chemistry, 98, 13669-13679 (1994)
Coleman, J. N., Khan, U., Blau, W. J., and Gun’ko, Y. K., “Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites”, Carbon, 44, 1624-1652 (2006)
Coscia, U., Ambrosone, G., Ambrosio, A., Ambrosio, M., Bussolotti, Carillo, V., Grossi, Maddalena, Passacantando, M., Perillo, Raulo, A., and Santucci, S., “Photoconductivity of multiwalled CNT deposited by CVD”, Solid State Sciences, 11, 1806-1809 (2009)
Cozzoli, P. D., Comparelli, R., Fanizza, E., Curri, M. L., and Agostiano, A., “Photocatalytic activity of organic-capped anatase TiO2 nanocrystals in homogeneous organic solutions”, Materials Science and Engineering: Carbon, 23, 707-713 (2003)
Cwirzen, A., Habermehl-Cwirzen, K., Nasibulin, A. G., Kaupinen, E. I., Mudimela, P. R., and Penttala, V., “SEM/AFM studies of cementitious binder modified by MWCNT and nano-sized Fe needles”, Materials Characterization, 60, 735-740 (2009)
Duesberg, G. S., Burghard, M., Muster, J., Philipp, G., and Roth, S., “Separation of carbon nanotubes by size exclusion chromatography”, Chemical Communications, 435-436 (1998)
Ebbesen, “Purification of nanotubes”, Nature, 367, 519 (1994)
Eder, D. and Windle, A. H., “Carbon–inorganic hybrid materials: the carbon-nanotube/TiO2 interface”, Advanced Materials, 20, 1787-1793 (2008)
Emilio, Emilio, C. A., Litter, M. I., Kunst, M., Bouchard, M., and Colbeau-Justin, C., “Phenol photodegradation on platinized-TiO2 photocatalysts related to charge-carrier dynamics”, Langmuir, 22, 3606-3613 (2006)
Fujishima, “Electrochemical Photolysis of water at a semiconductor electrode”, Nature, 238, 37-38 (1972)
Hamadanian, M., Jabbari, V., Shamshiri, M., Asad, M., and Mutlay, I., “Preparation of novel hetero-nanostructures and high efficient visible light-active photocatalyst using incorporation of CNT as an electron-transfer channel into the support TiO2 and PbS”, Journal of the Taiwan Institute of Chemical Engineers, (2013)
Hernadi, K., Siska, A., Thien-Nga, L., Forro, L., and Kiricsi, I., “Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes”, Solid State Ionics, 141-142, 203-209 (2001)
Hoffman, A. J., Carraway, E. R., and Hoffmann, M. R., “Photocatalytic production of H202 and organic peroxides on quantum-sized semiconductor collolds ”, Environmental Science & Technology, 28, 776-798 (1994)
Huang, J., Dong, Z., Li, Y., Li, J., Wang, J., Yang, H., Li, S., Guo, S., Jin, J., and Li, R., “High performance non-enzymatic glucose biosensor based on copper nanowires–carbon nanotubes hybrid for intracellular glucose study”, Sensors and Actuators B: Chemical, 182, 618-624 (2013)
Hui Hu, Bin Zhao, Itkis, M. E., and Haddon, R. C., “Nitric Acid Purification of Single-Walled Carbon Nanotubes”, The Journal of Physical Chemistry B 107, 13838 - 13842 (2003)
Iijim, S., “Helical microtubules of graphitic carbon”, Nature, 354, 56-58 (1991)
Jaroenworaluck, A., Sunsaneeyametha, W., Kosachan, N., and Stevens, R., “Characteristics of silica-coated TiO2 and its UV absorption for sunscreen cosmetic applications”, Surface and Interface Analysis, 38, 473-477 (2006)
Jean-Paul Salvetat, Andrzej J. Kulik, Jean-Marc Bonard, G. Andrew D. Briggs, Thomas Stöckli, Karine MØtØnier, Sylvie Bonnamy, François BØguin, Nancy A. Burnham, and Forró, L. s., “Elastic modulus of ordered and disordered multiwalled carbon nanotubes”, Advanced Materials, 11, 161-165 (1999)
Kang, S. Z., Cui, Z., and Mu, J., “Composite of carboxyl‐modified multi‐walled carbon nanotubes and TiO2 nanoparticles: preparation and photocatalytic activity”, Fullerenes, Nanotubes and Carbon Nanostructures, 15, 81-88 (2007)
Kedem, s., Schmidt, j., and yaron Paz, a. y. C., “composite polymer nanofibers with carbon nanotubes and titanium dioxide particles”, Langmuir, 21, 5600-5604 (2005)
Kis, A., Csanyi, G., Salvetat, J. P., Lee, T. N., Couteau, E., Kulik, A. J., Benoit, W., Brugger, J., and Forro, L., “Reinforcement of single-walled carbon nanotube bundles by intertube bridging”, Nature materials, 3, 153-7 (2004)
Ko, F.-H., Lee, C.-Y., Ko, C.-J., and Chu, T.-C., “Purification of multi-walled carbon nanotubes through microwave heating of nitric acid in a closed vessel”, Carbon, 43, 727-733 (2005)
Kreupl, F., Graham, A. P., Liebau, M., Duesberg, G. S., Seidel, R., and Unger, E., “Carbon nanotubes for interconnect applications”, IEDM Technology Digest, (2004)
Kuo, C. Y., “Prevenient dye-degradation mechanisms using UV/TiO2/carbon nanotubes process”, Journal of Hazardous Materials, 163, 239-44 (2009)
Lee, S.-w. and Sigmund, W. M., “Formation of anatase TiO2 nanoparticles on carbon nanotubes”, Chemical Communications, 780-781 (2003)
Leonor Contreras, M., Avila, D., Alvarez, J., and Rozas, R., “Computational algorithms for fast-building 3D carbon nanotube models with defects”, Journal of Molecular Graphics and Modelling, 38, 389-95 (2012)
Li, Y.-H., Wang, S., Luan, Z., Ding, J., Xu, C., and Wu, D., “Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes”, Carbon, 41, 1057-1062 (2003)
Lin, J.-Y., Liao, J.-H., and Hung, T.-Y., “A composite counter electrode of CoS/MWCNT with high electrocatalytic activity for dye-sensitized solar cells”, Electrochemistry Communications, 13, 977-980 (2011)
Liqiang, J., Yichun, Q., Baiqi, W., Shudan, L., Baojiang, J., Libin, Y., Wei, F., Honggang, F., and Jiazhong, S., “Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity”, Solar Energy Materials and Solar Cells, 90, 1773-1787 (2006)
Lu, J., Mullen, J. R., and Brill, S. J., “purifying single-walled nanotubes”, Nature, 383, 679 (1996)
Lyson-Sypien, B., Czapla, A., Lubecka, M., Gwizdz, P., Schneider, K., Zakrzewska, K., Michalow, K., Graule, T., Reszka, A., Rekas, M., Lacz, A., and Radecka, M., “Nanopowders of chromium doped TiO2 for gas sensors”, Sensors and Actuators B: Chemical, 175, 163-172 (2012)
Mali, S. S., Betty, C. A., Bhosale, P. N., and Patil, P. S., “Synthesis, characterization of hydrothermally grown MWCNT-TiO2 photoelectrodes and their visible light absorption properties”, ECS Journal of Solid State Science and Technology, 1, M15-M23 (2012)
Munkhbayar, B., Hwang, S., Kim, J., Bae, K., Ji, M., Chung, H., and Jeong, H., “Photovoltaic performance of dye-sensitized solar cells with various MWCNT counter electrode structures produced by different coating methods”, Electrochimica Acta, 80, 100-107 (2012)
Nakata, K. and Fujishima, A., “TiO2 photocatalysis: Design and applications”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13, 169-189 (2012)
Noda, “Chemistry and Physics of Carbon”, Carbon, 10, 239-241 (1972)
Ohenoja, K., Illikainen, M., and Niinimäki, J., “Effect of operational parameters and stress energies on the particle size distribution of TiO2 pigment in stirred media milling”, Powder Technology, 234, 91-96 (2013)
Pang, L. S. K., Saxby, J. D., and Chatfield, S. P., “Thermogravimetric analysis of carbon nanotubes and nanoparticles ”, The Journal of Physical Chemistry, 97, 6941-6942 (1993)
Park, N.-G., Lagemaat, J. v. d., and Frank, A. J., “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells”, the Journal of Physical Chemistry B, 104, 8989-8994 (2000)
Peining, Z., Nair, A. S., Shengyuan, Y., and Ramakrishna, S., “TiO2–MWCNT rice grain-shaped nanocomposites—Synthesis, characterization and photocatalysis”, Materials Research Bulletin, 46, 588-595 (2011)
Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., Dunlop, P. S. M., Hamilton, J. W. J., Byrne, J. A., O’Shea, K., Entezari, M. H., and Dionysiou, D. D., “A review on the visible light active titanium dioxide photocatalysts for environmental applications”, Applied Catalysis B: Environmental, 125, 331-349 (2012)
Prasad, K., Bally, A. R., Schmid, P. E., Levy, F., Benoit, J., Barthou, C., and Benalloul, P., “Ce-doped TiO2 insulators in thin film electroluminescent devices”, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 36, 5696-5702 (1997)
Shelimov, K. B., Esenaliev, R. O., Rinzler, A. G., Huffman, C. B., and Smalley, R. E., “Purification of single-wall carbon nanotubes by ultrasonically assisted filtration”, Chemical Physics Letters, 282, 429-434 (1998)
Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., and emieniewska, T. S. I., “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity”, Pure and Applied Chemistry, 57, 603-619 (1982)
Somekawa, S., Kusumoto, Y., Yang, H., Abdulla-Al-Mamun, M., and Ahmmad, B., “Fabrication, N-doping mechanism and evaluation of N-doped TiO2 thin films based on laser ablation method ”, Journal of Scientific Research, 2, (2009)
Supawan Joonwichien, Eiji Yamasue, and Ishihara, H. O. a. K., “Effects of magnetic field on photodegradation of methylene blue over znO and TiO2 powders using UV-LED as a light source”, Journal of Chemistry and Chemical Engineering, 5, 729-737 (2011)
Tachikawa, T., Fujitsuka, M., and Majima, T., “Mechanistic insight into the TiO2 photocatalytic reactions: Design of new photocatalysts”, The Journal of Physical Chemistry C, 111, 5259-5275 (2007)
Tsang, S. C., Harris, P. J. F., and Green, M. L. H., “Thinning and opening of carbon nanotubes by oxidation using carbon dioxide”, Nature, 362, 520 - 522 (1993)
Wang, S. and Zhou, S., “Photodegradation of methyl orange by photocatalyst of CNTs/P-TiO2 under UV and visible-light irradiation”, Journal of Hazardous Materials, 185, 77-85 (2011)
Wang, Y., Li, Y., Liu, Z., Weng, Z., Ye, S., and Sasian, J. M., “A new high-precision measurement system used in the image calibration of a large-sized photographic instrument”, 5638, 404-411 (2005)
Xia, X.-H., Jia, Z.-J., Yu, Y., Liang, Y., Wang, Z., and Ma, L.-L., “Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O”, Carbon, 45, 717-721 (2007)
Xie, Y. and Zhao, X., “The effects of synthesis temperature on the structure and visible-light-induced catalytic activity of F–N-codoped and S–N-codoped titania”, Journal of Molecular Catalysis A: Chemical, 285, 142-149 (2008)
Yao, “Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity”, Environmental Science and Technology, 42, 4952-4957 (2008)
Yao, Y., Li, G., Ciston, S., Lueptow, R. M., and Gray, K. A., “Photoreactive TiO2 /Carbon Nanotube Composites: Synthesis and Reactivity”, Environmental Science and Technology, 42, 4952-4957 (2008)
Yu, J., Wang, G., Cheng, B., and Zhou, M., “Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders”, Applied Catalysis B: Environmental, 69, 171-180 (2007)
Yuge, R., Toyama, K., Ichihashi, T., Ohkawa, T., Aoki, Y., and Manako, T., “Characterization and field emission properties of multi-walled carbon nanotubes with fine crystallinity prepared by CO2 laser ablation”, Applied Surface Science, 258, 6958-6962 (2012)
Zhang, Q.-H., Gao, L., and Guo, J.-K., “Preparation and characterization of nanosized TiO2 powders from aqueous TiCl4 solution”, NanoStructured Materials, 11, 1293-1300 (1999)
Zhao, D., Sheng, G., Chen, C., and Wang, X., “Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO2 dyade structure”, Applied Catalysis B: Environmental, 111-112, 303-308 (2012)
Zhou, W., Pan, K., Qu, Y., Sun, F., Tian, C., Ren, Z., Tian, G., and Fu, H., “Photodegradation of organic contamination in wastewaters by bonding TiO2/single-walled carbon nanotube composites with enhanced photocatalytic activity”, Chemosphere, 81, 555-61 (2010)
吳映潔,「以鉻金屬捕捉電子提升二氧化鈦對水楊酸光催化降解效率之研究」,
碩士論文,國立暨南國際大學土木工程系,南投,2010。
指導教授 秦靜如(Ching-Ju Chin) 審核日期 2013-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明