博碩士論文 100326027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:34.204.173.45
姓名 魏海青(Hai-ching Wei)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估
(Fine suspended particles (PM2.5) instrument comparison, component analysis and source apportionment in northern, central, and southern Taiwan.)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性★ 2011-2015年台灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來源推估及對能見度影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 細懸浮微粒(PM2.5)質量和化學成分可用於評估空氣品質、人體健康風險以及污染源管制成效。由於以手動採樣和自動監測方法量測PM2.5質量濃度存有差異,為探討手動和自動儀器量測差異原因,本文於2012年12月17日~2013年8月19日,在台灣北、中、南部環保署空氣品質監測站-新莊、崙背和前鎮站,使用BGI PQ 200 (以下簡稱PQ 200)和Thermo R&P 1405-F FDMS (以下簡稱FDMS)量測PM2.5質量濃度,並使用Thermo R&P 2300 (以下簡稱R&P 2300)量測PM2.5化學成分。在2013年5月20日~6月30日增加Met One Super SASS (以下簡稱Super SASS)和URG 3000N量測PM2.5成分濃度,探討不同手動採樣器採集PM2.5化學成分和修正誤差的差異,對於PM2.5污染來源,本文使用受體模式PMF (Positive Matrix Factorization)並以CPF (Conditional Probability Function)結合污染源貢獻高濃度和風速、風向驗證鄰近污染源影響。
研究結果顯示新莊和前鎮站PQ 200和FDMS差異(以下表示為FDMS-PQ 200)與PM2.5濃度變化有不錯的線性相關;崙背站則是與大氣溫度有弱相關。進一步探討發現新莊和前鎮站(FDMS-PQ 200)和FDMS的 Reference MC有中等程度相關性,崙背站則無相關性。考慮PQ 200和FDMS不同的溫、濕度操作條件,發現崙背站PQ 200和FDMS 的Base MC差異主要來自兩種方法量測的PM2.5含水量不同,前鎮站則是受PQ 200採樣微粒留存的半揮發性離子濃度有關。
R&P 2300和不同採樣配置的Super SASS量測PM2.5質量濃度並無顯著差異。裝設前置denuders可避免酸、鹼性氣體干擾後續沉積微粒,因此,沒有裝設denuder的Super SASS對半揮發性水溶性離子如:NH4+和NO3-的第一張鐵氟龍濾紙和第二張Nylon濾紙量測值都是最高。Nylon濾紙可吸附微粒揮發氣體,因此,SASS 2N第一張Nylon濾紙量測值Cl-最高,第二張Nylon濾紙量測的揮發Cl-則是最低;第一張Nylon濾紙量測值NO3-雖不是最高,但第二張Nylon濾紙量測的揮發NO3-則是最低。在碳成分量測方面,第一張濾紙量測的PM2.5 OC 以Super SASS 最高,R&P 2300次之,URG 3000N最低,EC則無顯著差異。這是受濾紙表面速度(URG 3000N> R&P 2300>Super SASS)影響,因為高濾紙表面速度可降低大氣中揮發性有機物的吸附。值得注意的是,Super SASS使用靜置現場空白估計石英濾紙吸附VOCs,這會低估吸附OC,高估微粒揮發OC,導致修正PM2.5 OC值偏高。
新莊站前兩季PM2.5成分以SO42-為主,後兩季則是修正OC濃度最高;崙背站第一、二和四季成分以SO42-為最高,第三季是NO3-濃度最高;前鎮站第一、二和四季主要成分是SO42-,第三季以修正OC濃度最高。使用PMF (Positive Matrix Factorization)推估並以CPF (Conditional Probability Function) 輔助驗證新莊、崙背和前鎮站污染來源,新莊站以secondary sulfate和gasoline emissions貢獻PM2.5最大,崙背站以secondary nitrate and sea salt和biomass burning貢獻PM2.5最大;前鎮站則主要為secondary nitrate和secondary sulfate。PMF模式模擬要求數據要有100筆以上,比較新莊站103和40筆數據PMF解析結果,發現使用較少數據雖然仍可解析,但在分離PM2.5化學成分到不同污染來源剖面上會有所受限,無法明確辨識污染源類別間的差異。
綜合彙整結果,PM2.5自動和手動儀器方法質量濃度差異受微粒半揮發物質揮發和含水量影響, FDMS Reference MC在冷季會高估微粒半揮發性物質的揮發,這在溫、濕度變化大的台灣,將會導致FDMS高估PM2.5質量濃度。沒有裝設denuder的採樣器會收集到較高濃度半揮發性水溶性離子,PMF解析結果顯示secondary sulfate、secondary nitrate和gasoline排放對台灣PM2.5濃度有顯著貢獻,降低前驅污染來源排放有助於改善PM2.5空氣品質。
摘要(英) Fine suspended particles (PM2.5) mass and chemical components can be used to assess air quality, human health risks, and control effectiveness of pollution sources. Owing to measurement deviation between manual and automated methods in measuring PM2.5 mass concentration, this study used BGI PQ 200 (hereinafter referred to as PQ 200) and Thermo R & P 1405-F FDMS (hereinafter referred to as FDMS ) to measure PM2.5 mass concentration and used the R & P 2300 to measure PM2.5 chemical composition at three air quality monitoring stations (Xinzhuang, Lunbei, and Cianjhen) of Taiwan Environmental Protection Administration from December 17, 2012 to August 19, 2013. To further investigate the effects of sampling artifact corrections in different PM2.5 chemical speciation samplers, this study added Met One Super SASS (hereinafter referred to as Super SASS) and URG 3000N to measure PM2.5 components from May 20 to June 30, 2013. For source apportionment of PM2.5, this study adopted Positive Matrix Factorization (PMF) and validated the results by using Conditional Probability Function (CPF) coupling with high source contributions and the associated wind directions.
The results showed that the measured PM2.5 concentration difference between PQ 200 and FDMS (hereinafter referred to as FDMS-PQ 200) and PM2.5 concentration correlated well at both the Xinzhuang and Cianjhen stations. In contrast, (FDMS-PQ 200) only correlated weakly with atmospheric temperature at the Lunbei station. Further investigation showed that (FDMS-PQ 200) correlated moderately well with FDMS Reference MC at both the Xinzhuang and Cianjhen stations but not for the Lunbei station. Considering different temperatures and humic conditions operated in PQ 200 and FDMS, the difference between PQ 200 and FDMS Base MC was considered related to water content deviation of PM2.5 between the two methods at the Lunbei station. In contrast, the difference between PQ 200 and FDMS Base MC was accounted for by the retained semi-volatile ions of PM2.5 in PQ 200 at the Cianjhen station.
Using R&P 2300 and Super SASS with different sampling configurations to collect PM2.5 mass concentration showed no significant difference. The installation of preceding denuders can avoid from the interference of acidic and basic gases on the following deposited particles. Therefore, the concentrations of semi-volatile species of water-soluble ions such as NH4+ and NO3- on the first Teflon filter and the second Nylon filter of the Super SASS without preceding denuders were the highest among different configurations. Nylon filter can adsorb volatilized gases from deposited particles. The measured Cl- was thus the highest from the first Nylon filter and the lowest from the second Nylon filter in SASS 2N accordingly. Similarly, the measured volatilized NO3- from the second Nylon filter of SASS 2N was the lowest although the volatilized NO3- from the first Nylon filter was not the highest. For the part of carbonaceous content, the measured PM2.5 organic carbon (OC) from the first filter was the highest for Super SASS followed by R&P 2300 and URG 3000N, while EC showed no difference. This was influenced by the filter face velocity (URG 3000N> R&P 2300>Super SASS) as high face velocity will reduce the adsorption of volatile organic compounds (VOCs) from the atmosphere. It is noted that Super SASS estimates the adsorbed VOCs using passive field blank, which will underestimate positive artefacts of filter, overestimate volatilized OC, and lead to overestimation for PM2.5 OC correction.
The dominant PM2.5 component was SO42- in the first two seasons followed by the corrected OC in the last two seasons at the Xinzhuang station. SO42- was dominated in the first, second, and fourth seasons except that NO3- was the highest in the third season at the Lunbei station. Similarly, the most significant species was SO42- in the first, second, and fourth seasons, while the corrected OC was dominant in the third season at the Cianjhen monitoring station. Source contributions were conducted by using PMF with the aid of CPF to validate the results at the Xinzhuang, Lunbei, and Cianjhen stations. The most significant source types of PM2.5 were secondary sulfate and gasoline emissions at the Xinzhuang station. Secondary nitrate mixed with sea salt and biomass burning were the two most important source types at the Lunbei station. For the Cianjhen station, the results indicated that secondary nitrate and secondary sulfate were the two greatest contribution source types. PMF modeling required a data set of more than 100 data points, a smaller data set was found workable but was limited for clearer identification in distinguishing PM2.5 chemical species from different source profiles based on the comparison between 40 and 103 data points for the Xinzhuang station.
In summary, the difference in measuring PM2.5 mass concentrations between manual collection and automated methods is affected by the volatilization loss of semi-volatile particulate matter and moisture content of the collected particles. The FDMS tends to overestimate PM2.5 semi-volatile concentrations in cold season. This will lead to overestimate PM2.5 mass concentration when using FDMS in a place with great variations in the atmospheric temperature and relative humidity such as Taiwan. The speciation sampler without the installation of preceding denuders will collect greater concentrations of semi-volatile species of water-soluble ions. PMF modeling results show that secondary sulfate, secondary nitrate, and gasoline emissions significantly contribute to PM2.5 concentrations in Taiwan. Reducing precursor source contributions of these source types will improve PM2.5 air quality.
關鍵字(中) ★ 細懸浮微粒(PM2.5)
★ PM2.5化學成分特性
★ 自動和手動儀器PM2.5量測差異
★ PM2.5化學成分採樣器評估
★ PMF受體模式
關鍵字(英) ★ Fine suspended particles (PM2.5)
★ Chemical characterization of PM2.5,
★ The measuring differences between PM2.5 manual collection and automated instruments
★ Assessments of PM2.5 chemical speciation samplers, PMF receptor model
論文目次 摘要 I
Abstract III
致謝 VI
目錄 VII
圖目錄 XI
表目錄 XIII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 PM2.5形成來源與成分組成 4
2.1.2 PM2.5形成來源 4
2.1.2 PM2.5成分組成 5
2.2 台灣PM2.5特性 5
2.3 PM2.5手動採樣器和自動監測儀器比對 7
2.3.1 美國PM2.5自動儀器等效測試 7
2.3.2歐洲PM2.5候選方法等效測試 11
2.3.3美國和歐盟PM2.5質量濃度候選方法等效測試規範比較 13
2.4 PM2.5成分手動採樣儀器比較 15
2.5 PM2.5濾紙採樣誤差 17
2.5.1 無機鹽採樣誤差 17
2.5.2 有機碳採樣誤差 20
2.6受體模式正矩陣因子法(Positive Matrix Factorization, PMF) 22
2.7條件機率函數(Conditional probability function, CPF) 24
第三章 研究方法 25
3.1 採樣地點與時間 26
3.1.1採樣地點 27
3.1.2 採樣時間 28
3.2 PM2.5質量濃度手動採樣器和自動監測儀器 29
3.2.1 BGI PQ200 PM2.5質量濃度採樣器 29
3.2.2 Thermo R&P 1405-F FDMS自動監測儀器 30
3.3 PM2.5成分採樣器 32
3.3.1 R&P 2300 PM2.5成分採樣器 32
3.3.2 Met One Super SASS PM2.5成分採樣器 35
3.3.3 URG 3000N PM2.5成分採樣器 36
3.4 PM2.5質量和成分手動採樣分析方法 37
3.4.1 採樣濾紙前處理 37
3.4.2 PM2.5質量分析方法 38
3.4.3水溶性離子分析方法 39
3.4.4碳成分分析方法 40
3.4.5 微粒揮發NO3-、NH4+、Cl-和OC修正方法 42
3.5 ISORROPIA模式 43
3.6正矩陣因子法PMF (Positive Matrix Factorization)操作 44
3.6.1輸入資料處理 45
3.6.2 模式操作 45
3.8條件機率函數CPF (Conditional probability function)推估方法 48
第四章 結果與討論 49
4.1 台灣北、中、南部PQ 200和FDMS PM2.5質量濃度比對 49
4.1.1 新莊站PQ 200、FDMS PM2.5質量濃度和PQ 200-FDMS差異變化趨勢 49
4.1.2 崙背站PQ 200、FDMS PM2.5質量濃度和PQ 200-FDMS差異變化趨勢 52
4.1.3 前鎮站PQ 200、FDMS PM2.5質量濃度和PQ 200-FDMS差異變化趨勢 54
4.1.4台灣北、中、南部PQ 200和FDMS PM2.5質量濃度關係 56
4.2 PQ 200和FDMS PM2.5質量濃度差異來源探討 60
4.2.1 PQ 200和FDMS差異與FDMS Reference MC關係 60
4.2.2 FDMS和PQ 200差異和氣膠成分關係 62
4.2.3 PQ 200 和FDMS、FDMS Base MC比較 65
4.2.4 PQ 200 和Base MC差異探討 67
4.3 R&P 2300、Super SASS和URG 3000N成分採樣器PM2.5成分比對 73
4.3.1 PM2.5質量濃度 75
4.3.2 PM2.5水溶性離子濃度 76
4.3.3 PM2.5碳成分濃度 80
4.4 台灣北、中、南部PM2.5成分濃度變化趨勢 86
4.4.1 新莊站PM2.5成分濃度變化趨勢 86
4.4.2 崙背站PM2.5成分濃度變化趨勢 90
4.4.3 前鎮站PM2.5成分濃度變化趨勢 93
4.5 受體模式PMF推估台灣北、中、南部PM2.5污染來源 96
4.5.2 崙背站PMF推估 PM2.5污染來源 103
4.5.3 前鎮站PMF推估 PM2.5污染來源 110
4.5.4 2011~2013年新莊站PMF推估 PM2.5污染來源 117
4.5.5 比較新莊站不同數據集大小解析結果 127
第五章 結論與建議 129
5.1 結論 129
5.2 建議 131
第六章 參考文獻 132
附錄1 各監測站地理環境 143
附錄2 採樣時程 145
附錄3 新莊站PMF Bootstrap model結果 146
附錄4 崙背站PMF Bootstrap model結果 147
附錄5 前鎮站PMF Bootstrap model結果 148
附錄6 2011~2013年新莊站PMF Bootstrap model結果 149
附錄7新莊、崙背和前鎮站PMF Base model 4~6個因子相關係數矩陣 151
附錄8 口試委員意見答覆 153
參考文獻 Allen, J.O., Mayo, P.R., Hughes, L.S., Salmon, L.G., Cass, G.R., 2001. Emissions of size-segregated aerosols from on-road vehicles in the Caldecott tunnel. Environmental Science and Technology 35, 4189-4197.
Ashbaugh, L.L., Malm, W.C., Sadeh, W.Z., 1985. A residence time probability analysis of sulfur concentrations at ground canyon national park. Atmospheric Environment, 19 (8), 1263-1270.
Benner, C. L., Eatough, D. J., Eatough, N. L., Bhardwaja, P., 1991. Comparison of annular denuder and filter pack collection of HNO3(g), HNO2(g), SO2(g), and particulate-phase nitrate, nitrite and sulfate in the south-west desert. Atmospheric Environment. Part A. General Topics, 25(8), 1537-1545.
Bertrand, L., Gérard G., Schroyen G., 2009. PM10 and PM2.5 Equivalence test Lodelinsart, Progress report (winter 2008-2009) Rapport no 09-960, Institut scientifique de service public, (http://airquality.issep.be).
Brook, J. R., Dann, T. F., Burnett, R. T., 1997. The relationship among TSP, PM10, PM2.5, and inorganic constituents of atmospheric particulate matter at multiple Canadian locations. Journal of the Air and Waste Management Association, 47(1), 2-19.
Cachier, H., Liousse, C., Buat-Menard, P., Gaudichet, A., 1995. Particulate content of savanna fire emissions. Journal of Atmospheric chemistry, 22, 123-148.
Cadle, S.H., Mulawa, P.A., Hunsanger, E.C., Nelson, K.E., Ragazzi, R.A., Barrett, R., Gallagher, G.L., Lawson, D.R., Knapp, K.T., Snow, R., 1999. Composition of light-duty motor vehicle exhaust particulate matter in the Denver, Colorado area. Environmental Science and Technology 33, 2328-2339.
Calvert, J. G., Lazrus, A., Kok, G. L., Heikes, B. G., Walega, J. G., Lind, J., Cantrell, C. A., 1985. Chemical mechanisms of acid generation in the troposphere.
Cao, J.J., Ho, K.F., Lee, S.C., Fung, K., Zhang, X.Y., Chow, J.C., Watson, J.G., 2006. Characterization of roadside fine particulate carbon and its 8 fractions in Hong Kong. Aerosol and Air Quality Research 6 (2), 106–122.
Chang, S.-C., Chou, C. C.-K., Chan, C.-C., Lee, C.-T., 2010. Temporal characteristics from continuous measurements of PM2.5 and speciation at the Taipei Aerosol Supersite from 2002 to 2008. Atmospheric Environment, 44, 1088-1096.
Chen, L.-W.A., Chow, J.C., Watson, J.G., Moosmüller, H., Arnott, W.P., 2004. Modeling reflectance and transmittance of quartz-fiber filter samples containing elemental carbon particles: Implications for thermal/optical analysis. Journal of Aerosol Science, 35(6), 765-780.
Chen, L.-W. A., Watson, J. G., Chow, J. C., DuBois, D. W., Herschberger, L., 2011. PM2.5 source apportionment: reconciling receptor models for US nonurban and urban long-term networks. Journal of the Air and Waste Management Association, 61(11), 1204-1217.
Cheng, Y., Duan, F.-k., He, K.-b., Du, Z.-y., Zheng, M., Ma, Y.-l., 2012. Sampling artifacts of organic and inorganic aerosol: Implications for the speciation measurement of particulate matter. Atmospheric Environment, 55, 229-233.
Chow, J.C., Watson, J.G., Pritchett, L.C., Pierson, W.R., Frazier, C.A., Purcell, R.G., 1993. The DRI Thermal/Optical Reflectance Carbon Analysis System: Description, Evaluation and Applications in U.S. Air Quality Studies. Atmospheric Environment 27, 1185-1201.
Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Arnott, W.P.; Moosmüller, H., Fung, K.K., 2004a. Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Environmental Science and Technology, 38(16), 4414-4422.
Chow, J.C., Watson, J.G., Kuhns, H.D., Etyemezian, V., Lowenthal, D.H., Crow, D.J., Kohl, S.D., Engelbrecht, J.P., Green, M.C., 2004b. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational (BRAVO) study. Chemosphere 54, 185–208.
Chow, J. C., Watson, J. G., Chen, L.-W. A., Rice, J., Frank, N. H., 2010. Quantification of PM2.5 organic carbon sampling artifacts in US networks. Atmospheric Chemistry and Physics, 10, 5223-5239.
Chuang, M.-T., Chiang, P.-C., Chan, C.-C., Wang, C.-F., Chang, E., Lee, C.-T., 2008. The effects of synoptical weather pattern and complex terrain on the formation of aerosol events in the Greater Taipei area. Science of The Total Environment, 399(1), 128-146.
Chuang, M.T., Chou, C.C.-K., Sopajareepom, K., Lin, N.H., Wang, J.L., Sheu, G.R., Chang, Y.J., Lee C.T., 2012. Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment. Atmospheric Environment, in review.
Chung, S. H., Seinfeld, J. H., 2002. Global distribution and climate forcing of carbonaceous aerosols. Journal of Geophysical Research: Atmospheres, 107:4407.
Conant, W. C., Seinfeld, J. H., Wang, J., Carmichael, G. R., Tang, Y., Uno, I., . . . Quinn, P. K., 2003. A model for the radiative forcing during ACE-Asia derived from CIRPAS Twin Otter and R/V Ronald H. Brown data and comparison with observations. Journal of Geophysical Research, 108:8661.
Dabek-Zlotorzynska, E., Dann, T.F., Martinelango, P.K., Celo, V., Brook, J.R., Mathieu, D., Ding, L.Y., Austin, C.C., 2010. Canadian National Air Pollution Surveillance (NAPS) PM2.5 speciation program: methodology and PM2.5 chemical composition for the years 2003-2008. Atmospheric Environment, 45, 673-686.
Dasgupta, P. K., Ni, L., Poruthoor, S. K., Hindes, D. C., 1997. A multiple parallel plate wetted screen diffusion denuder for high-flow air sampling applications. Analytical Chemistry, 69, 5018-5023.
De Jonge D., 2008. Field experiment on 11 automated PM monitors. Technical report. Department of Air Quality Research, Municipal Health Service Amsterdam, (GGD Amsterdam).
Ding, Y., Pang, Y., Eatough, D. J., 2002. High-volume diffusion denuder sampler for the routine monitoring of fine particulate matter: I. Design and optimization of the PC-BOSS. Aerosol Science and Technology, 36(4), 369-382.
Durham, J. L.,Wilson,W. E., Baker Bailey, E., 1978. Application of an SO2-denuder for continuous measurement of sulfur in submicrometric aerosols. Atmospheric Environment, 12, 883-886.
Dwivedi, D., Agarwal, A.K., Sharma, M., 2006. Particulate emissions characterization of a biodiesel vs. diesel‐fuelled compression ignition transport engine: a comparative study. Atmospheric Environment 40, 5586‐5595.
Eatough, D. J.,Wadsworth, A., Eatough, D. A., Crawford, J. W., Hansen, L.D., Lewis, E. A., 1993.A multiple-system, multichannel diffusion denuder sampler for the determination of fine-particulate organic material in the atmosphere. Atmospheric Environment, 27A, 1213-1219.
Edgerton, E.S., Hartsell, B.E., Saylor, R.D., Jansen, J.J., Hansen, D.A., Hidy, G.M., 2005. The southeastern aerosol research and characterization study: Part II. Filter-based measurements of fine and coarse particulate matter mass and composition. Journal of the Air and Waste Management Association, 55, 1527-1542.
European Commission Working Group, 2010. Demonstration of Equivalence of Ambient Air Monitoring Methods. ( http://ec.europa.eu/environment/air/quality/legislation/pdf/equivalence.pdf)
Ferm, M., 1979. Method for determination of atmospheric ammonia. Atmospheric Environment, 13, 1385-1393.
Forrest, J., Spandau, D. J., Tanner, R. L., Newman, L., 1982. Determination of atmospheric nitrate and nitric acid employing a diffusion denuder with a filter pack. Atmospheric Environment (1967), 16(6), 1473-1485.
Fountoukis, C., Nenes, A., 2007. ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4+–Na+–SO4 2−–NO3−–Cl−–H2O aerosols. Atmospheric Chemistry and Physics, 7(17), 4639-4659.
Frank, N. H., 2006. Retained nitrate, hydrated sulfates, and carbonaceous mass in Federal Reference Method fine particulate matter for six eastern US cities. Journal of the Air and Waste Management Association, 56(4), 500-511.
Fu, Q., Zhuang, G., Wang, J., Xu, C., Huang, K., Li, J., Hou, B., Lu, T., Streets, D.G., 2008. Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China. Atmospheric Environment 42, 2023-2036.
Ganor, E., Levin, Z., Van Grieken, R., 1998. Composition of individual aerosol particles above the Israelian Mediterranean coast during the summer time. Atmospheric Environment, 32(9), 1631-1642.
Gaudichet, A., Echalar, F., Chatenet, B., Quiset, J.P., Malingre, G., Cachier, H., Buat Menard, P., Artaxo, P., Maenhaut, W., 1995. Trace elements in tropical African savanna biomass burning aerosols. Journal of Atmospheric Chemistry 22, 19-39.
Grover, B. D., Kleinman, M., Eatough, N. L., Eatough, D. J., Hopke, P. K., Long, R. W., . . . Ambs, J. L., 2005. Measurement of total PM2.5 mass (nonvolatile plus semivolatile) with the filter dynamic measurement system tapered element oscillating microbalance monitor. Journal of Geophysical Research, 110(D7), D07S03.
Gundel, L., Lee, V., Mahanama, K., Stevens, R., Daisey, J., 1995. Direct determination of the phase distributions of semi-volatile polycyclic aromatic hydrocarbons using annular denuders. Atmospheric Environment, 29, 1719-1733.
Han, Y.M., Cao, J.J., Chow, J.C.,Watson, J.G., Fung, K., Jin, Z.D., Liu, S.X., An, Z.S., 2007. Evaluation of the thermal/optical reflectance method for discrimination between soot- and char-EC. Chemosphere 69, 569–574.
Harrison, R., Yin, J., 2007. Characterisation of Particulate Matter in The United Kingdom. The University of Birmingham Literature Review (REF. CPEA 6), 1-51.
Harrison, D., 2010. Assessment of UK AURN particulate matter monitoring equipment against the January 2010 guide to demonstration of equivalence. Bureau Veritas report for Department for the Environment, Food and Rural Affairs. AGG04003328/BV/AQ/DH/2658/V3. (http://www.airquality.co.uk/reports/cat14/1101140842_Assessment_of_UK_AURN_PM_Equipment_against_2010_GDE.pdf)
Heintzenberg, J., 1989. Fine particles in the global troposphere A review. Tellus B, 41(2), 149-160.
Hering, S.V., Cass, G.R., 1999. The magnitude of bias in the measurement of PM2.5 arising from volatilization of particulate nitrate from Teflon filters. Journal of the Air and Waste Management Association, 49, 725-733.
Hitzenberger, R., Berner, A., Galambos, Z., Maenhaut, W., Cafmeyer, J., Schwarz, J., M¨uller, K., Spindler, G., Wieprecht, W., Acker, K., Hillamo, R., andM¨akel¨a,T., 2004. Intercomparison of methods to measure the mass concentration of the atmospheric aerosol during INTERCOMP2000–Influence of instrumentation and size cuts. Atmospheric Environment, 38, 6467-6476.
Huebert, B.J., Charlson, R.J., 2000. Uncertainties in data on organic aerosols. Tellus, 52B(5), 1249-1255.
Ito, K., Xue, N., Thurston, G., 2004. Spatial variation of PM2.5 chemical species and source-apportioned mass concentrations in New York City. Atmospheric Environment, 38(31), 5269-5282.
Jang, M.S., Lee, S., Kamens, R.M., 2003. Organic aerosol growth by acid-catalyzed heterogeneous reactions of octanal in a flow reactor, Atmospheric Environment37, 2125–2138.
Jeong, D.H., Maygan L. McGuire, Herod, D., Dann, T., Ewa, D.Z., Wang, D., Ding, L., Celo, V., Mathieu, D., Evans, G., 2011. Receptor model based identification of PM2.5 sources in Canadian cities. Atmospheric Pollution Research, 2, 158‐171.
Kaneyasu, N., Ohta, S., Murao, N., 1995. Seasonal variation in the chemical composition of atmospheric aerosols and gaseous species in Sapporo, Japan. Atmospheric Environment, 29(13), 1559-1568.
Kant Pathak, R., Chan, C. K., 2005. Inter-particle and gas-particle interactions in sampling artifacts of PM 2.5 in filter-based samplers. Atmospheric Environment, 39(9), 1597-1607.
Keck, L., Wittmaack, K., 2006. Miniature parallel-plate denuder for the collection of inorganic trace gases and their removal from aerosol-laden air. Journal of Aerosol Science, 37, 1165-1173.
Kelly, T.J., 1992. Air pollutant monitoring and health risk assessment in Allen Country-Lima Ohio. 85th annual meeting and exhibition of air and waste management association, Kansas city, Missouri, USA.
Kim, B. M., Lester, J., Tisopulos, L., Zeldin, M. D., 1999. Nitrate artifacts during PM2.5 sampling in the south coast air basin of California. Journal of the Air and Waste Management Association, 49(9), 142-153.
Kim, E., Hopke, P. K., Edgerton, E. S., 2003. Source identification of Atlanta aerosol by positive matrix factorization. Journal of the Air and Waste Management Association, 53(6), 731-739.
Kim, E., Hopke, P. K., Edgerton, E. S., 2004. Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization. Atmospheric Environment, 38(20), 3349-3362.
Kim, E., Hopke, P. K., 2004. Source apportionment of fine particles in washington, dc, utilizing temperature-resolved carbon fractions. Journal of the Air and Waste Management Association, 54(7), 773-785.
Koutrakis, P., Sioutas, C., Ferguson, S. T.,Wolfson, J. M., Mulik, J. D., Burton, R. M., 1993. Development and evaluation of a glass honeycomb denuder/filter pack system to collect atmospheric gases and particles. Environmental Science and Technology, 27, 2497-2501.
Lane, T. E., Donahue, N. M., Pandis, S. N.,2008. Simulating secondary organic aerosol formation using the volatility basis set approach in a chemical transport model, Atmos. Environ., 42(32), 7439– 74518.
Lee, C.T., Chuang, M.T., Lin, N.H., Wang, J.L., Sheu, G.R., Wang, S.H., Huang, H., Chen, H.W., Weng, G.H., Hsu, S.P., 2011. The enhancement of biosmoke from Southeast Asia on PM2.5 water-soluble ions during the transport over the Mountain Lulin site in Taiwan. Atmospheric Environment 45, 5784-5794.
Lee, E., Chan, C. K., Paatero, P., 1999. Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmospheric Environment, 33(19), 3201-3212.
Lee, T., Yu, X.-Y., Kreidenweis, S. M., Malm, W. C., Collett, J. L., 2008. Semi- continuous measurement of PM2.5 ionic composition at several rural locations in the United States. Atmospheric Environment, 42(27), 6655-6669.
Lewtas, J., Pang, Y., Booth, D., Reimer, S., Eatough, D. J., Gundel, L. A., 2001. Comparison of sampling methods for semi-volatile organic carbon associated with PM2.5. Aerosol Science and Technology, 34(1), 9-22.
Li, J., Posfai, M., Hobbs, P.V., Buseck, P.R., 2003. Individual aerosol particles from biomass burning in southern Africa:2.Compositions and aging of inorganic particles. Journal of Geophysical Research-Atmospheres 108, 8484, doi: 10.1029/2002JD002310.
Lin, Y.-C., Cheng, M.-T., Ting, W.-Y., Yeh, C.-R., 2006. Characteristics of gaseous HNO2, HNO3, NH3 and particulate ammonium nitrate in an urban city of Central Taiwan. Atmospheric Environment, 40(25), 4725-4733.
Lin, Y., Cheng, M., 2007. Evaluation of formation rates of NO2 to gaseous and particulate nitrate in the urban atmosphere. Atmospheric Environment, 41(9), 1903-1910.
Liu, W., Wang, Y., Russell, A., Edgerton, E.S., 2006. Enhanced source identification fractions and gas phase components. Atmospheric Environment 40, S445 – S466.
McDow, S. R., Huntzicker, J. J., 1990. Vapor adsorption artifact in the sampling of organic aerosol: face velocity effects. Atmospheric Environment. Part A. General Topics, 24(10), 2563-2571.
Middleton, P., Kiang, C., Mohnen, V. A., 1980. Theoretical estimates of the relative importance of various urban sulfate aerosol production mechanisms. Atmospheric Environment (1967), 14(4), 463-472.
Mikuˇska, P., Veˇceˇra, Z., Broˇskoviˇcov´a, A., Stˇep´an, M., Chi, X., Maenhaut, W., 2003. Development of a diffusion denuder for the elimination of sampling artifacts for carbonaceous aerosols. Journal of Aerosol Science Abstracts of the European Aerosol Conference 2003, S761-S762.
Mooibroek, D., Schaap, M., Weijers, E., Hoogerbrugge, R., 2011. Source apportionment and spatial variability of PM2.5 using measurements at five sites in the Netherlands. Atmospheric Environment, 45(25), 4180-4191.
Mozurkewich, M., 1993. The dissociation constant of ammonium nitrate and its dependence on temperature, relative humidity and particle size. Atmospheric Environment,27A, 261-270.
Nel A, 2005. Air pollution-related illness: effects of particles. Science, 308(5723): 804-806.
Nenes, A., Pandis, S. N., Pilinis, C., 1998. ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquatic geochemistry, 4(1), 123-152.
Ogulei, D., Hopke, P. K., Zhou, L., Patrick Pancras, J., Nair, N., Ondov, J. M., 2006. Source apportionment of Baltimore aerosol from combined size distribution and chemical composition data. Atmospheric Environment, 40, Supplement 2(0), 396-410.
Ohta, S. Okita, T. (1990), A Chemical Characterization of Atmospheric Aerosol in Sapporo, Atmos. Environ., 24A, pp. 815-822.
Olanders, B., Steenari, B.M., 1995. Charcterization of Ashes Form Wood and Straw. Biomass and Bioenergy , vol 8, No 2, 105-115.
Paatero, P., Tapper, U., 1994. Positive Matrix Factorization - a nonnegative factor model with optimal utilization of error-estimates of data values. Environmetrics 5, 111-126.
Paatero, P., Hopke, P.K., 2003. Discarding or downweighting high-noise variables in factor analytic models. Analytica Chimica Acta 490, 277-289.
Pekney N.J., Davidson C.I., Robinson A., Zhou L., Hopke P., Eatough D., Rogge W.F., 2006a. Major source categories for PM2.5 in Pittsburgh using PMF and UNMIX. Aerosol Sci. Technol. 40, 910-924.
Pekney, N. J., Davidson, C. I., Zhou, L., Hopke, P. K., 2006b. Application of PSCF and CPF to PMF-modeled sources of PM2.5 in Pittsburgh. Aerosol science and technology, 40(10), 952-961.
Peters, A., Dockery, D.W., Muller, J.E., Mittleman, M.A., 2001. Increased particulate air pollution and the triggering of myocardial infarction. Circulation 103, 2810-2815.
Pinto, J. P., Stevens, R. K., Willis, R. D., Kellogg, R., Mamane, Y., Novak, J., Santroch, J., Benes, I., Lenicek, J., Bures, V., 1998. Czech air quality monitoring and receptor modeling study, Environmental Science and Technology, 32, 843-854.
Poirot R.L., Wishinski P.R., Hopke P.K., Polissar A.V., 2001. Comparative application of multiple receptor methods to identify aerosol sources in northern Vermont. Environmental Science and Technology, 35 (23), 4622-4636.
Polissar, A. V., Hopke, P. K., Poirot, R. L., 2001. Atmospheric aerosol over Vermont: chemical composition and sources. Environmental science and technology, 35(23), 4604-4621.
Pope, C.A.3rd., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D., 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Journal of the American Medical Association, 287, 1132-1141.
Ramadan, Z., Song, X.H., Hopke, P.K., 2000. Identification of sources of Phoenix aerosol by positive matrix factorization. Journal of the Air and Waste Management Association 50,1308–1320.
Reff, A., Eberly, S. I., Bhave, P. V., 2007. Receptor modeling of ambient particulate matter data using positive matrix factorization: review of existing methods. Journal of the Air and Waste Management Association, 57(2), 146-154.
Schwartz, J., Neas, L.M., 2000. Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren. Epidemiology, 11, 6-10.
Schwab, J. J., Felton, H. D., Rattigan, O. V., Demerjian, K. L., 2006. New York State urban and rural measurements of continuous PM2.5 mass by FDMS, TEOM, and BAM. Journal of the Air and Waste Management Association, 56, 372-383.
Simon, P. K., Dasgupta, P. K., 1993. Wet effluent denuder coupled liquid/ion chromatography systems: annular and parallel plate denuders. Analytical Chemistry, 65, 1134-1139.
Sioutas, C., Wang, P. Y., Ferguson, S. T., Koutrakis, P., 1996. Laboratory and field evaluation of an improved glass honeycomb denuder/filter pack sampler. Atmospheric Environment, 30, 885-895.
Stevens, R. K., Pinto, J. P., Mamane,Y., Ondov, J., Abdulraheem,M., Al-Majed, N., Sadek, M., Cofer, R., Ellenson, W., Kellogg, R., 1993. Chemical and physical properties of emissions from kuwaiti oil fires. Water Science and Technology, 27, 223-233.
Turpin, B. J., Huntzicker, J. J., Hering, S. V., 1994. Investigation of organic aerosol sampling artifacts in the Los Angeles Basin. Atmospheric Environment, 28(19), 3061-3071.
Turpin, B. J., Saxena, P., Andrews, E., 2000. Measuring and simulating particulate organics in the atmosphere: problems and prospects. Atmospheric Environment, 34(18), 2983-3013.
U.S. Environmental Protection Agency, 1999. Ambient air monitoring reference and equivalent methods, 40 CFR 53.
U.S. Environmental Protection Agency, 2000. Evaluation of PM2.5 Chemical Speciation Samplers for Use in the EPA National PM2.5 Chemical Speciation Network. Office of Research and Development Exposure Research Laboratory Research Triangle Park, NC 27711, 15 July 2000.
U.S. Environmental Protection Agency, 2008. EPA Positive Matrix Factorization (PMF) 3.0 Fundamentals and User Guide. EPA National Exposure Research Laboratory Research Triangle Park, NC 27711, July 2008.
U.S. Environmental Protection Agency, 2011. Clean Air Status and Trends Network(CASTNET) 2011 Annual Report. Office of Air and Radiation Clean Air Markets Division Washington, DC, EPA Contract No. EP-W-09-028.
U.S. Environment Protection Agency, 2013. List of Designated Reference and Equivalent Methods. National Exposure research Laboratory, Human Exposure and Atmospheric Sciences Division (MD-D205-03) Office of Research and Development, December, 17, 2013.
Vecchi, R., Valli, G., Fermo, P., D′Alessandro, A., Piazzalunga, A., Bernardoni, V., 2009. Organic and inorganic sampling artefacts assessment. Atmospheric Environment, 43(10), 1713-1720.
Vermont Department of Environmental Conservation web site, accessed October 2005. (http://www.anr.state.vt.us/air/Monitoring/htm/FDMS.htm)
Viana, M., López, J. M., Querol, X., Alastuey, A., García-Gacio, D., Blanco-Heras, G., . . . Maenhaut, W., 2008. Tracers and impact of open burning of rice straw residues on PM in Eastern Spain. Atmospheric Environment, 42(8), 1941-1957.
Viana, M., Chi, X., Maenhaut, W., Cafmeyer, J., Querol, X., Alastuey, A., . . . Večeřa, Z., 2006. Influence of sampling artefacts on measured PM, OC, and EC levels in Carbonaceous aerosols in an urban area. Aerosol Science and Technology, 40(2), 107-117.
Viana, M., Kuhlbusch, T., Querol, X., Alastuey, A., Harrison, R., Hopke, P., . . . Prévôt, A., 2008. Source apportionment of particulate matter in Europe: a review of methods and results. Journal of Aerosol Science, 39(10), 827-849.
Waldén, J., Hillamo, R., Aurela, M., Mäkelä, T., Laurila, S., Institutet, M., 2010. Demonstration of the equivalence of PM2.5 and PM10 measurement methods in Helsinki 2007-2008. Finnish Meteorological Institute.
Wang, Y., Hopke, P. K., Xia, X., Rattigan, O. V., Chalupa, D. C., Utell, M. J., 2012. Source apportionment of airborne particulate matter using inorganic and organic species as tracers. Atmospheric Environment, 55, 525-532.
Watson, J.G., Chow, J.C., Houck, J.E., 2001. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere 43, 1141–1151.
Watson J G, 2002. Visibility: science and regulation. Journal of the Air and Waste Management Association, 52(6): 628–713.
Watson, J. G., Chow, J. C., Chen, L.-W. A., Kohl, S. D., Tropp, R. J., Trimble, D., . . . Frank, N., 2008. Assessment of carbon sampling artifacts in the IMPROVE, STN/CSN, and SEARCH networks: US Environmental Protection Agency, Office of Air Quality Planning and Standards.
Wolff, G. T., 1984. On the nature of nitrate in coarse continental aerosols. Atmospheric Environment (1967), 18(5), 977-981.
World Health Organization. Europe Air Quality Guidelines — Global Update 2005, 2006. World Health Organization Europe. Particulate Matter Air Pollution: How It Harms Health, 2005. p. 1–4.
Yang, C.-Y., Wang, J.-D., Chan, C.-C., Chen, P.-C., Huang, J.-S., Cheng, M.-F., 1997. Respiratory and irritant health effects of a population living in a petrochemical-polluted area in Taiwan. Environmental research, 74(2), 145-149.
Yu, S. C., Dennis, R. L., Bhave, P. V., Eder, B. K.: Primary and secondary organic aerosols over the United States, 2004. estimates on the basis of observed organic carbon (OC) and elemental carbon (EC), and air quality modeled primary OC/EC ratios, Atmos. Environ., 38, 5257–5268.
Zhao, W.P., Hopke, K., 2004. Source apportionment for ambient particles in the San Gorgonio wilderness. Atmospheric Environment 38, 5901–5910.
Zeng, T., Wang, Y., 2011. Nationwide summer peaks of OC/EC ratios in the contiguous United States. Atmospheric Environment, 45, 578-586.
Zhang, X., McMurry, P. H., 1992. Evaporative losses of fine particulate nitrates during sampling. Atmospheric Environment. Part A. General Topics, 26(18), 3305-3312.
Zhang, Y., Sheesley, R. J., Schauer, J. J., Lewandowski, M., Jaoui, M., Offenberg, J. H., . . . Edney, E. O., 2009. Source apportionment of primary and secondary organic aerosols using positive matrix factorization (PMF) of molecular markers. Atmospheric Environment, 43, 5567-5574.
Zhu, C.S., Chen, C.C., Cao, J.J. Tsai, C.J., Chou, C.K., Liu, S.C., Roam, G.D., 2010. Characterization of carbon fractions for atmospheric fine particles and nanoparticles in a highway tunnel. Atmospheric Environment 44, 2668-2673.
陳昭忞,2002。重油鍋爐煙道排放之PM2.5及PM10微粒的特性及化學組成。國立中興大學環境工程研究所碩士論文。
黃冠穎,2005。燃煤鍋爐排放原生性微粒特徵研究。國立高雄科技大學環境與安全衛生工程系碩士論文。
江勝偉,2007。氣象因子與大氣懸浮微粒含碳量變異關聯性研究。國立成功大學環境工程研究所碩士論文。
陳聖中,2012。台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討。國立中央大學環境工程研究所碩士論文。
施韋羽,2013。台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及對大氣能見度影響。國立中央大學環境工程研究所碩士論文。
郭崇義、林傳堯、林昭遠、黃隆明、望熙榮,2007。中部地區河川揚塵對空氣品質影響之調查評估專案工作計畫。EPA-95-FA14-03-A216。
詹長權、李永凌、洪壽宏,2012。100年度沿海地區空氣污染物及環境健康世代研究計畫期末報告。YLEPB -100-029。
行政院環境保護署空氣品質改善維護資訊網,2009。98年全國排放量。http://air.epa.gov.tw/Public/ke_main.aspx
行政院環境保護署環境檢驗所,2012,空氣中懸浮微粒(PM2.5)檢測方法-手動採樣法,NIEA A205.11C。
指導教授 李崇德 審核日期 2014-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明